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Introduction

Thiodiglycol (TDG), namely bis-(2-hydroxyethyl) sulfide,

is a chemical used in both private industry (textile dyeing,

printing solvents and other industrial applications) and

the military sector. TDG is the precursor and the main

hydrolysis product of sulfur mustard gas or Yperite, i.e.

bis-(2-chloroethyl) sulfide, the most produced and stored

chemical warfare agent. Yperite is markedly cytotoxic and

is also a carcinogenic and mutagenic alkylating agent.

Furthermore, it is a vesicant that is slightly soluble in

water and, under alkaline conditions, hydrolysable, with

the formation of the un-chlorinated water-soluble com-

pound, TDG (Munro et al. 1999). Since 1999, the

destruction of Yperite has mainly been through incinera-

tion or neutralization, both very expensive processes, and,

compared with these conventional processes, bioremedia-

tion offers a very advantageous alternative method

because of its minimal environmental impact and its cost

effectiveness. Biodegradation of mustard gas has not been

achieved under laboratory conditions probably because of

its toxicity to micro-organisms (Munro et al. 1999).

A two-step process for the destruction of mustard gas

has already been conceived and developed: the first step
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Abstract

Aims: To isolate thiodiglycol (TDG)-degrading bacteria, the mustard gas

hydrolysis product, and to characterize the metabolites formed and the

enzymes involved in the degradation.

Methods and Results: Two strains, identified as Achromobacter xylosoxydans G5

and Paracoccus denitrificans E4, isolated from a petroleum-contaminated soil,

utilized TDG as sole carbon and sulfur source. During the degradation of TDG

by strain E4 [(2-hydroxyethyl)thio] acetic acid (HETA), thiodiglycolic acid

(TDGA) and bis-(2-hydroxyethyl)disulfide (BHEDS) were identified by gas

chromatography–mass spectrometry analysis, while HETA and TDGA were

identified for strain G5. Two-dimensional isoelectric focussing-gel electrophore-

sis (2-D IEF ⁄ SDS–PAGE) maps of protein extracts of P. denitrificans E4 grown

on TDG showed a spot identified as a methanol dehydrogenase. Increased

expression of a putative iscS gene, involved in sulfur assimilation, was observed

in TDG-grown cells of A. xylosoxydans G5.

Conclusions: TDG degradation by P. denitrificans E4 occurred through two

pathways: one involved cleavage of the C–S bond of HETA, yielding BHEDS

and the other, oxidation of the alcoholic groups of TDG, yielding TDGA. The

cleavage of the C–S bond of TDGA gave mercaptoacetic acid, further oxidized

to acetate and sulfate.

Significance and Impact of the Study: Increased knowledge of TDG-degrading

bacteria and the possibility of using them in a tailored-two-stage mustard gas

destruction process.
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lies in the chemical hydrolysis of the gas (Harvey et al.

1998) or the chemical treatment of mustard–lewisite

mixtures (Boronin et al. 2000), and the second step the

biodegradation of the detoxification product, namely

TDG. Although TDG has a lower toxicity, it has to be

destroyed and not left to accumulate in the environment,

as specified by the Chemical Weapons Convention of the

Organization for the Prohibition of Chemical Weapons

(U.S. Arms Control and Disarmament Agency 1993).

In this context, the biodegradation of mustard gas can

be closely related to the utilization of TDG by micro-

organisms. Some organisms such as Candida rugosa

(Kawashima 1995) and Alcaligenes xylosoxydans PGH10

(Garcia-Ruiz et al. 2002) transform TDG through oxida-

tion. Other bacteria, such as Alc. xylosoxydans ssp. deni-

trificans strain TD2 (Ermakova et al. 2002), Pseudomonas

sp. 8-2 (Medvedeva et al. 1998), Alc. xylosoxydans ssp.

xylosoxydans strains SH42 (Harvey and DeFrank 1993)

and SH91 (Kim et al. 1997; Lee et al. 2000) use TDG as

sole carbon source. The utilization of TDG by Alc. xylos-

oxydans SH91 gave [(2-hydroxyethyl)thio]acetic acid

(HETA) and thiodiglycolic acid (TDGA) as intermediate

products, which were further completely degraded (Lee

et al. 1997, 2000). Rhodococcus rhodochrous IGTS8

cultures are instead able to use TDG as the sulfur source

for growth (Kilbane and Jakowski 1996).

Recently, a Pseudomonas sp. tolerant to the organochlo-

rine substances in mustard gas hydrolysate has been

found to be capable of utilizing mustard gas hydrolysis

products and of degrading TDG (Medvedeva et al. 2007).

The present paper reports an investigation aimed at

studying the TDG catabolism pathway in two new bacte-

rial isolates, performed by analysing: (i) the intermediates

formed in the course of TDG degradation in the absence

and presence of 4-methyl pyrazole, an alcohol dehydroge-

nase inhibitor; (ii) PCR amplifications of genes coding

for enzymes potentially involved in TDG catabolism and

in S assimilation; (iii) 2D protein profiles of strains

grown on TDG and on succinate. The identification of

metabolites led us to the determination of two possible

metabolic pathways for TDG degradation by Paracoccus

denitrificans strain E4.

