
Automatic Identity Recognition
in the Semantic Web ?

Alfio Ferrara, Davide Lorusso, Stefano Montanelli

Università degli Studi di Milano,
DICo, 10235 Milano, Italy,

{ferrara, lorusso, montanelli}@dico.unimi.it

Abstract. The OKKAM initiative1 has recently highlighted the need
of moving from the traditional web towards a “web of entities”, where
real-world objects descriptions could be retrieved, univocally identified,
and shared over the web. In this paper, we propose our vision of the
entity recognition problem and, in particular, we propose methods and
techniques to capture the “identity” of a real entity in the Semantic Web.
We claim that automatic techniques are needed to compare different
RDF descriptions of a domain with the goal of automatically detect
heterogeneous descriptions of the same real-world objects. Problems and
techniques to solve them are discussed together with some experimental
results on a real case study on web data.

1 Introduction

The Semantic Web is a web of data2, but, we could add, it is (or should be)
also a web on entities. In the Semantic Web context, people and organizations
provide a explicit and semantically rich descriptions of their contents on the web,
enabling human and machine interaction as well as data integration. In doing
this, concrete and abstract real-world entities (e.g., persons, products, locations)
are searchable on the web by exploiting their RDF descriptions. But, obviously,
people perceive and describe the same real entity in many different ways. The
risk of this is to produce the so-called “archipelago of semantic islands” [1],
where each description of the same entity is different form the others and where
data and information cannot be integrated and re-used. In other terms, what we
loose here is not the real entity, which is available in many documents in many
ways, but rather the “identity” of the real-entity. Now, what does it mean really
the word “identity”? Despite the philosophical issues behind the question, we
could agree on the fact that the identity is the way we use in order i) to refer
to an object, ii) to distinguish an object from another one, and iii) to collect
and integrate information about an object. This problem has been solved in the

? This paper has been partially funded by the BOEMIE Project, FP6-027538, 6th EU
Framework Programme.

1 http://www.okkam.org/.
2 http://www.w3.org/2001/sw/.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIR Universita degli studi di Milano

https://core.ac.uk/display/187834185?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

traditional web for what concerns resources and documents by using the URI
standard. The question here is if we can provide something similar to URIs for
entities. If we want to capture the “identity” of a real entity in the Semantic
Web, we need to be able to compare different RDF descriptions of a domain with
the goal of automatically detect descriptions referred to the same real-world
object. We call this problem “Identity Recognition Problem”. In this paper,
we discuss the identity recognition problem by focusing on three sub-problems
and by proposing specific methods and techniques to solve them. Moreover,
we present a case study where these techniques are shown in action and some
experimental results are provided by using the instance matching functionalities
implemented in our ontology matching tool HMatch, which is developed in the
framework of the BOEMIE project [2, 3].

2 The Identity Recognition Problem

We call individual any abstract or concrete entity in a domain of interest. When
a domain is described by a formal representation of its contents, we do not
have a direct knowledge of the individuals per se, but only a set of descriptions
or perceptions of these individuals. A domain representation is seen as a set of
descriptions. A description is an arbitrary set of assertions about domain objects
and data values specified according to a formal language and a data model. In
this respect, the problem of individual identification is defined as:

1. the problem of detecting, out of the several assertions that characterize a
description, those assertions which denote a specific individual in the domain;

2. the problem of detecting, out of several descriptions in a domain represen-
tation, those descriptions which denote the same individual in the domain.

A domain representation is provided according to a formal language and a data
model. Data provided in the model can be typed and featured by a well defined
semantics (e.g., DL ontologies), structured by a relational or object-oriented
model (e.g., relational or object-relational databases), or organized as potentially
untyped graphs (e.g., RDF, RDFS). We assume to generalize domain represen-
tations as RDF untyped graphs, where nodes denote objects or atomic data and
edges denote labeled binary relations. To give an example of individual repre-
sentations, let us suppose to represent a DVD collection. Two examples of RDF
individual descriptions are the following ones:

