
A Layered Architecture for Detecting Malicious
Behaviors

Lorenzo Martignoni∗, Elizabeth Stinson†, Matt Fredrikson‡, Somesh Jha‡,
John C. Mitchell†

∗Università degli Studi di Milano, †Stanford University, ‡University of Wisconsin

Abstract. We address the semantic gap problem in behavioral moni-
toring by using hierarchical behavior graphs to infer high-level behav-
iors from myriad low-level events. Our experimental system traces the
execution of a process, performing data-flow analysis to identify mean-
ingful actions such as “proxying”, “keystroke logging”, “data leaking”,
and “downloading and executing a program” from complex combinations
of rudimentary system calls. To preemptively address evasive malware
behavior, our specifications are carefully crafted to detect alternative se-
quences of events that achieve the same high-level goal. We tested eleven
benign programs, variants from seven malicious bot families, four tro-
jans, and three mass-mailing worms and found that we were able to
thoroughly identify high-level behaviors across this diverse code base.
Moreover, we effectively distinguished malicious execution of high-level
behaviors from benign by identifying remotely-initiated actions.
Keywords: Dynamic, Semantic Gap, Malware, Behavior, Data-Flow

1 Introduction

In the first half of 2007, Symantec observed more than five million active, distinct
bot-infected computers [1]. Botnets are used to perform nefarious tasks, such as:
keystroke logging, spyware installation, denial-of-service (DoS) attacks, hosting
phishing web sites or command-and-control servers, spamming, click fraud, and
license key theft [2,3,4,5,6,7]. Malicious bots are generally installed as applica-
tions on an infected (Windows) host and have approximately the same range of
control over the compromised host as its rightful owner. A botmaster can flexibly
leverage this platform in real-time by issuing commands to his botnet. Several
characteristics typical of botnets increase the difficulty of robust network-based
detection; in particular, bots may: exhibit high IP diversity, have high-speed,
always-on connections, and communicate over encrypted channels. Since a bot-
master controls both the bots and the command-and-control infrastructure, these
can be arbitrarily designed to evade network-based detection measures.

It is widely recognized that malware defenders operate at a fundamental
disadvantage: malware producers can generate malware variants by simple mea-
sures such as packing transformations (encryption and/or compression) and may
evade existing AV signatures by systematic means [8]. For the signature pur-
veyors, moreover, analyzing a novel malware instance and creating a detection



signature requires substantially greater effort than that required by evasion.
The source of this asymmetry is the signature scanners’ emphasis on malware’s
infinitely mutable syntax, rather than on the actions taken by malware. As a
result, even the most effective signature-scanners fail to detect more than 30%
of malware seen in the wild [9,10]. Therefore, it is essential to develop effective
methods that identify the behaviors that make malware useful to their installers.

1.1 Our Approach

We propose, develop, and evaluate a behavior-based approach that targets the
high-level actions that financially motivate malware distribution. For bots, these
actions include “proxying”, “keystroke logging”, “data leaking”, and “program
download and execute.” We build representations of these high-level actions hi-
erarchically, taking care to identify only the essential components of each action.
The lowest level event in our behavior specifications are system call invocations.
Since any specific operating system kernel exports a finite set of operations, we
can expect to be able to enumerate all possible ways to interface with that kernel
in order to achieve a certain effect (e.g., send data over the network). Since there
are a finite number of ways to achieve each high-level action, we can expect to
create representations that encode all such ways. Consequently, we can hope to
correct the asymmetry present in syntax-based approaches to malware detection.

In this paper we propose and evaluate a behavior-based malware detector
that takes as input the behavior specifications introduced above and an event
stream provided by our system-wide emulator (Qemu), which monitors process
execution. A system-wide emulator provides a rich source of information but in-
fers no higher-level effects or semantics from the observed events. This disconnect
between a voluminous stream of low-level events and any understanding of the
aggregate effect of those events [13] is referred to as the semantic gap. We address
the semantic-gap by decomposing the problem of specifying high-level behaviors
into layers, making our specifications composable, configurable, less error-prone,
and easy to update. Our system compares a monitored process’s event stream
to behavior specifications and generates an event when there is a match. This
generated event may then be used in the specification of a higher-layer behavior.

Fig. 1 provides a subset of the hierarchy of events used to specify our sam-
ple target high-level behavior: downloading and executing a program, which is
used in malware distribution. Events are represented via rectangles, with di-
rected edges between them indicating dependencies; e.g., the tcp client event
depends upon the sync tcp client and async tcp client events. At the low-
est layer of the hierarchy, L0, we identify successful system call invocations.
Each L1 event aggregates L0 events that have a common side effect, as is the
case with the L1 net recv event which is generated whenever any of the L0
events recv, recvfrom, or read occur. Consequently, we can represent “all ways
to receive data over the network” using a single event. Events at layers L2 and
higher identify correlated sequences of lower-layer events that have some ag-
gregate, composite effect; e.g., sync tcp client identifies when a synchronous
TCP socket has been successfully created, bound, and connected upon.



Fig. 1. A subset of the hierarchy of events used to specify download exec

Correlating low-level events generally entails specifying constraints on those
events’ arguments. In some cases, we need to specify that data used in one event
is dependent upon data used in another event. Consequently, Qemu performs
instruction-level data-flow analysis (tainting) and exports two related operations:
set tainted designates a memory region tainted with a particular label; and
tainted determines whether a memory region contains data received from a
particular source (as identified by its taint label). An important class of tainted
data is that which is derived from local user input; this clean data is used to
differentiate locally-initiated from remotely-initiated actions. Both tainted and
set tainted can be used in our behavior specifications; consequently, we can
designate novel taint sources without changing our system implementation.

