
Frontiers in Neuroendocrinology 29 (2008) 507–519

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIR Universita degli studi di Milano
Contents lists available at ScienceDirect

Frontiers in Neuroendocrinology

journal homepage: www.elsevier .com/locate /yfrne
Review

Estrogen anti-inflammatory activity in brain: A therapeutic opportunity
for menopause and neurodegenerative diseases

Elisabetta Vegeto, Valeria Benedusi, Adriana Maggi *

Centre of Excellence on Neurodegenerative Disease, University of Milan, via Balzaretti, 9 20133 Milan, Italy

a r t i c l e i n f o a b s t r a c t
Article history:
Available online 29 April 2008

Keywords:
Estrogen
Microglia
Neuroinflammation
Multiple sclerosis
Alzheimer’s disease
Parkinson’s disease
0091-3022/$ - see front matter � 2008 Elsevier Inc. A
doi:10.1016/j.yfrne.2008.04.001

* Corresponding author. Fax: +39 02 50318284.
E-mail addresses: adriana.maggi@unimi.it, maggi.o
Recent studies highlight the prominent role played by estrogens in protecting the central nervous system
(CNS) against the noxious consequences of a chronic inflammatory reaction. The neurodegenerative pro-
cess of several CNS diseases, including Multiple Sclerosis, Alzheimer’s and Parkinson’s Diseases, is asso-
ciated with the activation of microglia cells, which drive the resident inflammatory response. Chronically
stimulated during neurodegeneration, microglia cells are thought to provide detrimental effects on sur-
rounding neurons. The inhibitory activity of estrogens on neuroinflammation and specifically on microg-
lia might thus be considered as a beneficial therapeutic opportunity for delaying the onset or progression
of neurodegenerative diseases; in addition, understanding the peculiar activity of this female hormone on
inflammatory signalling pathways will possibly lead to the development of selected anti-inflammatory
molecules. This review summarises the evidence for the involvement of microglia in neuroinflammation
and the anti-inflammatory activity played by estrogens specifically in microglia.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Substantial evidence supports the role of neuroinflammation in
the pathogenesis and progression of neurodegenerative diseases;
microglia cells are the resident inflammatory cells of the brain that
are primarily involved in promoting brain inflammation in re-
sponse to both acute or chronic stimuli. Improving our understand-
ing of microglia cells regulation represents a major advancement
for future strategies aimed at controlling pathologies, such as mul-
tiple Sclerosis (MS), Alzheimer’s disease (AD) and Parkinson’s dis-
ease (PD), that are associated with a relevant neuroinflammatory
process. The estrogen hormone has a well-known neuroprotective
activity, which could be related with the gender prevalence of se-
lected neurodegenerative diseases. Accordingly, the strong effects
on the incidence and symptomatology of certain neurodegenera-
tive pathologies observed during pregnancy or at menopause or
triggered by the administration of estrogenic drugs have been as-
cribed to estrogen action in brain cells. Given that a large body of
evidence now indicates that estrogens exert an anti-inflammatory
activity, we propose that part of its neuroprotective effects may be
linked to the inhibition of microglia activation. The aim of the pres-
ent review is to provide the state-of-the-art knowledge on estro-
gen action in microglia in selected disorders, such as MS, AD and
PD, and to support the hypothesis that the use of estrogens in pre-
ventive therapies might delay the onset of neurodegeneration.
ll rights reserved.
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2. Inflammation and neurodegeneration

2.1. Role of microglia in neurodegeneration

Over the past two decades evidence accumulated from both
experimental and post-mortem studies suggested that a sustained
inflammatory reaction is present in chronic neurodegenerative
states. In addition, a number of proinflammatory mediators, such
as cytokines, and inflammatory-associated factors such as cycloox-
ygenase-2 (COX-2) and inducible-nitric oxide synthase (iNOS) are
elevated in the CNS or cerebrospinal fluid of neurodegenerative
disease patients. Furthermore, recent epidemiological studies indi-
cate that the chronic use of nonsteroidal anti-inflammatory agents
(NSAIDs) reduces the risk of PD and AD ([39,152,154,225]) and
inheritance of polymorphisms resulting in enhanced expression
of various inflammatory mediators was reported to increase the
risk of these two pathologies ([32,246]). Importantly, activated
microglia were found at the histopathological sites of several brain
disorders, including neurodegenerative diseases such as AD, MS,
PD, ALS (amyotrophic lateral sclerosis) and AIDS-associated
dementia ([56,93,116,153] and [192]).

Microglia are resident immunocompetent and phagocytic cells
of the CNS thought to mediate the innate immune defence and
to act as scavenger cells in the event of infection, inflammation,
trauma, ischaemia and neurodegeneration in the CNS [128]. Resi-
dent microglia in the healthy brain display a ‘‘resting state”
appearing in a downgraded phenotype, with highly ramified mor-
phology and a low expression of membrane receptors that serve
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immunological functions [123]; even in this resting state microglia
are highly active as shown by the high motility of their processes
and protrusions observed by two-photon imaging analysis of brain
in vivo ([53,173]). Microglia are the first cell type that sense any
form of disturbance of the brain and rapidly activate through a
well-characterized and graded response; the inner cytoskeleton
changes and the cell body becomes enlarged, bearing shorter and
thicker cytoplasmic processes ([174,218]). This activated, macro-
phage-like appearance associates with phagocytic activity, as acti-
vated microglia engulf toxic molecules and cellular debris [14]. In
case of a persistent state of activation, as described in several neu-
rodegenerative diseases, the beneficial activity of microglia may
however become detrimental and contribute to neuronal dysfunc-
tion and progression of the disease (See Fig. 1).

As a consequence, inflammatory cells and mediators once
thought to be involved only in peripheral immune responses are
now considered as key factors also in the pathogenesis of neurode-
generative diseases ([147,166]). The identification of the mecha-
nisms underlying microglia persistent activation and the key
inflammatory mediators involved in neurotoxicity is currently be-
lieved to be instrumental to the development of effective inhibitors
able to combat neuroinflammation and provide efficacious treat-
ments for neurodegenerative diseases.