Description 1 Description 2
〈#d01〉 〈#title〉 scarface

〈#d01〉 〈#director〉 Brian De Palma

〈#d01〉 〈#actor〉 Al Pacino

〈#d01〉 〈#actor〉 Michelle Pfeiffer

〈#d01〉 〈#price〉 14.99

〈#d01〉 〈#title〉 scarface

〈#d01〉 〈#director〉 〈#d02〉
〈#d02〉 〈#name〉 Brian De Palma

〈#d01〉 〈#actor〉 〈#d03〉
〈#d03〉 〈#name〉 Al Pacino

〈#d01〉 〈#actor〉 〈#d04〉
〈#d03〉 〈#name〉 Michelle Pfeiffer

〈#d01〉 〈#price〉 14.99

Intuitively, we have in both cases a description of a DVD (i.e., d01) and some
data about it. But, how many different individuals are represented in the two
descriptions? Which properties are referred to which individual? How can we
detect individuals here?
We can maybe agree on the fact that, in both cases, five real individuals are rep-
resented: four concrete individuals (i.e., the DVD, the persons Brian De Palma,
Al Pacino and Michelle Pfeiffer) and an abstract individual (i.e., the movie “Scar-
face”). But we have different properties in the two cases: title is an attribute of
the DVD or an attribute of the movie “Scarface”, or both? Moreover, persons
have a name in the second representation, but no attributes in the first. Finally,
supposing to have a correct identification of individuals in the two cases, how
are we supposed to match these two different representations?
We can try to address these questions by splitting the Identity Recognition
Problem into three sub-problems:

1. Individuals identity and essence: what is an individual and how it is identi-
fied?

2. Individuals description: how to compare two different descriptions of the
same individual?

3. Individuals existence: how to deal with the fact that some individuals de-
scriptions “contain” descriptions of other individuals? When an individual
has an independent existence?

In the following sections we try to formalize these problems and sketch possible
techniques to address them.

2.1 A Real Case Study

In order to test and discuss the techniques proposed in this paper over real data,
we created a case study using data about DVDs provided by the Amazon.com
web service3 together with data provided about movies by the IMDB database4.
The goal of our test case is to identify movies out of these datasources. For what
concerns Amazon, movie identification is not trivial, because data describe DVD
editions of the movies and not the movies per se. Thus, we want to cluster to-
gether DVDs referring to the same movie and to extract out of DVD descriptions
the movie description (i.e., extraction). In our ideal case, a user who is going to
create a RDF movie collection would be able to get a reference to “Scarface” by
automatically exploring the Amazon DVD collection. On the other side, IMDB
provides data about movies. In such a case, the goal is to compare IMDB movie
descriptions with movie descriptions extracted from Amazon, in order to au-
tomatically identify different descriptions referred to the same real movie (i.e.,
mapping). These two goals are graphically presented in Figure 1.

3 http://aws.amazon.com/
4 http://imdb.com/. Despite the fact that IMDB is an Amazon.com company, data

provided by the two services are very different, at least with respect to the user
query.

?

amazon.com

us.imdb.com
Scarface (1983)

Scarface (1932)
aka: Scarface, the Shame of the Nation

Scarface (1982) - TV

Scarface (1928)

Scarface (Widescreen Anniversary Edition)
DVD 2003

Scarface (Platinum Edition)
DVD 2006

Scarface
DVD 2003Scarface

(1983) Scarface
(1932)

"Scarface"

Extraction

Identification

Fig. 1. Graphical representation of entity extraction and mapping

In order to evaluate our techniques, we manually built a set of expected
results. From Amazon, we got data resulting for the query “Scarface” over the
DVDs collection. Results contain 87 items (describing videos and DVDs). Manu-
ally, we categorized these items with respect to the related movie: we obtained 15
DVD editions of the movie “Scarface (1983)”, 4 of the movie “Scarface (1932)”,
6 DVD collections including the movie “Scarface (1983)”, 11 of the movie “Mr.
Scarface (1976)”, 4 of the movie “Captain Scarface (1953)” and 47 DVD editions
of other movies/materials not directly related to the query “Scarface”. Concern-
ing IMDB, we collected 27 movies, including the ones in Amazon and others.
Finally, we imported data into two very simple RDF schemas, with the goal of
preserving as much as possible the original structure of data provided by the
two resources. A portion of resulting RDF is shown in Figure 2.