Commonly, malware variants are generated by: (i) applying packing transfor-
mations (compression and/or encryption) to a binary, (ii) applying instruction-
level obfuscation such as nop insertion as in [15], (iii) applying source-level ob-
fuscations as in [8], (iv) using a bot-development kit, which provides a point-and-
click interface for specifying bot configuration details and builds the requested
bot, or (v) directly modifying the source of an existing bot to add novel func-
tionality and/or commands. Our behavioral graphs are insensitive to the type
of changes entailed in (i) – (iii) since the semantics of a malware’s behavior are
unchanged. The changes in (iv) also do not affect the bot’s implementation of a
particular command, only whether that command is available or not. Moreover,
since we identify the fundamental system-call signatures for high-level behav-
iors, even changing the implementation as in (v) without changing the overall
semantic effect would not suffice to evade detection.

The contributions of this paper include:

– A behavior-specification language (described in Section 2) that can be used
to describe novel, semantically meaningful behaviors.

– A detector (described in Section 3) that identifies when a process performs
a specified high-level action, regardless of the process’s source-code imple-
mentation of the action.

– Our evaluation (described in Section 4) demonstrates that our detector can
distinguish malicious execution of high-level behaviors from benign.



2 Representing High-Level Behaviors

In this section, we define our behavior graphs, each of which describes a cor-
related sequence of events that has some particular semantic effect (such as
connect or tcp client). The graph for a behavior B identifies only the funda-
mental component events required to achieve B and constrains these events as
minimally as possible. Matching a behavior graph generates an event that can
be used as a component within another graph; e.g., matching the tcp client
graph generates the tcp client event, which can be used in specifying other
behaviors, such as tcp proxy. In this way, we compose graphs hierarchically,
which enables us to recognize complex process behaviors.

2.1 Behavior Graphs

A behavior graph is a directed graph of a form that is adapted from and extends
AND/OR graphs [26]. A behavior graph can be thought of as a template; mul-
tiple different sequences of events can be bound to this template subject to the
edge constraints; binding and matching are described more precisely in sect. 2.1.
Fig. 2 contains the behavior graph for our running example, download exec.

Each behavior graph has a start point, drawn as a single point at the top of
the graph, internal nodes, and an output event, which is represented via a shaded
rectangle. Each internal node in the graph has a name, such as create file, and
formal parameters, such as fh0, fname, fname len, as in fig. 2. Together, a node’s
name and formal parameters characterize a set of events, namely those events
whose name is the same as the node’s name. Whereas internal nodes represent
input events needed in order to continue graph traversal, the special output event
represents an action taken by our system; hence no additional input is required to
traverse an edge from a penultimate node to the output event. For example, any
sequence of events that matches the graph in fig. 2 up to the create proc node
will also reach the download exec node and generate a download exec event.
When we match a graph and generate an output event e, the parameters for e
are obtained from e’s constituent events; e.g., the socket descriptor, rem ip, and
rem port arguments for the download exec output event in fig. 2 are obtained
from its constituent tcp client event.

AND-edge sets and OR-edge sets: A behavior graph may have AND-edges
and OR-edges. OR-edges are drawn simply as directed edges, while AND-edges
are drawn using a horizontal line to form an AND-edge set. In fig. 2, a sequence
of events can reach the net recv node by either of the two OR-edges leading
into this node. In contrast, the AND-edges into write file indicate that both
net recv and create file are required to match this portion of the graph. If a
node’s in-edge set contains AND-edges and OR-edges, this expresses an OR of
ANDs. We use AND-edge sets to identify events which can occur in any relative
order but must all precede some other event.



Fig. 2. AND/OR graph for downloading a file and executing it

Annihilator and Replicator Nodes: We correlate events by specifying pred-
icates on their parameters; thus, it’s important to know when a parameter has
been destroyed or duplicated. Annihilator nodes are used to represent that cer-
tain events destroy objects; e.g., calling closesocket on a socket descriptor
sd releases sd, rendering it unable to be used in subsequent events. Annihila-
tor nodes are represented via shaded ellipses, as with the close(fh) node in
fig. 2. The edge from create file(fh0, ...) to close(fh2) imposes the con-



dition that close cannot be called on the newly-created file handle prior to
write file(...) being called on that same handle. Certain events, which we
refer to as replicators, duplicate objects, such as socket descriptors or files. For
example, calling dup on a socket descriptor or file handle creates a copy of the
passed object; any operation that could be called on the original object can
equivalently be called on the duplicate. We represent this via replicator nodes as
with dup(...) and copy file(...) in fig. 2. Since a replicator operation can
be called repeatedly on its own output, replicator nodes contain a self-loop. For
succinctness, some annihilators and replicators are excluded from the figures.

Edge Predicates: A directed edge can be labeled with predicates that must
be satisfied to traverse the edge. Our system provides three predicate types:
argument-value comparison, regular expression matching, and the tainted pred-
icate. In argument-value comparison, we can apply any of the standard relational
operators (=, 6=, >, <) to compare an argument value to a constant or to an-
other argument. Fig. 2 contains several argument-value predicates, such as (sd1
== sd0) between the tcp client and net recv events. We can also specify that
a string or buffer argument value must match a constant regular expression as
used in the send email behavior graph to identify transmission of SMTP pro-
tocol messages (e.g., MAIL FROM). The tainted predicate identifies data-flow
relationships that must hold; we can require that an argument be derived from a
general taint source (e.g., the network) or a specific taint source (e.g., a particular
network connection). Fig. 2 includes a data-flow dependency; namely, the data
written to the newly-created file (fdata) must be derived from data received
over the specified network connection as indicated by its taint label (sd1).

On-reach Actions: Our monitoring system can perform an action in response
to reaching a given node. An on reach action is represented in the graph via a
rectangle – connected to its corresponding node via dashed lines – containing
the action to be performed. Fig. 2 shows that, upon reaching the net recv node,
the received buffer will be marked tainted with the taint label sd1.