2.2. Estrogens and microglia

Detecting the expression of the two estrogen receptors (ERs),
ERa and ERb, in cells of the monocyte-macrophage lineage [240]
first suggested that estrogens may play a role in inflammatory dis-
eases and several laboratories showed that these hormones act in a
variety of macrophage-like cells blunting the inflammatory re-
sponse triggered by diverse inflammatory stimuli. The last decade
witnessed increasing confidence on the anti-inflammatory effect of
estrogens to the point that several Pharmaceutical Companies are
presently developing estrogen receptor ligands as anti-inflamma-
tory agents [87]. With regard to microglia, in the recent years
our studies showed a major anti-inflammatory activity of estradiol
Fig. 1. Microglia activation and neural cell loss. Activation of microglia causes the
secretion of short-lived diffusible molecules, such as reactive oxygen species (ROS),
that produce an oxidative burst that is directly toxic to surrounding cells. In addi-
tion, peptides and inflammatory mediators are produced by activated microglia to
communicate the ongoing local reaction to the periphery; circulating inflammatory
cells are attracted by these molecules to the injured site and further sustain the
local inflammatory reaction. Secretion of neurotrophic factors, as well as elimina-
tion of noxious material from the extracellular space through phagocytosis are also
key features of microglia activation, which have instead beneficial consequences for
brain health.
in microglia activated by strong inflammatory stimuli such as lipo-
polysaccharide (LPS) [241]. This effect was antagonized by
ICI182,780, an estrogen receptor antagonist, suggesting a recep-
tor-mediated effect of the hormone and ERa appeared to be selec-
tively involved in estradiol anti-inflammatory activity in brain
macrophages ([82,242]). Other authors further confirmed these
observations using primary cultures of microglia as well as cell
lines and assaying estrogen-dependent attenuation of microglia
activation in terms of reduced phagocytic activity, production of
reactive oxygen and nitrogen species and other factors of the
inflammatory cascade ([26,43,61,141,262]). Meanwhile, a better
evaluation of neurological and neurodegenerative diseases has also
pointed to a potential role of estrogens in the pathogenesis and
progression of several neuroinflammatory and neurodegenerative
diseases, thus providing a new strength to the hypothesis of the
potential benefits of the use of estrogenic compounds in the treat-
ment of these disorders. We here review some of the current evi-
dence of the anti-inflammatory role played by estrogens in the
manifestation of three major neural diseases: Multiple Sclerosis,
Alzheimer’s and Parkinson’s disease.

3. Neuroinflammation, microglia and neurodegenerative
disorders

3.1. Multiple sclerosis and neuroinflammation

Multiple sclerosis (MS) is the most common cause of neurolog-
ical disability in young adults in the Western world that begins
with relapsing/remitting episodes and eventually evolves into
uninterrupted progression ([44,175]). Symptoms are associated
with a pathogenic CNS-targeted autoimmune response sustained
by leukocytes that invade brain and spinal cord parenchyma and
accumulate in multifocal sclerotic plaques, the pathological hall-
mark of MS from which the disease gets its name [126]. After
CNS entry, immune cells destroy myelin and oligodendrocytes
and lead to axon degeneration and neuron loss. To date, diverse
hypotheses have been raised to explain MS etiology, including ge-
netic predisposition, activation of autoreactive immune cells, envi-
ronmental factors and neuropathological conditions [189].
Immune-related molecules and lymphocytes are barely detectable
in healthy brain, as the architectural and biological composition of
the blood-brain barrier (BBB) protects the CNS from peripheral
inflammation. The critical event in MS pathogenesis is instead rep-
resented by recruitment of lymphocytes into the CNS, which gain
access across endothelial cells of the BBB through the activity of
inflammatory molecules, including cytokines and adhesion mole-
cules, synthesized by CNS inflammatory cells. The significant pro-
gress made in elucidating the molecules involved in
immunopathogenesis of MS dramatically changed the therapeutic
approach of this disease: molecules that specifically block adhesion
receptors and thus inhibit leukocyte extravasation are now used in
clinical trials ([202,217]). Thus, among the putative mechanisms
that trigger the activation of the autoimmune reaction, inflamma-
tion is considered pivotal and microglia are thought to play a major
role by up-regulating MHC class II molecules, inflammatory cyto-
kines, reactive oxygen and nitrogen species; on the other hand,
beneficial effects of microglia activation must be taken into ac-
count, such as myelin debris fagocytosis. This led us to propose
inflammation as a candidate therapeutic target for MS within se-
lected phases of the disease [149].

3.1.1. The EAE animal model
Major progress in the understanding of MS is due to the devel-

opment of animal models where the biology of the disease as well
as the response to specific pharmacological treatments can be ob-
served. Experimental autoimmune encephalomyelitis (EAE) is the
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model system which mostly contributed to the understanding of
the pathogenesis and the immune inflammatory mechanisms of
human MS. EAE is induced by the immunization of susceptible
mice with myelin proteins or peptides, such as myelin basic pro-
tein (MBP), proteolipid protein (PLP) and myelin oligodendrocyte
glycoprotein (MOG) in complete Freund’s adjuvant. After 1–2
weeks, immunization induces activation of a delayed-type hyper-
sensitivity, a type of reaction that is mediated by the activation
of CD4+-Th1 and Th17 cells, that cross the BBB and secrete cyto-
kines that both activate microglia and recruit circulating leuko-
cytes ([12,74]).