3 Identity of Individuals

In general, when looking at a real individual we focus on some of its properties
in order to distinguish it from other individuals. However, not all the individual
properties can be used to perform such a distinction. In the Aristotelian theory of
definition, some properties are considered as part of the individual essence, some

Amazon item IMDB movie

〈#item-2〉 〈#title〉 Scarface, Special Edition
〈#item-2〉 〈#director〉 Brian De Palma
〈#item-2〉 〈#actor〉 Al Pacino
〈#item-2〉 〈#format〉 PAL
〈#item-2〉 〈#hasLanguage〉 〈#L06〉
〈#L06〉 〈#name〉 Spanish

〈#M-01〉 〈#title〉 Scarface (1983)
〈#M-01〉 〈#director〉 〈#P04〉
〈#M-01〉 〈#cast〉 〈#C06〉
〈#P04〉 〈#name〉 Brian De Palma
〈#P04〉 〈#birth〉 11-09-1940
〈#C06〉 〈#actor〉 〈#P16〉
〈#C06〉 〈#character〉 Tony Montana
〈#P16〉 〈#name〉 Al Pacino

Fig. 2. A portion of RDF created from Amazon and IMDB data

other are just “accidental” attributes. Borrowing this intuition, we can assume
that, given an individual description Do = {A0,A1, . . . ,An} as a set of assertions
about an individual o, the identification Io of o is an identity function Io(Do) →
{(di, vi)} which associates to each group of assertions in Do an identification
strength vi in the range [0,1]. Goal of the identification function is to provide a
measure of the importance of each group of assertions with respect to the general
goal of detecting the identity of o.

Definition 1. Identity Function. Given an individual description D = {A0, A1,
. . . , An}, the Identity Function I(D) → {(di, vi)} is defined as follows:

∀di ∈ P(D), di → vi

where P(D) denotes the power set of D, di denotes a possible subset of assertions
in D, while vi is a measure (in the range [0,1]) of the importance of di for the
identification of o.

3.1 Implementation of the Identity Function

The identity function can be obtained in three different ways:

1. by taking into account schema constraints when available (e.g., functional
properties in DL, key constraints in relational databases);

2. by taking into account domain specific information or human suggestions
(e.g., ISBN codes for books, personal identification numbers for persons,
manual configuration of an identity recognition system);

3. by exploiting statistical techniques over data values. Usually, the idea behind
these techniques is that assertions with a high number of different values are
more useful for identification than assertions with a high number of similar
or equal values.

In HMatch, identifying properties can be manually chosen or automatically
detected by taking into account, for each group of assertions d ∈ D, the number
Nd
6= of different values retrieved for d in all the individuals of the same type of

the given one. More formally, given an individual o, we take into account the set

O of all the individuals of the same type of o in the RDF description. Then, we
calculate the identity function as follows:

∀di ∈ P(D), di →
Ndi

6=

| OP |

where Ndi

6= is the number of different values of the assertions di over the set O,
while | OP | is the number of different properties featuring the individuals in O.

Example. To see how the function works, let us suppose to have three simple
movie descriptions:

Description 1 Description 2 Description 3
〈#M01〉 〈#title〉 Scarface

〈#M01〉 〈#year〉 1983

〈#M01〉 〈#genre〉 Crime

〈#M02〉 〈#title〉 Scarface

〈#M02〉 〈#year〉 1932

〈#M03〉 〈#title〉 Testament

〈#M03〉 〈#year〉 1983

By taking into account all possible subsets of movie properties, the results
of the identification function is shown in Table 1.

Table 1. Example of results provided by the identification function

Property subset Num. of different values Num. of properties Result

{#title} 2 3 0.67
{#year} 2 3 0.67
{#genre} 1 3 0.34
{#title, #year} 3 3 1.0
{#title, #genre} 2 3 0.67
{#year, #genre} 2 3 0.67
{#title, #year, #genre} 3 3 1.0

Looking at the results, we can see how the function does not take into account
properties with missing values, because they do not provide useful information.
Moreover, the title or the year are not useful if we consider them separated, but
they are enough to identify movies when taken into account in combination.

4 Heterogeneous Individual Descriptions

The same individual can be described in many different ways. Descriptions of
the same individual can be different for several reasons, including the use of
different languages or data models and a different conceptualization of the same
domain. The use of a generalized RDF model does not avoid the presence of
heterogeneous descriptions of the same individual. Thus, a key requirement in
individual identification is the capability of comparing heterogeneous descrip-
tions of the individuals in order to cluster together similar or matching descrip-
tions. Given an individual o and two descriptions D1

o = {A1
0,A1

1, . . . ,A1
n} and

D2
o = {A2

0,A2
1, . . . ,A2

m} of o, the identification Io of o is a matching function
Io(D1

o, D2
o) → (D1,2, v). Goal of the function Io(D1

o, D2
o) is to understand when

two descriptions denote the same real individual in the domain.