Fig. 3. Graph G with (a) OR-ed edges, (b) AND-ed edges, (c) an annihilator



Summary: A behavior graph defines a set of event sequences that match the
graph, and may specify one or more on-reach events that will be generated
when events match the graph in certain ways. These properties may be captured
precisely in a rigorous definitions that allow us to prove properties of various
algorithms. For example, a sequence E = e1, e2, . . . , ek of events matches a
behavior graph G if there is a function f from a subset of the nodes of G to
events in E and a substitution S on variables that appear in formal parameters
of the graph that satisfy the following conditions:

1. If there is an OR-edge set into a node n with f(n) ∈ E, as illustrated in
fig. 3(a), then ∃i. f(ni) ∈ E.

2. If there is an AND-edge set into a matched node n with f(n) ∈ E, as
illustrated in fig. 3(b), then ∀i. f(ni) ∈ E.

3. If there are matched nodes nr → n with an annihilator node as illustrated in
fig. 3(c), then 6 ∃ event e ∈ E with f(nr) < e < f(n) and e matches ev(nann)
by any S′ ⊇ S.

4. If predicate P appears on an edge between nodes n and n′ with f(n) ∈ E
and f(n′) ∈ E, then the substitution instance S(P ) of P is true.

2.2 Behavior-Specification Language

A major contribution of our work is our behavior-specification language and
monitoring system. Together, these can be used to specify then identify novel
semantically-meaningful behaviors. The substrate consists of the graphs at each
layer. Each of the behaviors specified by these graphs is a primitive that can
be used in defining additional behaviors. Table 1 contains some primitives from
our resulting behavior-specification language. We can describe “log keystrokes
then send them in an email” using two of these primitives (keylogging and
send email) and correlating their arguments in a particular way, which illus-
trates the powerful, high-level expressiveness of our language.

2.3 Graph Construction

We developed our graphs manually and iteratively through domain knowledge
and analysis of tens of gigabytes of execution traces, obtained from multiple runs

Table 1. Some primitives in our resulting behavior-specification language

Event Arguments

tcp client sd, loc ip, loc port, rem ip, rem port

tcp server sd, loc ip, loc port, cli ip, cli port

net send sd, buf, buf len

net recv sd, buf, buf len

send email sd, targ ip, from addr, to addr, data
keylogging data, data len



of (i) around fifteen standard applications (including Googletalk, Filezilla, Fire-
fox, putty, mIRC, Internet Explorer, Outlook, Thunderbird, SecureFX, Windows
Media Player, SecureCRT, Unreal IRCd, Apple Software Update, Quicktime,
etc.), (ii) over one hundred specially-crafted programs, and (iii) several mali-
cious programs. We present our evaluation of these graphs’ coverage in sect. 4.2.

Constructing L0 Graphs Recall that L0 graphs represent successful system
call invocations. The challenges here are as follows, (i) Windows implements
the sockets API through a single system call, NtDeviceIoControlFile, (ii) we
do not have source access to the target OS, and (iii) we need to be able to
differentiate invocations of listen from invocations of accept and so on. We
rely on analysis of process execution traces in order to identify commonalities
(in arguments) across all invocations of a sockets function s1 but which are
not present in any invocations of all other sockets functions, s2, s3, ..., sk. These
commonalities are the basis of our L0 behavior graphs. The coverage of any graph
then relies upon the diversity of process traces. Our process traces delineate entry
to and return from each sockets function and identify all system calls invoked
therein, including each system call’s arguments and return value.

For some functions, such as socket, we crafted a suite of programs that
invoked the function using all possible combinations of valid arguments. The ex-
ecution of other sockets functions, however, is stateful in that it depends directly
upon previous actions performed on the same socket descriptor; e.g. recv. Hence,
it is not enough to provide different argument combinations to recv, we must
also precede the invocation of recv with different combinations of particular
sockets functions, such as socket, bind, listen, connect, and so on.

Pending System Call Invocations: A system call sc may not immediately return
success or failure but rather return STATUS PENDING; NtWaitForSingleObject
is subsequently invoked on sc’s associated event object. We encode this path in
our L0 graphs so as to identify eventually successful system call invocations.

Constructing L1 Graphs Recall that L1 graphs aggregate L0 events that have
a similar side effect. Since the system call interface is finite, we can enumerate
the “relevant” effects of each system call and construct an L1 graph for each such
effect, where by “relevant” we mean “of interest”. In our case, there were two
effects that required L1 graphs: net send and net recv. These were immediately
identifiable through domain knowledge. Note that aggregation graphs can exist
at higher layers as well; e.g., we use an L3 graph to aggregate async tcp client
and sync tcp client so that we may identify generally any tcp client.

Constructing L2 Graphs The graphs at L2 identify correlated sequences of
lower-layer events which have some aggregate, composite effect, e.g. create -
write file. For each target L2 behavior, we identify the events essential to that
behavior and any dependencies between those constituent events. This identi-
fication comes through (i) domain knowledge, such as encoding that in order



Fig. 4. L2 AND/OR graph for an asynchronous TCP client

to connect or listen on a socket, that socket must first have been (explic-
itly or implicitly) bound, and (ii) analysis of process traces, as used to con-
struct the graphs for asynchronous network interaction. Windows exports a rich
API for performing asynchronous network interaction, including the standard
polling model using select on a socket as well as event-based approaches, such
as via WSAEventSelect and WSAAsyncSelect. We are able to represent all of
these through a single asynchronous TCP client graph as in fig. 4. This graph
was built by examining process traces of existing applications which use the
Windows asynchronous API as well as augmenting this analysis with traces of
specially-crafted programs designed to capture more execution diversity.