Several studies highlighted the prominent role played by
microglia activation in EAE. A study by Ponomarev et al. [186] re-
cently investigated the timing of microglia activation in EAE by
generating bone marrow chimera mice using MHC-mismatched
donors, a model that allows to distinguish between resident
microglial cells and monocyte-derived macrophages. These
authors observed that the activation of microglia occurs before
the onset of disease symptoms and infiltration of macrophages into
the CNS. In addition, resting microglia were shown to undergo by-
stander activation, characterized by the upregulation of MHC II
molecules, and were localized to the inflammatory lesions, which
suggested a detrimental effect mainly ascribed to the secretion of
neurotoxic molecules and self-antigens ([18,113,131,227,233]).

Using transgenic mice carrying the selective ablation of prolifer-
ating microglia and undergoing experimental MS, it has been re-
cently shown that the inhibition of microglia cells prevents the
development and maintenance of the inflammatory CNS lesions
[94]. Finally, a direct association between the intensity of microglia
activation and EAE symptom gravity has been reported [2].

In both EAE and MS, inflammatory lesions classically occur in
white matter, resulting in demyelination and axonal transection
[234]. However, neuroimaging studies revealed microglia activa-
tion with minimal inflammatory cell infiltrates in proximity of cor-
tical axonal transections [19]; this gray matter abnormality occurs
surprisingly early and correlates much better with permanent dis-
ability, demonstrating that microglia activation in gray matter cor-
relates with neuron loss and MS onset ([37,51,201,230]).

3.1.2. Estrogens and multiple sclerosis
Similar to other autoimmune diseases, MS is sexually dimorphic

in that it occurs two times more frequently in women than in men
[250]. This sexual dimorphism may be due to multiple factors; cer-
tainly gender-related differences in immune responsiveness are
part of the cause, but sex hormones are likely to play a significant
role ([64,110]) as indicated by a series of observations: (a) the first
clinical symptoms of MS develop post-puberty; (b) increased levels
of sex hormones produced during pregnancy are associated with a
significant reduction in the severity of MS; (c) MS clinical symp-
toms are often exacerbated postpartum, a time characterized by
significant alternations in sex hormone levels; (d) MS symptoms
are altered also during the menstrual cycle ([1,16,45,127,188]).

Although MS is more common in women, it affects men with a
generally more rapid progression [253]. Also in the case of men,
the male sex hormone, testosterone, was shown to affect microgli-
al activation and to inhibit the development of EAE, inducing a Th2
bias in myelin basic protein-specific T-cells [50]. In view of the fact
that the enzyme converting testosterone into estradiol, aromatase,
is present in several cells and tissues it remains to be shown
whether testosterone exerts its anti-inflammatory effect directly
or through conversion in the female sex hormone. Gender differ-
ences in susceptibility to and severity of EAE have also been known
for many years ([71,162,244]).

The apparent conflict that women are more susceptible to the
pathology than men, in spite of their capability to synthesize ben-
eficial hormones like estrogens, might be ascribed to the fact that
estrogens might be less potent natural inhibitors then testosterone.
In addition, estrogen effect on immune function might be biphasic:
specifically, low doses of estrogens promote Th1 responses and in-
crease cell-mediated immunity, while high doses result in in-
creased Th-2 responses ([28,129]). Accordingly, women are more
likely to develop a Th1 response to infective agents than men, so
they are more susceptible to autoimmune diseases, except during
pregnancy where women exhibit a pronounced Th2 response
([5,183,250]).

Physiological or pharmacological fluctuations in estrogen levels
have been recognised since a long time to play a regulatory role in
EAE ([13,108,111,119,150]). Oral administration of low doses of
estrogenic hormones, 17beta-estradiol and ethinyl estradiol, dras-
tically reduce the severity of EAE and this effect was reconciled
with a decrease in the production of inflammatory Th1 cytokines
(such as inteferon-c (IFN-c), Tumor Necrosis Factor-a (TNF-a),
Interleukin (IL)-1 and IL-6), chemokines/receptors, while increas-
ing the expression of anti-inflammatory Th2 cytokines (including
IL-4, IL-5 and Transforming Growth factor-b3 (TGF-b3))
([13,108,150,222]). This observation together with the fact that
no infiltrating lymphocytes were found in the hormone-treated
animals, led to the conclusion that estrogens protects mice from
EAE by inhibiting the recruitment of T cells and macrophages into
the CNS.

A further demonstration of estrogens as neuroprotective agents
in EAE comes from the use of selective modulators of estrogen
receptor (SERMs). Morales et al. [170] demonstrated that treat-
ment with an ERa ligand is sufficient to recapitulate the estro-
gen-mediated protection in EAE, consistent with a report by
Elloso et al. [69] that demonstrated that treatment with an ERa,
but not an ERb, ligand could reduce acute EAE disease severity.
The degree of preservation of neuronal integrity in the gray matter
of estradiol and ERa ligand-treated mice with EAE in this study was
striking, and this has major implications for neurodegenerative
changes that occur ‘‘beyond the lesion” in EAE and possibly MS.

Two cellular targets have been proposed to mediate estrogen
protective activity in MS and EAE, namely T-cells and brain inflam-
matory cells. Estrogens are able to shift the T-cell population to-
wards a Th2 phenotype, an activity also confirmed in pilot
clinical studies ([47,83,211,214]) and to influence a subpopulation
of Th cells, named T-regulatory cells ([184,226]). On the other
hand, microglia and endothelial cells have probably a more signif-
icant role in estrogen action; using irradiation bone marrow chi-
meras it has been recently shown that the effect of estradiol on
clinical EAE and CNS inflammation was not dependent on ERa
expression in the peripheral immune system but was conferred
by ERa expression on CNS resident cells, namely endothelial and
microglial cells ([80,185]). It is thus important to fill the gap in
the characterization of estrogen signalling in these resident brain
cells and in assessing its relevance in estrogen-mediated neuropro-
tective activity in EAE.