Definition 2. Matching Function. Given two individual descriptions D1 and
D2, the matching function I(D1, D2) is defined as follows:

I(D1, D2) → (D1,2, v),

where v is a measure in the range [0,1] of the similarity of D1 and D2 and D1,2

is the set of assertion mappings between D1 and D2. The goal of the match-
ing function is to provide a measure of similarity between D1 and D2, under
the assumption that the higher the descriptions similarity is, the higher is the
probability that D1 and D2 denote the same real individual.

4.1 Implementation of the Matching Function

A typical implementation of the matching function is based on the idea of com-
paring the data values associated with a given individual. But, since different
descriptions may have a different structure, how can we know which graph nodes
in the two descriptions should be compared? The approach used in HMatch is to
rely on the results provided by matching the two datasource schemas. In order to
deal with highly different data structures, we need complex mappings between
the concepts and properties of the two schemas. HMatch itself implements sev-
eral different techniques for schema matching, including linguistic, structural and
contextual matching [2]. Many other techniques have been proposed for schema
matching [4]. Since schema matching is not the goal of the paper, we present
the instance matching approach used in HMatch by assuming to have complex
mappings at the schema level. HMatch evaluates the degree of similarity among
different individuals by considering those assertions which provide a description
of the individuals features. Consequently, the similarity of role filler values as
well as the similarity of their direct types is evaluated. When two instances are
compared, their similarity is proportional to the number of similar roles and role
fillers they share. Moreover, for the similarity evaluation we use the identification
power of properties provided by the identity function. The approach adopted in
HMatch is based on the idea of considering properties as connections between
individuals and propagating similarity values through them. Each specification
of an individual is represented by means of a tree. In order to evaluate the degree
of similarity of two individuals, the procedure computes a measure of similarity
between datatype values and propagates these similarity degrees to the individ-
uals of the higher level by combining the similarity among their property fillers.
To this end, HMatch provides a set of specific techniques devoted to the evalua-
tion of similarity between datatype values. A function called datatype role filler
matching is responsible of selecting the most suitable matching technique for
each pair of datatype role fillers, according to the semantic meaning of the roles
and to the datatype category.

Example . Consider two individuals item-1 and M-01 representing different RDF
descriptions of the movie Scarface (Figure 3). item-1 describes a DVD sold by
Amazon while M-01 describes directly the movie.

Amazon item IMDB movie

〈#item-1〉 〈#title〉 Scarface [Region 2]
〈#item-1〉 〈#director〉 Brian De Palma
〈#item-1〉 〈#actor〉 Al Pacino
〈#item-1〉 〈#actor〉 Michelle Pfeiffer
〈#item-1〉 〈#theatricalReleaseDate〉 1983
〈#item-1〉 〈#regionCode〉 2
〈#item-1〉 〈#format〉 NTSC,aspect ratio 2.35:1

〈#M-01〉 〈#title〉 Scarface (1983)
〈#M-01〉 〈#director〉 De Palma, Brian
〈#M-01〉 〈#Year〉 1983
〈#M-01〉 〈#Country〉 USA
〈#M-01〉 〈#cast〉 〈#C06〉
〈#C06〉 〈#character〉 Tony Montana
〈#C06〉 〈#actor〉 〈#P15〉
〈#P15〉 〈#name〉 Pacino, Al
〈#M-01〉 〈#cast〉 〈#C13〉
〈#C13〉 〈#character〉 Elvira Hancock
〈#C13〉 〈#actor〉 〈#P16〉
〈#P16〉 〈#name〉 Pfeiffer, Michelle
〈#M-01〉 〈#cast〉 〈#C20〉
〈#C20〉 〈#character〉 Manny Ribera
〈#C20〉 〈#actor〉 〈#P17〉
〈#P17〉 〈#name〉 Bauer, Steven