3 System Implementation

Figure 5 depicts the architecture of our system, which has two main components:
a system-wide emulator (Qemu) and a behavior matcher. Qemu emulates and
traces the execution of analyzed programs in an isolated virtual environment.
We use a hybrid emulated/virtualized approach, where the execution of the
process under analysis is emulated while the execution of all other processes
in the system is virtualized using KQemu [38]. The behavior matcher obtains
information about process events from the emulator and attempts to match



Virtual network

Windows XP guest

Qemu system emulator

Analyzed
program

Process-generated events

Extract arguments
Get/set taint labels

B
eh

av
io

r
m

a
tc

h
er

Behavior
specifications

Fig. 5. Architecture of the system.

this input event stream to the behavior graphs. The behavior matcher operates
independently of the particular monitoring technique and, as such, could be used
in concert with, e.g., a process emulator. We use system-wide rather than process
emulation for reasons relating to ease of experiment execution and cleanup. In
particular, Qemu offers built-in support for rollback of system state and enables
easy isolation of the monitored process from the external world.

3.1 System Emulator

Our system-wide emulator extends Qemu [39], an open-source emulator based
on dynamic binary translation, by adding guest-OS-aware virtual machine in-
trospection and taint analysis capabilities [25]. Guest-OS awareness is essential
as we must be able to determine: which system call was invoked, which process
invoked it, and the format of the system call’s argument buffers. Our system
currently emulates the IA-32 architecture and supports Microsoft Windows XP.

Process-generated Events: We instrument the code executed in the emulator
by hooking the sysenter and sysexit instructions, which identify, respectively,
invocation of and return from system calls. The instrumentation causes the em-
ulator to provide this event stream to the behavior matcher in real-time.

Taint Analysis: The code executed in the emulator is also instrumented to
perform taint analysis. In order to propagate taint labels through data depen-
dencies, we extend the semantics of instructions that assign a value to a register
or memory location, excluding floating point operations. We set the label of
an assignment instruction’s destination operand to be the union of the source
operands’ labels. Instructions instrumented in this manner are referred to as
taint propagation instructions. To reduce overhead, we perform taint analysis on
user-space code only. Our system also includes support for custom taint propa-
gation rules over operations at a higher level than machine code instructions. In
particular, we use this support to propagate taint across system calls that par-
ticipate in hostname resolution; we assign the labels from the input hostname
buffer to the location storing the resolved IP address.



Local User Input Tracking: Our local user input tracking module is de-
signed for Win32 GUI applications, which receive messages indicating keyboard
or mouse input events. The receiving application invokes its handler for the in-
put event via a call to DispatchMessage. Mouse input messages do not provide
the data value associated with the event; hence, identifying this data is a chal-
lenge. We address this by entering clean mode whenever the monitored process is
handling receipt of a mouse click or keystroke; we define that period as starting
with select invocations of DispatchMessage and ending with the corresponding
returns. During clean mode, all taint propagation instructions unconditionally
set the labels of their destination operands to be the special clean label. We
present evaluation details related to user input tracking in sect. 4.6.

3.2 Behavior Matcher

At startup, the behavior matcher loads the provided set of behavior graphs. The
matcher maintains some state for each graph, including the graph’s current set
of active nodes. A node nact in graph G is active when we have received some
event sequence <ev1, ev2, ..., evk> which causes us to transition from the start
state of G to nact. There may be multiple event sequences corresponding to
any particular active node; these event sequences (including each event’s actual
parameters) are also part of a graph’s state. For brevity, certain details of the
matching algorithm are omitted.

The behavior matcher is notified in real-time by the emulator every time
the monitored process invokes or returns from a system call. Given a new event
e with name namee, for each behavior graph, the matcher: (i) checks whether
there is a transition from an active node to a node nnew whose name is the same
as namee; if not, discard e, (ii) extracts e’s actual parameters and binds them to
nnew’s formal parameters; (iii) evaluates the predicates on (nact,nnew); if they
do not hold, discard e; (iv) if there is an on-reach action associated with nnew,
then execute it; (v) if there is an edge from nnew to this graph’s output event,
the matcher generates the appropriate synthetic event.

4 Evaluation

This section provides the results of testing our dynamic specification-driven sys-
tem monitor on seven malicious and eleven benign applications. After describing
the experimental setup, we provide results demonstrating our ability to fill the
semantic gap. Additionally, in testing the bots and benign applications against
seven behavior graphs (referred to as malspecs) corresponding to bots’ most
threatening behaviors, there were no false negatives and seven false positives.

4.1 Experimental Setup

We performed our evaluation of the system in the environment depicted in Fig. 5.
The evaluation framework consists of a victim Qemu virtual machine V Mvict,



Table 2. Actions over which benign programs were exercised

Application Interaction

ftp.exe, FTP
Wanderer

Connect to server, authenticate, get a file, get multiple files

Internet Explorer Access google.com, perform FTP access, download and execute
a program.

Outlook Express Download and read email containing an external image, reply
to email, download and execute an attachment.

PuTTy Connect and authenticate with server, send commands, use as
SSH tunnel.

WinSCP, pSCP Copy a file from server to client (and vice versa) using wildcards,
download and execute a program.

SDK Installer Download and install debugging tools from Microsoft server.
mIRC Chat on a typical channel, DCC send, DCC get.
Google Talk Chat, start a voice call, attempt a file transfer.
EasyProxy Start proxy, route HTTP traffic.

which is connected to a second virtual machine V Mgway, which is acting as
a network gateway. On V Mvict, the system-wide emulator monitors the target
malicious or benign process. The purpose of V Mgway is three-fold: it isolates the
emulator from the external network to prevent further infection; it provides a
realistic network environment for the execution of network-aware malware; and
it hosts the command-and-control (C&C) server used to direct bots’ activities.