3.2. Alzheimer’s disease and neuroinflammation

Alzheimer’s disease (AD) is a progressive neurodegenerative
disorder; its pathological hallmarks include extracellular senile
plaques mainly made of the amyloid b (Ab) peptide, and neuronal
anomalies including neurofibrillary tangles composed of hyper-
phosphorylated forms of the microtubule associated protein tau
(MAPT); these specific pathologic features are also associated with
dystrophic neurites and by reactive astrocytes and activated
microglia ([22,196]). Although the mechanisms leading to progres-
sive neuronal death in brain are still under investigation, several
lines of evidence sustain the amyloid hypothesis, which postulates
that abnormal cellular production and deposition of Ab peptide is a
relevant trigger of neurodegeneration in AD [247]. In fact, genetic
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studies in hereditary AD identified mutations in the genes encod-
ing APP, presenilin (PSEN1) and PSEN2, each associated with in-
creased production of Ab. Indeed, the well known risk factor
apolipoprotein E e4 allele is shown to control the clearance of Ab
in brain ([9,220]).

The Ab peptide is derived from the two-step enzymatic process-
ing of amyloid precursor protein [APP] in which b-secretase [BACE]
cleaves APP to release the N-terminus of Ab, followed by the cleav-
age by c-secretase protein complex to release the C-terminus of Ab
([86,239]). Thus, the initial cleavage of APP by BACE is critical for
the formation of the 40 or 42 aminoacids-long Ab peptides
(Ab1-40 and Ab1-42), which deposit as fibrillar amyloid in the senile
plaques; it has been shown that BACE activity increases with age
and it is elevated in AD brains ([99,138]). Amyloidogenic peptides
were shown to play a major role in brain neurotoxicity, however
the molecular mechanisms remain to be clearly defined.

Recent evidence suggests that inflammatory processes play an
active role in AD; epidemiological studies reported that the use
of nonsteroidal anti-inflammatory drugs is associated with marked
reduction in the risk of AD ([106,154,156,219,225]). Following this
initial observation, additional reports were published that wit-
nessed the involvement of neuroinflammation in AD pathogenesis
and progression. In fact, a series of proinflammatory molecules,
including proteins of the complement system, cytokines and che-
mokines and their receptors, were found to be increased in the
brain and cerebrospinal fluid (CSF) of AD patients ([75,255]). Poly-
morphisms in inflammatory genes were also found in association
with AD [32].

The involvement of microglia in neuroinflammation associated
with AD has also been described [115]. Resting microglial cells
can be activated by Ab in brain, they migrate and surround the re-
gion of compact Ab deposits, where they help removing Ab
([7,65,73,144,155,248]). These data argue in favour of an essential
role of microglia cells. In chronic inflammatory processes that may
ultimately lead to neuronal degeneration.

3.2.1. Animal models of Alzheimer’s disease
The identification of genetic polymorphisms associated to

hereditary forms of AD led to the generation of transgenic ani-
mals modelling the human disorder. These transgenic mice pro-
duce high levels of human Ab40 and Ab42 peptides and develop
amyloid deposits in the brain which are very similar to those
seen in the human AD brain and thus represent a unique tool
in the study of this condition. The first animal models that
developed amyloid plaques were generated by integrating in
the mouse genome the gene encoding human APP containing
mutations associated with early-onset AD ([76,101,215]). These
mice develop amyloid plaque pathology and selective cognitive
deficits, pathologic features that dramatically accelerate in the
next generation of AD animal models generated by crossing
APP mutant animals with mice carrying the mutated PSEN1 gene
([20,63,98]). Plaque pathology in these models is associated with
microgliosis and astrogliosis. Despite the robust amyloid deposi-
tion observed in APP and PSAPP transgenic mice and evidence
for progressive synaptic degeneration and dysfunction, none of
these models show neuron loss or formation of intraneuronal
fibrillary tangles. On the other hand, mouse models expressing
wild type or mutant MAPT gene have been generated that reca-
pitulate most of the features of human neurofibrillary pathology
and significant neuronal loss ([4,136,205,263]). Further crossings
among AD transgenic models have allowed to reach the conclu-
sion that, although a mouse model that recapitulates all aspects
of AD has yet to be obtained, amyloid deposition can accelerate
or initiate the formation of neurofibrillary tangles while MAPT
accumulation or other secondary events initiate neurodegenera-
tion ([158,177,176]).
The observation that activated microglia are present at amyloid
deposits in human AD and in animal models of this disease sug-
gested that it might play a pathogenic role as a result of their
chronic activation, although the presence of cytoplasmic Ab gran-
ules in plaque-associated glia and microglia suggest that these cells
participate in the clearance of Ab ([7,42,65,73,125,144,155,180,
215,248,254,257,259]). However, this hypothesis is hard to prove
using experimental models of this disease in which many patho-
logical features occur, namely amyloid deposition, neurofibrillary
tangle formation, inflammation, neuritic and neuronal loss, synap-
tic and neuronal dysfunction, vascular alterations [197].

As an example of AD models, the APP23 transgenic mice overex-
press the human APP751 with the familial Swedish AD double
mutations at positions 670/671 [221]; in this model, amyloid pla-
ques are first observed at 6 months of age and then plaque size and
number increase dramatically with aging. The congophilic, dense-
core Ab deposits show many characteristics of human AD plaques
such as enlarged dystrophic neurites [29]. Similar to AD, vascular
amyloid is also present in aged APP23 animals [30]. Compact amy-
loid deposits are associated with microglia cells showing a charac-
teristic activated morphology [215] and with reactive astrocytes
[221].

A step forward in understanding the role of microglia in amy-
loid pathology derived from the comprehension of the molecular
details of microglia activation by Ab. The so-called pattern recogni-
tion receptors (PRRs) are a heterogenous class of proteins that are
constitutively expressed by macrophages/phagocytes to monitor
the extracellular environment. Activation of PRRs leads to microg-
lia reactivity, a process that could be both beneficial in removing
toxic signals as well as deleterious in producing and enhancing
toxicity. Brain and microglial up-regulation of PRRs members has
been observed in human and experimental AD ([3,67,21,258]).
The Ab peptide was shown to activate microglia cells through the
interaction with specific PRR: (a) scavenger receptors, including
scavenger receptor class-A (SR-A), SR-B1 and CD36, that mediate
Ab endocytosis and induce ROS production ([46,66]); (b) macro-
phage receptor with collagenous domain (MARCO), a scavenger
receptor that mediates adhesion of Ab to microglia and the cyto-
skeleton rearrangements induced by this peptide [84]; (c) the
receptor for advanced glycation endproducts (RAGE), a member
of the immunoglobulin superfamily, responsible for the induction
of the inflammatory response stimulated by Ab ([6,143,258]).