Fig. 3. RDF description of item-1 and M-01

First of all we suppose to have the following set of mappings at schema level
produced by a schema matching tool: {(title,title), (director, director), (actor,
actor.name), (theatricalReleaseDate, Year)}. These mappings reduce the nested
structure of the M-01 description to a flat one, making the M-01 description
more comparable with the one of item-1. For each pair of properties involved
in a mapping, HMatch compares the two values by means of a matching func-
tion specific for the category of the property (e.g. person name, date), which
produces a similarity measure in the range [0,1]. The two property values are
considered similar if the similarity measure is greater then a given threshold.
For instance, the comparison of (Amazon) director and (IMBD) director prop-
erty values, which are “Brian De Palma” and “De Palma, Brian” respectively, is
performed with a matching function for person names and produces a similarity
measure of 0.9. When multiple values are defined for the same properties, as for
actor and actor.name, each possible value of the first property is compared with
each possible value of the second. Then a set similarity measure is produced by
considering similar values as the intersection of the two sets. When all the values
of mapped property have been compared, the overall similarity measure of the
two individuals is computed with the dice coefficient method. Assuming that,
after all the comparisons, M-01 and item-1 have similar values for the properties
(director, director), (actor, actor.name) and (theatricalReleaseDate, Year), but
not for the properties (title,title), the overall similarity of the two individuals is
evaluated as follows:

sim(item-1, M-01) =
similar properties
total properties

=
6
8

= 0.75

Having a reasonable threshold value of 0.6, the two individual descriptions
are considered similar, which is correct since they are referred to the same movie.

5 Autonomous Identity

In the two previous sections, we assumed to work with individual descriptions.
But, a description is just an arbitrary collection of assertions. So, the problem
here is: how can we select the minimal set of assertions describing an individual?
In other terms, we could also wondering if there is a method to identify an au-
tonomous individual out of a domain representation. The most simple intuition
here is to consider all the assertions having the same domain object as subject.
This method can be easily generalized to cope with more nested graph structures,
by taking into account all the assertions that are directly or indirectly connected
with a domain object. However, this approach is not sufficient in many cases.
This problem can be introduced by looking at the example of Figure 4. The two

Description 1 Description 2

A1. 〈#dvd 1〉 〈#title〉 Scarface A2. 〈#dvd 2〉 〈#title〉 Scarface
B1. 〈#dvd 1〉 〈#price〉 14.99 B2. 〈#dvd 2〉 〈#price〉 18.89
C1. 〈#dvd 1〉 〈#year〉 2003 C2. 〈#dvd 2〉 〈#year〉 2006
D1. 〈#dvd 1〉 〈#subtitles〉 French, Spanish D2. 〈#dvd 2〉 〈#subtitles〉 French
E1. 〈#dvd 1〉 〈#director〉 Brian De Palma E2. 〈#dvd 2〉 〈#director〉 Brian De Palma
F1. 〈#dvd 1〉 〈#actor〉 Al Pacino F2. 〈#dvd 2〉 〈#actor〉 Al Pacino
G1. 〈#dvd 1〉 〈#actor〉 Michelle Pfeiffer G2. 〈#dvd 2〉 〈#actor〉 Michelle Pfeiffer

Fig. 4. Example of the discovery problem

descriptions in the example represent two different DVD editions of the same
movie. This means that there is a real individual (i.e., the movie “Scarface”)
which is not represented by a specific description. In general, a good design of
the source schema should avoid this anomalies, but in real data it happens very
often to have individuals that are “hidden” into descriptions of other individuals.
For example, when talking about books, movies, music works and other kind of
abstract individuals, it happens that the work is not distinguished from its physi-
cal edition. Also in other domains this is a problem: we have persons descriptions
hidden into business transaction descriptions, geographical locations hidden into
travel descriptions, and so on. How can we deal with this kind of individuals?
In this context, the identity Io of an hidden individual o is a discovery function
Io(D) → {(di, vi)} which is defined as follows:

Definition 3. Discovery Function. Given an arbitrary description D, the dis-
covery function Io(D) → (di, vi) is defined as:

∀di ∈ P(D), di → vi

where di denotes a possible subset of assertions of D and vi (in the range [0,1])
denotes the probability of di to be the description of an hidden individual o.

5.1 Implementation of the Discovery Function

In HMatch, the discovery function is implemented using matching. The idea is to
execute matching over the same datasource by collecting a log of the properties
matching. Intuitively, in such a way we collect the properties that, in most of the
cases, have equal or similar values in a set O of individuals. Of course, there are
several properties whose values match in many cases even if they do not denote
an autonomous individual. For example, the format of a DVD (e.g., PAL) is
the same in many cases, even if it does not denote a movie. To deal with this
situation, we work under the assumption that only a significant group of prop-
erties matching together in many cases are denoting an autonomous individual.
We find all the subsets of properties matching and, for each subset di, we take
into account the number of properties in the subset (| di |) and the number of
occurrences of matching values vi of the properties in the subset over O. Given
the subset dmax as the subset containing the maximum number of properties,
we associate with di the measure d

i
= |d|

|dmax| . Analogously, given the maximum
number of matching values occurrences vmax, we associate with di the measure
vi = vi

vmax
. As a result, given the subset of matching properties di, its measure

of discovery D(di) is calculated as:

D(di) = d
i
+ vi.