4.2 Graph Validation

To determine whether our behavior graphs adequately cover semantically-equivalent
but programmatically-different execution paths, we ran a diverse suite of appli-
cations within our monitoring framework and performed matching against a set
of behavior graphs corresponding to generally innocuous actions. The column
headings in Table 3 identify the tested behavior graphs. We drove each appli-
cation’s execution via performing the actions described in Table 2. Moreover,
during process execution, we performed manual analysis of network traffic and
OS state in order to obtain “ground truth” about a process’s actions. In this way,
we were able to determine which behavior specifications any particular process
should match at any point in time. Table 3 shows the output of our behavior
matcher on each application and for each behavior graph. In all instances, the
behavior matcher’s output comported with ground truth, demonstrating that
our graphs identify the fundamental components of the tested behaviors. Recall
that graphs at L2 and higher compose lower-layer graphs. Hence, our evaluation
was performed over more than forty distinct graphs.

4.3 Specifications of Malicious Behavior

The malicious behavior specifications used in our evaluation (malspecs) reflect
the targeted class of malware: bots. We targeted bots because their diverse range



Table 3. Graph validation results. Blank entries indicate that the software did
not perform the tested behavior.

T
C

P
C

li
e
n
t

T
C

P
S
e
rv

e
r

N
e
t

S
e
n
d

N
e
t

R
e
c
v

C
re

a
te

P
ro

c

D
w

n
ld

F
il
e

D
w

n
ld

&
E
x
e
c

S
e
n
d

E
m

a
il

T
C

P
P

ro
x
y

ftp.exe X X X X X
Internet Explorer X X X X X X
Outlook Express X X X X X X X
PuTTy X X X X X
pSCP X X X X
WinSCP X X X X X X
FTP Wanderer X X X X X X X
SDK Installer X X X X
mIRC X X X X X
Google Talk X X X X
Easy Proxy X X X X X

of behaviors encompasses the full range of behaviors performed by some other
types of malware. Our malspecs (described briefly in Table 4) correspond to
the most alarming threats posed by bots [2,3,4,5,6,7], including: malware install
(M1, M2), spamming (M3), DoS attacks (M4), proxying (M5), and identity theft
(M6, M7). Since bots act at the behest of a remote entity (the botmaster), we
describe their actions as remotely-initiated (RI), which occurs when the values
used to perform an action depend on data received over the network [16].

4.4 Malware Results

We evaluated our system against seven malicious bots: rbot, Agobot, DSNX,
Spybot, gSys, rxbot, and SDBot. When run in V Mvict, the bot connected to its
C&C server (hosted in V Mgway), received a series of commands, and executed
each. Table 5 shows the malspecs matched by each bot. From this, two conclu-
sions can be drawn: first, we can detect when a process performs a high-level,
semantically meaningful action, such as Remotely-Initiated Net Download
(M2); and secondly, a single malspec can be used to identify a malicious behav-
ior in a variety of bots. In one case, a command fed to a bot caused the bot to
crash; consequently, we don’t have results of executing the email command on
rBot, which we expected would match RI Send Email malspec (M3).

4.5 Benign Application Results

To determine whether our malspecs sufficiently encode the difference between
malicious behavior and benign, we tested eleven benign applications against
these malspecs. We chose benign applications and actions over which to drive



Table 4. Malspecs used for evaluation. Recall that “RI” stands for remotely-
initiated. Use of “tainted” in the below refers to data received over the network.

Name Description

M1 RI Create and
Execute File

A file with a tainted name is created, tainted data is written
to the file, and a process is created from the file.

M2 RI Net Download A connection to a tainted address or port is created, a file
with a tainted name is created, and tainted data is written
to the file.

M3 RI Send Email A sequence of messages is matched using regular expressions,
and found to correspond to an SMTP message sent to a
tainted email address.

M4 RI Sendto A UDP packet is sent to a tainted port or address.
M5 RI TCP Proxy An application binds to a tainted port number, connects to

a tainted address, and relays information from the tainted
port to the tainted address.

M6 Keylogging An application captures keystrokes destined for another pro-
cess.

M7 Data Leak An application sends data from either the filesystem or the
registry over a network connection.

Table 5. Results on malicious bots. Blank entries denote behaviors not matched
because the bot did not implement them; † entries denote behaviors which, when
exercised, caused the bot to crash.

M1 M2 M3 M4 M5 M6 M7

rBot X X † X X X
Agobot X X X X X X
DSNX X X X X X
SpyBot X X X X
gSys X X X X X
rxBot X X X X X X
SDBot X X X X X

each application by favoring those with the greatest perceived likelihood of trig-
gering a match on at least one malspec. Due to the black-box nature of many
Win32 applications, this selection process is imperfect. Since we favored network-
intensive applications and since our malspecs define remotely-initiated actions
as those which use network-supplied parameters, we expect some false positives.

Table 6 provides the results of evaluating each of our benign programs against
the set of malspecs. We ran each program under two scenarios: first, with user-
input tracking disabled, which corresponds to the UI column; and second, with
user-input tracking enabled, which correspond to the UI column. What this
means is that, e.g., GoogleTalk matched M2, M4, and M7 when we performed
no user input tracking and only matched M7 when this tracking was enabled.
We note that, in general, we are better able to distinguish malicious from benign
when we take local user input into consideration in the manner described in 3.1.



Table 6. Results on benign applications. “UI” refers to an experiment in which
user input tracking was not used, and “UI” to one with it enabled.