Intensive studies further addressed the role of neuroinflamma-
tion in AD pathogenesis and progression. In addition to resident
microglia, mononuclear cells that are recruited from the blood
are key players in AD pathogenesis; in fact, depletion of this cell
pool or ablation of the receptor protein that recruits monocytes
into the brain, accelerated Ab accumulation and animal mortality
([68,212]). On the other hand, anti-inflammatory agents such as
COX-1 inhibitors induced a dose-dependent reduction in pathology
in humans and transgenic mouse model of AD [154]. Interestingly,
a contribution of T and B cell-mediated immune responses to the
inflammatory processes and to the plaque pathology seems unli-
kely in both human and experimental AD.

3.2.2. Estrogens and Alzheimer’s disease
The hypothesis of a potential role of estrogens in AD has been put

forward by a number of epidemiological, retrospective studies that
have demonstrated an inverse correlation between estrogen
replacement therapy and incidence of AD ([15,91,117,178,
179,228]). These observations have been challenged by a recent ran-
domised clinical trial that showed increased risk of dementia in hor-
mone therapy (HT)-assigned women participating at the Women
Health Initiative Study ([70,193]). Despite these initial claims, a
more in depth analysis of the WHI data, taking under consideration
the time between menopause onset and HT assumption, showed
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beneficial effects of estrogens when therapy is initiated early after
menopause, while the detrimental effects were associated with a
treatment started several years after menopause [194]. Supporting
this view, a well focused study carried out on women that under-
went surgical removal of the ovaries before menopause clearly
demonstrated that oophorectomy was associated with an increased
risk of cognitive impairment and dementia [195]. This suggests that
more and more well aimed studies are necessary in order to be able
to reach a consensus on the effects of estrogens on brain health.

Indeed, most of the well controlled studies carried out in exper-
imental animals are supportive of a protective effect of estrogens
against neuronal loss. For instance, aromatase gene knockout mice
in which estrogen synthesis is absent, showed enhanced hippo-
campal neuronal loss in response to neurotoxins compared with
WT mice [8]. Interestingly, brain estradiol levels and aromatase
expression are significantly reduced in the brains of women with
AD [260]. The view of brain estrogen deficiency as a risk factor
for developing AD pathology is consistent with genetic studies
showing an association between variants of aromatase gene and
the risk for several diseases, including AD ([105,213]).

A large body of experimental evidence demonstrates that
estrogens protect against Ab neurotoxicity. Estradiol increases
APP expression in neuronal cells ([35,109,256]) and reduces Ab
peptide production while enhancing its clearance ([36,137,256]).
A modification of Ab levels was induced by estradiol treatment
in the Tg2576 AD model [267]. Recent data from a transgenic ani-
mal model developed by Yue et al. that overexpresses APP and
lacks the aromatase enzyme, the APP23/Ar+/� mice, show an ear-
lier onset of plaque formation compared to ovariectomized APP23
mice [260]. In this model it was also found that BACE protein
expression and activity, as well as Ab40 and Ab42 levels, were ele-
vated in the brains of APP23/Ar+/� mice as young as 6 months.
Thus, the early-onset AD neuropathology in APP23/Ar+/� mice
associated with brain estrogen deficiency may be mediated by in-
creased BACE activity and accelerated Ab production. In a very re-
cent study, Carroll et al. used the triple transgenic mouse model of
AD to investigate the individual and combined effects of estrogens
and progesterone on different pathological features. Ovariectomy
significantly increased Ab accumulation and worsened memory
performance, while chronic estradiol treatment prevented these
effects. In addition, progesterone administration reduced tau
phosphorylation, while when added in combination with estradiol
prevented the effect of estrogen on Ab accumulation but not on
behavioural performance [33].

Taken together, these results suggest that brain estrogen defi-
ciency accelerates AD pathologic features and that the estrogenic
therapy may be beneficial in reducing the risk of AD.

Our laboratory provided evidence to demonstrate the ability of
estradiol to control brain inflammatory cells reactivity ([242,241]).
We analysed the effects of the deprivation of endogenous estro-
gens or of HT on microglia reactivity in the APP23 mice [243].
We first observed that the number of plaques that were associated
with reactive microglia increased with age, suggesting that the
inflammatory reaction was indeed progressing in parallel with
the disease. Interestingly, ovariectomy clearly accelerated microg-
lia activation surrounding Ab plaques, whereas estradiol replace-
ment delayed this process, thus indicating that estradiol
influences the neuroinflammatory process that is associated with
the APP genetic defect. In parallel, we showed that estradiol is able
to down-regulate inflammatory genes expression in brain: the in-
crease in the mRNA for macrophage/monocyte chemoattractant
protein-1 (MCP-1), macrophage inflammatory protein-2 (MIP-2)
and TNF-a induced by LPS injection in the cerebral ventricles
was clearly restricted by hormone administration. Most interest-
ingly, SR-A expression induced by Ab in macrophage cells was
inhibited by estradiol pre-treatment, providing a potential mecha-
nism for hormone inhibitory activity on microglia responsiveness
observed in the APP23 mouse model [243].