In such a way, we consider the subset with the best balance between the number
of properties and the number of matching values over its properties as the set
of properties candidate to denote an autonomous individual description within
a description of other individuals.

Example. As an example, we take into account the example of Figure 4. Matching
description 1 against description 2, we obtain the following mappings:

{(A1, A2), (E1, E2), (F1, F2), (G1, G2)}

leading to the following subset of matching properties:

d = {#title, #director, #actor}.

Since the example is very simple, it is easy to see how d is also the best candidate
to denote an autonomous individual. In more complex situations, this approach
can fail due to some properties in the candidate set which are in fact useless to

individual discovery. However, the resulting candidate set can be used to perform
matching again by considering only the properties in the candidate set, in order
to verify the quality of the obtained results. A more detailed discussion on this
is provided in the following section.

6 Experimental Results

In order to evaluate the proposed techniques, we take into account the case
study presented in Section 2.1. In particular, we have two goals: i) we want to
discover movies within Amazon.com DVD data; ii) we want to compare movie
descriptions discovered in Amazon.com against movies in IMDB, in order to find
different descriptions of the same real movies.

6.1 Discovery Test Case

Concerning the first goal, our approach for testing is to match all the DVD
descriptions extracted from Amazon.com in order to find correspondences (i.e.,
mappings) among DVDs containing the same movie. The ground truth has been
created by manually clustering DVDs with respect to the movie and by creating
the set of expected mappings. It is important to stress that the goal here is not
to find similar or equal DVDs, but DVDs, potentially different, with the same
movie. This means that some data referred to the product, such as ISBN, is
not useful to our needs. Moreover, data are quite “dirty” because they contain
errors or incomplete information. Thus, we performed two preliminary opera-
tions: first, we execute matching by considering all the properties, in order to
have a measure of how the discovery works without a set of properties that de-
note the autonomous individual movie (Test 1); second, we manually select the
set of DVD properties referred to movies, and we execute matching again. This
provides a measure of how the matching works in the ideal situation, when the
relevant properties denoting movies in DVD descriptions are correctly selected
(Test 3). Finally, we exploited the discovery function of HMatch to automati-
cally retrieve the relevant properties for movies and we execute the matching
by considering only the relevant properties (Test 2). In order to evaluate the
quality of the results we used three measures: precision, defined as the quantity
of retrieved mappings that are correct, and recall, defined as the quantity of cor-
rect mappings that are retrieved, and F-Measure which is the harmonic mean
of the two. Results are shown in Table 2, where, for each Test, we provide two
measures in the form X (Y), where X is the absolute value of precision or recall,
while Y is the value of precision and recall with respect to the ideal matching
case (Test 3).

The results show how matching over all the DVD properties is useless with
respect to the goal of discovering movies. In fact, many DVD are similar be-
cause of properties like the format which is not relevant neither for the DVD
identification nor for the movie identification. So, this method (Test 1) produces
a high number of mappings, leading to a high recall with a very low precision.

Table 2. Experimental results for the discovery problem

Measure Test 1 Test 2 Test 3

Precision 0.09 (0.13) 0.67 (0.83) 0.8 (1.0)

Recall 0.54 (0.96) 0.43 (0.76) 0.56 (1.0)

F-Measure 0.18 (0.26) 0.53 (0.79) 0.67 (1.0)

On the other way, manual selection of properties (Test 3) produces the best
results that can be obtained by using matching for movie discovery. These re-
sults are characterized by a good precision and an average recall. This means
that when we collect together DVDs with the same movie, it is quite probable
that the collection is correct, even if some DVD is missing. The results obtained
with the discovery function (Test 2) are promising because, despite the fact that
the method is completely automatic, we obtained quite good precision and recall
results, especially if compared with the ones obtained with the manual approach.