M1 M2 M3 M4 M5 M6 M7

UI UI UI UI UI UI UI UI UI UI UI UI UI UI

ftp.exe X X
FTP Wanderer X X
Internet Explorer X X X X
Outlook Express X X X X
PuTTy X X
pSCP X X
WinSCP X X X
SDK Installer X
mIRC X X
Google Talk X X X X
EasyProxy

The malspec matched by most benign programs (regardless of whether user
input was taken into consideration) is Leak (M7). Leak identifies when data
read from a file or the registry is subsequently sent on the network. This manifests
in malicious applications when sensitive user data or product keys are transmit-
ted to the botmaster. The deficiency of this malspec is its coarse granularity; i.e.,
reading data from any file on the system and sending any portion of that causes
a match. In actuality, we would prefer to encode that, when an application reads
data that does not belong to that application, this is considered a breach. So,
in a sense, a more finely-tuned Leak malspec would retrofit fine-grained access
control for applications on Windows systems, enabling application X to read
from files and registry keys belonging to X. As proof of concept, we tuned the
Leak malspec to exclude cookie files and certain registry keys belonging Internet
Explorer (IE), which explains why IE does not match M7.

4.6 Tracking Local User Input

Since our benign results make clear the importance of identifying and tracking
data which is dependent upon local user input, it is important to understand how
often the system is cleaning data in response to local user input (as described
in 3.1). If it is the case that our system is in “clean mode” the vast majority of the
time, one might question the validity of our distinction between malicious and
benign. We identified the number of instructions executed by a benign process
over its lifetime as well as the number of instructions executed by that process
while it was in clean mode. The percent of instructions executed in clean mode
for three representative applications was: mIRC, 1%; Outlook, 3%; and IE, 9%.
Thus, user-input tracking is performed for a very small portion of a process’s
lifetime and, hence, our designation of data as clean is conservative.



Table 7. Performance overhead of the system. The Tainting column identifies
the factor slowdown of running Qemu with tainting over vanilla Qemu. Each
MX column identifies the factor slowdown (over vanilla Qemu) of performing
both tainting and behavior matching for the given malspec. Startup time is not
included and is on the order of ten seconds.

Tainting M1 M3 M6

Internet Explorer 5.25 11.53 7.19 5.64
pSCP 7.32 8.08 19.62 7.42
Agobot 3.01 16.40 23.73 16.84
rBot 9.50 11.20 11.08 9.62

4.7 Additional Malware

Though our sample malspecs target malicious bots, high-level specifications can
be generated to identify other classes of malware. To demonstrate this, we eval-
uated four Trojans (Bancos, two variants of Banker, and Delf) and three mass-
mailing worms (all variants of Bagle) using our previous malspecs plus a new mal-
spec designed to detect self-propagation through email. With no modifications
to the Leak malspec (M7), each Trojan matched it. To identify self-propagation
through email, we modified the Remotely-Initiated Send Email malspec
(M3). Rather than requiring that the data-flow be from the network to an SMTP
message, we specified that the data-flow must be from the code of the executable
itself to an SMTP message, which corresponds to a process sending its own code
in an email. This demonstrates that specifying signatures for entirely new classes
of malware can be straightforward and intuitive.

4.8 Performance Overhead

We evaluated the performance overhead of our system on a subset of the ma-
licious and benign applications used in the evaluation, including Agobot, rBot,
pSCP, and Internet Explorer. We ran each application under three different sce-
narios: (i) Qemu with no tainting; (ii) Qemu with tainting; (iii) Qemu with
tainting and behavior matching for each of three different malspecs. For each
application under each scenario, we measured the amount of wall clock time
elapsed between a set of events captured in system logs. We selected events that
did not depend on user input, so as to preserve as much determinism as possible.

The Tainting column in Table 7 identifies the factor slowdown of using Qemu
with tainting over Qemu without tainting, which we refer to as vanilla Qemu.
We rely on previous work to determine the overhead of vanilla Qemu relative to
native execution, which is substantial: on the order of a 7X to 23X [12]. Each
MX column identifies the factor slowdown of performing both tainting and be-
havior matching for the given malspec. To obtain the total slowdown over native
execution, we add the MX value to the numbers in [12]; e.g., running behav-
ior matching using the M3 malspec on rBot exacts an 18X to 34X performance
penalty over native execution. Our system yields rich information and would ease
the analysis performed in applications which may be less performance sensitive.



5 Limitations and Future Work

Limitations: There are several approaches to evasion that we can imagine
attackers would adapt against a system such as ours. In particular, since we
identify correlated sequences of system calls, efforts to disrupt our ability to
correlate are an obvious choice. This disruption could take the form of splitting
the work required to achieve some high-level action across multiple processes or
across different instantiations of the same process. Another high-level approach
at evasion relates to our assumption that the malicious process interacts with the
kernel. Malware that expropriate kernel functionality would disrupt our ability
to see and thus correlate their events. For example, an application could use raw
sockets and write its own IP and transport-layer headers rather than calling the
standard sockets functions such as connect, accept, and so on. Malicious soft-
ware could also attempt to subvert our user-input tracking. Another approach to
evasion relates to breaking our assumption about data-flow; in particular, mal-
ware could convert data-flow dependencies into control-flow dependencies thus
defeating our mechanism for determining when an action is remotely-initiated.
Finally, because we are interposing on a process, we are vulnerable to Time-Of-
Check-Time-Of-Use (TOCTOU) bugs as in [24].

Future Work: We are very interested in exploring automated ways of gen-
erating the behavior graphs at various layers of the hierarchy. At L0, perhaps
given source code access, we could ascertain precisely the set of low-level events
(and the constraints on those events) that corresponds to each sockets opera-
tion. Moving up the hierarchy, such access would also presumably enable us to
determine all possible sequences of events which achieve some semantic effect,
such as tcp client. An alternative approach may be to use symbolic execution
to infer these behavior graphs. In this way, we would still achieve our semantic
understanding of the aggregate effect of a process’s actions but would have more
confidence in our coverage than can be obtained through even rigorous testing.