These data clearly support a role of estrogen anti-inflammaotry
action as contributing factor to estrogen therapy prevention of AD
through direct regulation of resident microglia to inhibit chronic
inflammation associated with AD. However, other cellular targets
may underscore estrogen neuroprotective activity in the CNS: (i)
neurons, through hormone anti-apoptotic and neurotrophic ac-
tions; (ii) neural stem cells, by inducing their proliferation; (iii)
astroglial cells, by increasing their potential for secreting neuro-
protective molecules or decreasing the production of neurotoxic
agents; (iv) endothelial cells, on which estrogens act to reduce
adhesion molecule expression and other factors that recruit circu-
lating leukocytes ([144,187]).

3.3. Parkinson’s disease and neuroinflammation

Parkinson’s disease is a neurodegenerative disease character-
ized by a progressive loss of dopaminergic neurons in the substan-
tia nigra (SN) and by intracellular inclusions of aggregated a-
synuclein, known as Lewy bodies. It is believed that a combination
of environmental and genetic factors predisposes to disease onset
and severity. The genetic defects associated with PD are due to
mutations in proteins that serve disparate functions yet converging
on impaired a-synuclein signalling and clearance [72]; on the
other hand, several toxins are known to specifically damage dopa-
minergic (DA) neurons and lead to PD-like symptomatology
through recently characterised signalling pathways [17].

The selective loss of DA neurons is likely due to the increased
vulnerability of these cells to oxidative stress, as these neurons
have lower levels of glutathione compared with other cell types,
and are thus more responsive to the effects of mitochondrial dys-
function ([96,142]). In addition to oxidative stress also other mech-
anisms have been proposed to be involved in selective DA neuron
degeneration in PD, including excitotoxicity, intracellular calcium
and metal ion rise, neurofibrillary tangle formation and disruption
of the cytoskeletal transport [112]. More recently, neuroinflamma-
tion and microglial activation have been implicated in the neuro-
degenerative process in PD, as initially suggested by McGeer
et al. [155] and then by several authors ([77,89,95,97,104,102,
107,148,168]). In fact, studies accumulated over the last two dec-
ades have clearly indicated the presence of an abnormal glial re-
sponse in postmortem nervous system of PD patients. The
positive correlation between antecedent brain injuries, such as
trauma or exposure to infectious agents, and PD development im-
plies that the brain inflammatory response to these noxious events,
and specifically microglial activation, may play a critical role in PD
pathogenesis [140]. Accordingly, other authors detected the
expression of pro-inflammatory molecules, such as TNF-a, IL-1b
and IFN-c, as well as iNOS and Cox-2 and the accumulation of reac-
tive oxygen and nitrogen species in the nervous system of PD pa-
tients ([97,103,124]), further supporting the theory that PD is
associated with the chronic activation of the brain inflammatory
response. These inflammatory molecules, along with factors re-
leased from the dying dopaminergic cells, seem to amplify and sus-
tain neuroinflammation as well as neural cell toxicity leading to a
slow and irreversible destruction of SN dopaminergic neurons. In
agreement with McGeer’s hypothesis on the role of activated glial
cells and brain inflammation in PD, administration of nonsteroidal
anti-inflammatory drugs were shown to reduce the risk of PD
([38,207,245]), suggesting that inhibitors of inflammation are
promising therapeutics for PD.

3.3.1. Animal models of Parkinson’s disease
The dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetra-

hydropyridine [MPTP] is known to induce parkinsonism in hu-
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mans, primates, and mice ([27,90,132,133]). MPTP is converted by
astrocytes to the metabolite 1 methyl-4-phenylpyridinium [MPP+],
a substrate of the DA transporter ([40,41]). MPP+ thus accumulates
in dopaminergic neurons where it inhibits the mitochondrial com-
plex I of the electron transport chain, resulting in ATP depletion
and subsequent inability to release sufficient amounts of dopamine
and ultimately leading to apoptosis [231]. However, Lewy bodies
were not observed in the brain of PD patients exposed to MPTP,
revealing a significant difference between MPTP-induced neuro-
toxicity and PD itself despite the considerable clinical similarities
[134].

A precise understanding of how MPTP induces DA neuron
degeneration is still lacking; in addition to what described above,
it has been shown that pre-treatment with N-methyl-D-aspartate
[NMDA] receptor antagonists can protect SN neurons, thus linking
the effect of MPTP with excitotoxicity [238].

Recently, the induction of neuroinflammation received much
attention as a key pathway involved in MPTP-induced pathogenesis
and progression ([10,164,181]). Langston et al. found that in post-
mortem examination of brains from humans exposed to MPTP acti-
vated microglia were present up to 16 years after exposure, indicat-
ing a protracted inflammatory response [134]. These observations
are strongly indicative of a process by which an ongoing stimulus
could lead to disease progression long after the initial toxic insult.
These findings are supported by studies in the nervous system of pri-
mates, which show that activated microglia and dopaminergic cell
loss continue to occur years after exposure to MPTP [157].

Further studies showed that chronic activation of microglia by
MPTP leads to their clustering around DA neurons and transforma-
tion in phagocytic cells ([11,23]).

How does MPTP-stimulated neurons activate microglia? The
combination of released factors and expression of surface adhesion
molecules by MPTP-treated DA neurons recruits and activates sur-
rounding microglia and leads to a progressive and irreversible neu-
ronal cell death, which is worsened by the release of
chemoattractants by the dying neurons to induce even greater
infiltration of the region by activated microglia. Recent studies pro-
vided molecular details to the understanding of the neuroinflam-
maotry component in PD. It has been shown that the products
secreted by damaged neurons ([251,121]) aggregated alpha-synuc-
lein or environmental toxins such as LPS are recognised by the
macrophage antigen complex 1, Mac-1, a PRR expressed on
microglia cells; in turn, Mac-1 activation is crucial for activation
of NADPH oxidase, a membrane-bound enzyme that catalyses the
production of superoxide anions, which are released in the extra-
cellular space, and generates intracellular ROS, well known triggers
of the inflammatory response ([18,122,223,264]). NADPH oxidase
is associated with neurodegenerative disorders and neuronal dam-
age; it is activated in the brains of patients with PD [252].