6.2 Matching Test Case

The matching test case has been executed by taking onto account data ex-
tracted from Amazon together with data provided by IMDB. The goal here is
to evaluate in terms of precision and recall the quality of the results obtained
using HMatch for individual comparison. In particular, we want to check if our
instance matching techniques are suitable for automatically retrieve different de-
scriptions denoting the same real entity (i.e., a movie). The ground truth has
been defined by manually comparing the 27 movies retrieved in IMDB against
the 87 DVDs retrieved on Amazon for the query “Scarface”. In particular, we
have manually mapped each movie with all the DVDs containing that movie.
Then, we have executed HMatch by taking into account only the properties se-
lected in the previous discovery test (Test 2). The results in terms of precision,
recall and F-Measure are shown in Table 3.

Table 3. Experimental results for the matching problem

Precision Recall F-Measure

0.92 0.82 0.87

Results are in this case very good, which encourages us in our belief that
instance matching techniques can be used as a support for the identification of
entities over heterogeneous datasources.

7 Related Work

In the paper, we have seen how instance matching techniques are crucial for
solving the identity recognition problem by exploiting automatic techniques.

In general, instance matching is frequently referred to as an Entity Resolution
problem (also called Deduplication or reference reconciliation) and it is defined
as the process of identifying and merging records judged to represent the same
real-world entity. Up to now, the instance matching problem has been recognized
as particularly relevant in database and data integration applications where it
is referred to as record linkage and it is defined as the task of quickly and ac-
curately identifying records corresponding to the same entity from one or more
data sources [5].

A first important category of approaches to record linkage rely on statistical
theories and techniques. In particular the problem is translated in a Bayesian
inference problem [6] by means of decision rules based on probabilities, which
are estimated using different techniques such as expectation maximization algo-
rithms [7], with some further improvements in order to manage missing values
and costs of misclassification. More recent approaches to record linkage are based
on classification techniques in the machine learning. The supervised learning sys-
tems rely on the existence of training data in the form of record pairs, prelabeled
as matching or not. When this kind of information is not available, other tech-
niques must be adopted to detect matching records. In general these techniques
define a distance metric for records which does not need tuning through train-
ing data. A simple approach is to consider a record as a unique string and to
apply known edit-distance metrics [8] but, in such a way, references between
different records are ignored. Ananthakrishna et al. [9] describe a similarity met-
ric that uses not only the textual similarity, but the co-occurrence similarity of
two entries in a database. A similar way to improve the comparison metrics is
the one by Felix Naumann et al. on data fusion [10]. The similarity evaluation
of two record is enhanced by the analysis of the context of a record, which is
captured by considering not only the significant attributes of a record but also
those attributes related to it through a foreign key. Naumann et al. exploit du-
plicate detection also to support schema matching functionalities. Halevy et al.
[11] proposed an algorithm that, besides the exploitation of co-references among
records, propagates information between reconciliation decisions of different de-
scriptions to accumulate positive and negative evidences. Then, the algorithm
gradually enriches references by merging attribute values. Our approach for in-
stance matching has a similar strategy but we do not limit the context analysis
to a single level of similarity propagation because the ontology instances gen-
erally have a more nested, tree-like, structure and the meaningful data is at
the bottom of it. For this reason, ontology instance matching require more so-
phisticated techniques for handling the propagation of the similarity measure at
the instance level. Moreover, for expressive languages (i.e. DLs) the structure of
instances is not explicit and should be derived by reasoning.

In the Semantic Web the attention on instances for the purpose of ontology
matching has been poorly studied and only basic techniques for ontology instance
matching have been proposed. For example, in [12] instances are considered to
support/validate concept matching techniques trough statistical analysis. This
means that the similarity between two concepts is evaluated by measuring the

“significance” in the overlap of their respective instance sets [13]. To this end,
various similarity metrics have been proposed to evaluate instance similarity
and thus instance-based concept matching [14]. Another important application
of instance matching is ontology evolution, which means the need of supporting
experts in managing ontology changes through advanced and possibly automated
techniques. This is the case of the BOEMIE project (Bootstrapping Ontology
Evolution with Multimedia Information Extraction) where a novel methodology
for ontology evolution is defined to enhance traditional approaches and to provide
methods and techniques for evolving a domain ontology through acquisition
of semantic information from multimedia resources such as image, video, and
audio [15].