6 Related Work

Behavior-Based Malware Detection: Host-based behavior-based research
has been done to identify rootkits, spyware, and bots [22,23,20,19,16]. In [19],
Cui et al identify extrusions: stealthy outgoing network connections made by
malicious processes. In the commercial sector, Sana Security’s ActiveMDT [21]
correlates a process’s exhibition of various mostly stateless behaviors to deter-
mine whether the process is likely to be malicious. The simple behaviors include:
whether a process spawns or terminates other processes, the directory from which
a process executes, whether the process attempts to hide, and so on.

Egele et al present a method and system for detecting spyware implemented
as a Browser Helper Object (BHO) in [30]. The method identifies malicious in-
formation access and processing when sensitive information flows (such as the
list of URLs visited) are written by a BHO to the network, file system, or shared



memory. Moreover, they perform static analysis to identify instructions that are
control-dependent on sensitive information. Since spyware-writers could prevent
the static analysis in [30] from identifying the post-dominator node, they con-
sider failure of their static analysis to be indicative of malicious intent. This
control-flow tracking is only performed for BHO code so it’s unclear whether
such tracking, if applied to general-purpose programs, would blur the ability to
distinguish between malicious and benign. Yin et al developed a related malware
detector, Panorama [18], which performs full-system, instruction level tainting
and can express more diverse leakage policies than [30]. We can express the be-
havior identified by these systems using our specification language. As with [18],
we do not currently track implicit information flows.

The behavioral specifications developed by Christodorescu et al [11] are sim-
ilar to ours. Our specifications differ in three important ways. First, we use
AND-edges which enables expressing concurrent behaviors. Second, we intro-
duce synthetic event nodes, in order to identify complex behaviors hierarchically.
Additionally, the specifications used in Christodorescu’s work were generated au-
tomatically using data mining techniques, as opposed to the manual techniques
we used. This has a few significant implications. Most importantly, their speci-
fications identify sequences of actions which happen to occur in some malicious
software; the aggregate effect of such sequences is unknown as is the value to the
malware of performing those actions. That is, their specifications may identify
incidental, rather than fundamental or mission-critical, behaviors as are targeted
by our work. Additionally, no effort is made to cover semantically equivalent se-
quences. Consequently, there may be alternative sequences of system calls which
have the same effect as a mined sequence but are not identified in their graphs.

Dynamic Code Analysis: Some systems use emulation to monitor the exe-
cution of suspicious executables [27,33,34]; however, rather than attempting to
infer high-level behaviors, these systems merely report the numerous low-level
events, such as system calls and API invocations, generated during execution.
Other research has focused on addressing the shortcomings of dynamic analysis,
including using symbolic execution to explore multiple execution paths [31,32].

Semantic Gap Problem: The semantic gap problem was explored by Garfinkel
et al, as part of an attempt to embed an intrusion detector into a virtual machine
monitor [25]. Related systems include honeypots [29,28], where introspective ca-
pabilities are used to examine the state of the filesystem in order to detect hidden
files. Rather than encoding semantic information about the system, Jones [35]
applied implicit techniques to infer relevant state. One notable result was the
use of these techniques to detect processes hidden by rootkits [36].

7 Conclusion

Bots are an extremely widespread and serious problem, allowing remote bot mas-
ters to direct the activities of millions of compromised hosts. We develop new



behavioral monitoring techniques that are effective for identifying meaningful
high-level actions, based on hierarchical behavior graphs. Behavior graphs pro-
vide a high-level specification language that can be used to describe semantically
meaningful behaviors such as “proxying”, “keystroke logging”, “data leaking”,
and “downloading and executing a program.” To address evasive malware be-
havior, our specifications are carefully crafted to detect alternate sequences of
events that achieve the same goal.

Our experimental emulation-based detector identifies when a process per-
forms a specified high-level actions, regardless of the process’s source-code imple-
mentation of the action. We tested multiple malicious bots and benign programs
and found that we were able to thoroughly identify high-level behaviors across a
diverse code base. In addition, we are able to distinguish malicious execution of
high-level behaviors from benign ones by distinguishing remotely-initiated from
locally-initiated actions.

References

1. Symantec Internet Security Threat Report, Trends for January-June 07, Volume
XII, September 2007.

2. Keizer, G.: Bot Networks Behind Big Boost In Phishing Attacks. TechWeb, Nov.
2004.

3. Parizo, E.: New bots, worm threaten AIM network. SearchSecurity, Dec. 2005.
4. Naraine, R. Money Bots: Hackers Cash In on Hijacked PCs. eWeek, Sept. 2006.
5. Overton, M.: Bots and Botnets: Risks, Issues, and Prevention. In Virus Bulletin

Conference, Oct. 2005.
6. Ianelli, N., Hackworth, A.: Botnets as a Vehicle for Online Crime. CERT Coordi-

nation Center, Dec. 2005.
7. Ilett, D.: Most spam generated by botnets, says expert. ZDNet UK, Sept. 22, 2004.
8. Christodorescu, M., Jha, S.: Testing Malware Detectors. In Proc. of the Interna-

tional Symposium on Software Testing and Analysis, July 2004.
9. SRI Honeynet and BotHunter Malware Analysis Automatic Summary Analysis

10. Jevans, D.: The Latest Trends in Phishing, Crimeware and Cash-Out Schemes.
Private correspondence.

11. Christodorescu, M., Jha, S., and Kruegel, C.: Mining specifications of malicious
behavior. In Proc. of the the 6th Joint Meeting of the European Software Engi-
neering Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering, August 2007.