Through these evidence it appears that microglia activation has
a detrimental role, as it results in the release of ROS by microglia in
the extracellular space. Particular attention received the molecular
mechanism of action of LPS on dopaminergic neurodegeneration.
LPS has no known direct toxic effects on neurons but is a powerful
tool for inducing the release of a host of neurotoxic factors through
the direct activation of microglia. The substantia nigra is reported
to be particularly susceptible to LPS-induced injury because it is
rich in microglia [120]. LPS induces a rapid activation of microglia
and a delayed, progressive and selective destruction of nigral dopa-
minergic neurons both in vivo and in vitro ([78,77,79]). Finally,
using mice carrying a deletion in the gene coding for NADPH oxi-
dase, one major source of intracellular ROS, or in Mac-1 it has been
possible to clearly demonstrate that the production of ROS by LPS-
activated microglia is directly toxic to neurons as well as the secre-
tion of proinflammatory molecules, which foster neurodegenera-
tion as well ([182,190,252,265,264]).
Finally, anti-inflammatory drugs, such as cyclooxygenase inhib-
itors, statins or pioglitazone, were shown to protect neurons
against degeneration induced by MPTP ([54,208,229]), further pro-
viding evidence to indicate the role of neuroinflammation in PD
neurodegeneration.

3.3.2. Estrogens and Parkinson’s disease
A number of epidemiological studies reported that the inci-

dence and prevalence of PD is higher in men than in women
([55,130]). Post-menopausal estrogen deficiency has been reported
to cause a worsening of Parkinson-related symptoms, whereas the
severity of symptoms in women with early PD is diminished by the
use of estradiol [204]. Furthermore, it has been shown that estro-
gen replacement therapy lowers symptom severity in women with
early PD not yet taking L-Dopa [206] and improves motor disability
in parkinsonian postmenopausal women with motor fluctuations
[236]. Association between ER gene polymorphism and PD has
been reported [249]. Rocca et al. recently reported that both unilat-
eral and bilateral oophorectomy performed prior to menopause
may be associated with an increased risk of parkinsonism and
the effect may be age-dependent [195]. These data are suggestive
of a beneficial protective role of estrogens.

Many experimental studies examined the responsiveness of DA
neurons to estrogens and showed that estradiol levels induces DA
synthesis and release, as well as DA neurons differentiation
([57,58,81,151,171]). Importantly, MPTP caused greater DA deple-
tion in male compared with female mice [59]; moreover, treatment
with estradiol prevented the reduction in DA concentrations and
the activation of glia in the striatum of animals treated with MPTP
([31,59,169,235]). The essential role of estrogens in maintaining
the integrity of DA system in the CNS has also been extended to
primates [135]. This evidence suggested a new treatment strategy
for patients with PD and encouraging results are being obtained
from pilot clinical studies assessing HT safety and effectiveness
in PD [139]. Although a direct evidence for a role of estrogen-
microglia signalling in PD models is still lacking, clear evidence
suggests that estrogen signalling in these cells prevent microglia
activation induced by a number of endogenous or environmental
factors ([26,242,241]). It is presumed that the complementary ac-
tion of estradiol on neurons, astrocyte and microglia may provide
beneficial outcome and represents a potential pharmacological tar-
get for delaying or preventing PD symptoms.

4. The mechanism of estrogen action in neuroinflammation

As previously described, estrogens are believed to act in
microglia via the activation of the endogenous estrogen recep-
tors (ER). The two ER proteins recognised so far, ERa and ERb,
are intracellular proteins which activate genomic as well as non-
genomic effectors in neural cells [145]. Through the use of the
estrogen receptor antagonist ICI 182780 we and others initially
ascribed hormone action in microglia to the activation of endog-
enous ERs, since this molecule was able to block the effect of
estradiol ([24,25,141,241]). Using ER-null mice several reports
described the selective involvement of ERa in the anti-inflamma-
tory and neuroprotective activity of estradiol against neuroin-
flammatory and vascular pathologies of the brain
([62,80,185,242]). Despite the fact that ERb has been shown to
be expressed widely in the CNS in adult mice ([161,167]), it ap-
pears that this receptor isoform is not involved in mediating the
protective effect of estrogens in neuroinflammatory diseases. Yet,
both ERa and ERb are involved in the control of inflammation by
estradiol, depending on the tissue involved and on the signal uti-
lized [88]. Whether one of the two receptors prevails, reduces,
potentiates or does not influence the other isoform in inflamma-
tory cells still remains to be defined.



Fig. 2. Estrogen anti-inflammatory action. Schematic representation of the mech-
anism of action of estradiol in microglia proposed by our lab. The cytoplasmic
activity of estrogen-activated ERa, including PI3K induction, inhibits the intracel-
lular transport of NF-kB that is induced by inflammatory stimuli, such as LPS; this
leads to reduced synthesis of inflammatory mediators and microglia activation.
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Basic research in estrogen signalling also provided another rel-
evant key point in estrogen action, that is cell-specificity. Divergent
effects of estrogens have been reported for T cell activation [48] as
compared with microglia and astroglia based on different hormone
concentrations ([60,82]). Additionally, expression of iNOS is
reduced in certain cell types, including microglia ([26,49,203,
241,261]) while hormone actually increases the expression of
endothelial and neuronal subtypes of NOS ([191,203]). Thus, it is
important to fully characterize the signal transduction mecha-
nisms of estrogen signaling in different cell types of the CNS and
the relative contributions of each of the two isoforms of estrogen
receptor involved, so that appropriate therapeutic agents can be
devised.