8 Concluding Remarks

In this paper, we have discussed the problem of identity and entity recognition
in the semantic web, by presenting three main sub-problems and by provid-
ing specific techniques to solve them. Our thesis is that instance matching and
related techniques can be used to support entity recognition by enabling the
automatic discovery of “hidden” entities as well as the automatic comparison of
different descriptions of the same real-world objects. To this end we have pre-
sented promising experimental results. Concerning scalability, which is a crucial
issue for semantic web applications, we are currently performing tests with larger
datasets and our future work will be focused on optimization of the algorithms
in terms of computational performances. Moreover we are collecting more exper-
imental data in the BOEMIE European Project 5, where instance matching is
used with the purpose of retrieving descriptions of the same entities over seman-
tic data extracted from multimedia resources. BOEMIE provides methods and
techniques for knowledge acquisition from multimedia content, by introducing
the notion of evolving multimedia ontologies, which is used for the extraction of
information from multimedia content in networked sources. In particular, multi-
media resources are analyzed with the goal of providing a semantic description
of their content. The result of this process is the population of an OWL ontology.
In the process of population, different instances created from different resources
are grouped together if they denote the same real-world object. Our current and
future work in the project is to investigate, develop and test advanced instance
matching techniques as a support for ontology population.

References

1. Bouquet, P., Stoermer, H., Mancioppi, M., Giacomuzzi, D.: OkkaM: Towards a
Solution to the “Identity Crisis” on the Semantic Web. In: Proc. of the 3rd Italian
Semantic Web Workshop (SWAP 2006), Pisa, Italy, CEUR (2006)

2. Castano, S., Ferrara, A., Montanelli, S.: Matching ontologies in open networked
systems: Techniques and applications. Journal on Data Semantics (JoDS) V (2006)

5 http://www.boemie.org

3. Bruno, S., Castano, S., Ferrara, A., Lorusso, D., Messa, G., Montanelli, S.: On-
tology Coordination Tools: Version 2. Technical Report D4.7, BOEMIE Project,
FP6-027538, 6th EU Framework Programme (2007)

4. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer-Verlag (2007)
5. Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate record detection: A

survey. IEEE Transactions on Knowledge and Data Engineering 19 (2007)
6. Fellegi, I.P., Sunter, A.B.: A theory for record linkage. Journal of the American

Statistical Association 64 (1969)
7. Winkler, W.: Improved decision rules in the fellegi-sunter model of record linkage.

In: Proceedings of the Section on Survey Research Methods. (1993)
8. Monge, A.E., Elkan, C.: An efficient domain-independent algorithm for detecting

approximately duplicate database records. In: Research Issues on Data Mining and
Knowledge Discovery. (1997)

9. Ananthakrishna, R., Chaudhuri, S., Ganti, V.: Eliminating fuzzy duplicates in
data warehouses. In: In Proceedings of the 28th International Conference on Very
Large Databases (VLDB 2002). (2002)

10. Naumann, F., Bilke, A., Bleiholder, J., Weis, M.: Data fusion in three steps:
Resolving schema, tuple, and value inconsistencies. IEEE Data Eng. Bull. 29
(2006) 21–31

11. Dong, X., Halevy, A., Madhavan, J.: Reference Reconciliation in Complex Infor-
mation Spaces. In: Proc. of the ACM SIGMOD Int. Conference on Management
of Data, Baltimore, Maryland, USA (2005)

12. Wang, C., Lu, J., Zhang, G.: Integration of Ontology Data through Learning
Instance Matching. In: Proc. of the IEEE Int. Conference on Web Intelligence
(WI’06), Hong Kong, China (2006)

13. Isaac, A., van der Meij, L., Schlobach, S., Wang, S.: An Empirical Study of
Instance-Based Ontology Matching. In: Proc. of the 6th Int. Semantic Web Con-
ference, 2nd Asian Semantic Web Conference (ISWC 2007+ASWC 2007), Busan,
Korea (2007)

14. Engmann, D., Massmann, S.: Instance Matching with COMA++. In: Proc. of the
Workshop on Datenbanksysteme in Business, Technologie und Web (BTW 2007),
Aachen, Germany (2007)

15. Castano, S., Espinosa, S., Ferrara, A., Karkaletsis, V., Kaya, A., Melzer, S., Möller,
R., Montanelli, S., Petasis, G.: Multimedia Interpretation for Dynamic Ontology
Evolution. Journal of Logic and Computation, special issue on Ontology Dynamics
(2008) To appear.