12. NoAH Foundation: Containment Environment Design
13. Chen, P., and Noble, B.: When Virtual is Better than Real. Proceedings of HotOS-

VIII: 8th Workshop on Hot Topics in Operating Systems.
14. Petritsch, H.: Understanding and Replaying Network Traffic in Windows XP for

Dynamic Malware Analysis. Master’s Thesis, February 2007.
15. Christodorescu, M., Jha, S., Seshia, S., Song, D., Bryant, R.: Semantics-Aware

Malware Detection. In IEEE Symposium on Security and Privacy, May 2005.
16. Stinson, E., Mitchell, J.: Characterizing Bots’ Remote Control Behavior. In Proc.

of the 4th DIMVA Conference, July 2007.
17. Newsome, J., Song, D.: Dynamic Taint Analysis for Automatic Detection, Analysis,

and Signature Generation of Exploits on Commodity Software. In Network and
Distributed Systems Symposium, February 2005.

http://eval.symantec.com/mktginfo/enterprise/white_papers/ent-whitepaper_internet_security_threat_report_xii_09_2007.en-us.pdf
http://www.cyber-ta.org/releases/malware-analysis/public/
http://www.fp6-noah.org/publications/deliverables/D1.3.pdf
http://petritsch.co.at/download/Understanding_and_Replaying_Network_Traffic_in_Windows_XP_for_Dynamic_Anaylsis.pdf
http://petritsch.co.at/download/Understanding_and_Replaying_Network_Traffic_in_Windows_XP_for_Dynamic_Anaylsis.pdf


18. Yin, H., Song, D., Egele, M., Kruegel, C., Kirda, E.: Panorama: capturing system-
wide information flow for malware detection and analysis. In Proc. of the 14th
ACM conference on Computer and communications security, October 2007.

19. Cui, W., Katz, R., Tan, W.: BINDER: An Extrusion-based Break-in Detector for
Personal Computers. In Proc. of the 21st Annual Computer Security Applications
Conference, December 2005.

20. Kirda, E., Kruegel, C., Banks, G., Vigna, G., Kemmerer, R.: Behavior-based Spy-
ware Detection. In Proc. of the 15th USENIX Security Symposium, August 2006.

21. United States Patent Application 20070067843 M̈ethod and apparatus for removing
harmful softwarë. Williamson, Matthew; Gorelik, Vladimir. March 22, 2007.

22. Strider GhostBuster Rootkit Detection
23. Wang, Y., Beck, D., Vo, B., Roussev, R., Verbowski, C.: Detecting Stealth Software

with Strider GhostBuster. Microsoft Technical Report MSR-TR-2005-25.
24. Garfinkel, T.: Traps and Pitfalls: Practical Problems in System Call Interposition

Based Security Tools. In Network and Distributed System Security, Feb. 2003.
25. Garfinkel, T., Rosenblum, M.: A Virtual Machine Introspection Based Architecture

for Intrusion Detection. In Network and Distributed Systems Symp., Feb. 2003.
26. Nilsson, N.: Problem-Solving Methods in Artificial Intelligence. McGraw-Hill, 1971.
27. Bayer, U., Moser, A., Kruegel, C., and Kirda, E.: Dynamic Analysis of Malicious

Code. Journal in Computer Virology, Volume 2, Number 1, Springer Computer
Science Journal. August 2006.

28. Jiang, X., Xu, D., and Wang, X.: Stealthy Malware Detection Through VMM-
Based ”Out-of-the-Box” Semantic View Reconstruction. Proceedings of the 14th
ACM Conference on Computer and Communications Security (CCS 2007), Alexan-
dria, VA, November 2007.

29. Jiang, X., Wang, X.: ’Out-of-the-box’ Monitoring of VM-based High-Interaction
Honeypots. Proceedings of the 10th International Symposium on Recent Advances
in Intrusion Detection (RAID 2007), Queensland, Australia, September 2007.

30. Egele, M., Kruegel, C., Kirda, E., Yin, H., and Son, D.: Dynamic Spyware Analysis.
Proceedings of Usenix Annual Technical Conference. USA, June 2007.

31. Moser, A., Kruegel, C., and Kirda, E.: Exploring Multiple Execution Paths for
Malware Analysis. Proceedings of IEEE Symposium on Security and Privacy, IEEE
Computer Society Press. USA, May 2007.

32. Brumley, D., Hartwig, C., Liang, Z., Newsome, J., Poosankam, P., Song, D., and
Yin, H.: Book chapter in ”Botnet Analysis”, Editors Lee W., et. al., 2007.

33. Norman Sandbox
34. Willems, C.: Automatic Behaviour Analysis of Malware. Master Thesis. University

of Mannheim.
35. Jones, S.: Implicit Operating System Awareness in a Virtual Machine Monitor.

Ph.D. Thesis, University of Wisconsin - Madison, April 2007.
36. Jones, S., Arpaci-Dusseau, A., Arpaci-Dusseau, R.: VMM-based Hidden Process

Detection and Identification using Lycosid. In ACM International Conference on
Virtual Execution Environments, March 2008.

37. Vasudevan, A., and Yerraballi, R.: Cobra: Fine-grained Malware Analysis using
Stealth Localized-executions. Proceedings of IEEE Symposium on Security and
Privacy, IEEE Computer Society Press. USA, May 2006.

38. Bellard, F.: QEMU Accelerator (KQEMU).
39. Bellard, F.: QEMU, a Fast and Portable Dynamic Translator.

http://research.microsoft.com/rootkit/
http://sandbox.norman.com/
http://fabrice.bellard.free.fr/qemu/kqemu-doc.html
http://fabrice.bellard.free.fr/qemu/

	A Layered Architecture for Detecting Malicious Behaviors
	Lorenzo Martignoni*, Elizabeth Stinson†, Matt Fredrikson‡, Somesh Jha‡, John C. Mitchell†