4.1. Selective ER modulators

Since their original description ([163,216]) ERa and ERb selec-
tive modulators (SERMs) have been employed to dissect the rela-
tive contribution of each ER subtype and to obtain more potent
responses devoid of toxic effects. The ERa selective ligand propyl
pyrazole triol (PPT) provides neuroprotection and anti-inflamma-
tory activities in brain in experimental models of neurodegenera-
tive diseases, including ischemia [165], MPTP-induced
neurotoxicity [52] and EAE ([69,170]). The in vitro activity of PPT
has been studied in neuronal cells [266], while our preliminary
data demonstrate a direct anti-inflammatory activity of this ligand
in microglia (unpublished results). On the other hand, ERb selective
agonists produced neuroprotective effects in global ischemia
([34,165]) and EAE [232], while being inactive in the MPTP-in-
duced dopamine depletion model [52]. Recent work by Tiwari-
Woodruff et al. demonstrated that the ERb selective agonist is also
able to protect neurons in advanced stages of the EAE model
through a strong neuroprotective action without altering the
inflammatory component [232], suggesting that selective activa-
tion of ERs can trigger distinct, beneficial effects in the CNS. Future
research in this field will lead to the experimental exploitation and
possibly to the therapeutic application of SERMs in selected human
diseases, in that they would permit to exploit only the benefits
deriving from hormone therapy while reducing the undesired side
effects.

4.2. Molecular aspects of estrogen action in microglia

In an attempt to examine the specific mechanism of estrogen
action in brain inflammatory cells we recently identified a novel
mechanism of estrogen action that results in the inhibition of
inflammatory gene transcription. We demonstrated that the intra-
cellular machinery that drives the transport of proteins, and in par-
ticular the transcription factor p65, from the cytoplasm to the
nucleus is a target for estrogen activity in microglia and macro-
phage cells [82]. p65 is a member of the NF-jB family of transcrip-
tion factors, which are confined to the cytoplasm of unstimulated
cells and move from this compartment to the nucleus upon inflam-
matory stimuli, such as LPS, with a rapid and massive transloca-
tion; in the nucleus, these factors induce inflammatory gene
transcription through the binding to DNA responsive elements in
the promoter of target genes. In our study we observed that
microglia and macrophage cells treated with estradiol before LPS
resulted in the persistent cytoplasmic localization of p65. We as-
cribed this effect to the interference with the microtubule-depen-
dent intracellular transport of NF-jB ([114,198]), which results in
reduced nuclear availability of NK-FB and thus in decreased tran-
scription of NF-jB target genes, such as MIP-2 or Ik-Ba. Estrogen
action was mediated specifically by ERa and through the activation
of the PI3K. Of particular notice is the fact that estradiol does not
modify IKKb activity nor Ij-Ba degradation, which are known tar-
gets of anti-inflammatory drugs, suggesting a unique mechanism
of action of this female hormone among anti-inflammatory endog-
enous signals and drugs [Fig. 2] [82]. We believe that these data
provide a novel background for the identification of innovative tar-
gets and pharmacological interventions aimed at preventing
inflammation.

4.3. The timing hypothesis

As discussed above, post-menopausal estrogen deficiency is a
key event in the pathogenesis of a number of neurodegenerative
diseases in women. However, the potent activity of exogenous
estrogens in experimental models is paralleled by controversial re-
sults in humans ([210,209]). Secondary analyses of recent random-
ized clinical trials, that originally raised controversies among the
scientific community as to the risk/benefit ratio of HT
([85,159,237]), helped to consolidate a novel hypothesis on the
efficacy of hormone therapy [200]; it is now hypothesized that
HT should be started in early menopause, as a preventative treat-
ment of relatively healthy women, in order to avoid the negative
consequences of hypoestrogenicity per se [92]. In fact, observa-
tional and randomized clinical trials show that HT does not im-
prove memory or intellectual functions in women already
affected by mild to moderate AD ([70,172,199]), whereas it delays
disease onset when administered in healthy perimenopausal wo-
men ([100,117,200,228]). Accordingly, a very recent study demon-
strated that surgical menopause is associated with an increased
risk of cognitive impairment and dementia in women [195]; novel
directions in correctly evaluating specific cognitive functions have
also been formulated, since the effect of female steroid hormones
on cognitive activities varies across cognitive domains [194]. Thus,
it appears that full benefits from HT are achieved through correct
timing of hormone assumption. Based on this knowledge, trials
are now being designed that will consider the disease duration
and menopausal status of the subjects ([146,160]).

Substantial experimental data support the hypothesis that hor-
mone anti-inflammatory activity is beneficial if estrogen adminis-
tration precedes the inflammatory burst and when it is given
shortly after ovary removal. In fact, estradiol does not alter the
inflammatory signaling cascade in microglia if it is administered
after inflammatory stimuli ([26,82,242]); in addition, a prolonged
hormonal deprivation affects estrogen protective activity in ische-
mia and causes a null or even opposite response to exogenous hor-
mone administration [224]. Collectively, the experimental
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evidence indicate that the efficacy of estrogenic molecules as anti-
inflammatory agents is also confined in a therapeutic window and
that their use should be considered only as preventive pharmaco-
logical strategies.

5. Conclusions

The evidence thus far clearly indicates a prominent role of
estrogen anti-inflammatory action in protecting the CNS against
neurotoxic stimuli. Experimental data show that receptor selec-
tivity, time frame and concentration of hormone, as well as
cell-specific molecular partners are key features in the efficacy
of estrogens to control microglia and brain inflammation. It is
worth underscoring that microglia activation associated with
neurodegenerative processes is also endowed with beneficial ef-
fects, as microglia cells were shown to produce trophic and sur-
vival factors and to eliminate through phagocytosis the noxious
material accumulated in the extracellular space ([118,147]).
Identifying the molecular mechanisms of estrogen action will
elucidate the conditions regulating the beneficial vs detrimental
pathways can be separately activated, leading to the design of
more selective regulatory agents that inhibit the deleterious ef-
fects while maintaining the protective role played by these im-
mune cells in the neural tissue. Finally, future research could
lead to identification of the most appropriate and selective estro-
genic drugs to be used in post-menopausal as well as fertile fe-
male patients eligible for HT.
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