Materials and methods

Chemicals

TDG, 2,2¢-sulfonyldiethanol (DGSO2; 60–65% by wt.

aqueous solution), diethylene glycol, ethylene glycol,

methanol, ethanol, 1-butanol, hexane, dodecane and hex-

adecane were purchased from Sigma-Aldrich Chemie

(Steinheim, Germany); TDGA, diethyl sulfide, 2-ethoxy-

ethanol, 2-mercaptoethanol (MeET), mercaptoacetic acid

(MAA), dimethyl sulfoxide (DMSO) and sulfoacetic acid

(SAA) from Fluka Chemie (Buch, Switzerland). Ethyl

2-hydroxyethyl sulfide was purchased from Thermo

Fisher Scientific (Geel, Belgium). All other chemicals were

reagent grade.

Synthesis of 2,2¢-sulfenyldiethanol

2,2¢-Sulfenyldiethanol (DGSO), a possible metabolite of

TDG biodegradation, was synthesized as follows: an

aliquot of 1Æ65 ml of H2O2 was slowly added to a

mixture of 1Æ5 ml TDG and 7Æ5 ml acetone, maintained

at 3–4�C in an ice bath. The mixture was stirred over-

night on ice, then the liquid phase was decanted and

the formed crystals were purified by precipitation with

acetone from a warmed aqueous solution. The DGSO

yield was 0Æ33 g. Analytical data of DGSO are reported

in Table 1.

Enrichment, isolation, identification and characterization

of TDG-degrading strains

Soil samples taken from a petroleum-contaminated area

were used to enrich the bacterial strains capable of utiliz-

ing TDG as sole C and S source. Three grams of soil were

mixed with 27 ml of sterile minimal elemental (ME)

medium supplemented with 4Æ8 mmol l)1 of TDG. Cyclo-

heximide (0Æ1 g l)1) was added to the medium to inhibit

the growth of eukaryotic cells. The cultures were shaken

at 150 rev min)1 at 30�C for 7 days. The components of

ME were as follows (g l)1): NH4Cl, 2Æ0; MgCl2Æ6H2O, 0Æ2;

K2HPO4, 4Æ0; NaH2 PO4, 4Æ0; CaCl2Æ2H2O, 0Æ001 and

FeCl3Æ6H2O, 0Æ001. The medium was supplemented with

microelements in the following concentrations (mg l)1):

FeCl2Æ4H2O, 1Æ5; CoCl2Æ6H2O, 0Æ19; CuCl2Æ2H2O, 0Æ017;

H3BO3, 0Æ06; ZnCl2, 0Æ07; MnCl2 4H2O, 0Æ1; Na2MoO4Æ
2H2O, 0Æ036; and NiCl2Æ6H2O, 0Æ024. The final pH of

ME was adjusted to 7 with a 1-mol l)1 NaOH and the

medium was autoclaved at 121�C for 20 min. When

necessary, a solution of 6 mmol l)1 Na2SO4 was added as

sulfur source.

The culture was adapted to utilize TDG through seven

subsequent passages by re-inoculation of 1-ml cell sus-

pensions in 20 ml of fresh ME medium. The enriched

culture was then serially diluted and seeded on 10-fold

diluted Tryptic Soy agar (TSA 0Æ1·; Difco, Detroit, MI,

USA). After 8 days of incubation at 30�C, the colonies

that appeared on the plates were isolated and tested for

capability to grow on TDG.

The growth of the isolates on TDG and on TDG-

related or -unrelated substrates was tested in 100-ml

flasks containing 20 ml of ME with the appropriate

compound added. The flasks were shaken at

Biodegradation of thiodiglycol E. Dell’Amico et al.

1112 Journal compilation ª 2009 The Society for Applied Microbiology, Journal of Applied Microbiology 106 (2009) 1111–1121

ª 2009 The Authors



150 rev min)1 at 30�C. All growth experiments were done

at least twice.

TDG, diethylene glycol, ethylene glycol, diethyl sulfide,

ethyl 2-hydroxyethyl sulfide, 2-ethoxyethanol, DGSO,

DGSO2, MeET, MAA, SAA, DMSO, methanol, ethanol

1-butanol, hexane, dodecane and hexadecane were

separately added to the cultures; TDGA sodium salt and

succinate were supplied as aqueous solutions. All com-

pounds and solutions were added to the medium after fil-

ter sterilization with a 0Æ45-lm-pore-size membrane filter.

G5 and E4 strains were identified by phylogenetic analy-

ses (neighbour-joining method). Overnight cell suspen-

sions grown on LB medium (100 ll OD600 = 2Æ0) were

centrifuged at 13 000 g for 7 min and the pellet suspended

in 100 ll of sterile MilliQ water, 100 ll of 10 mmol l)1

Tris–HCl buffer (pH 8Æ0) and 13 ll of Proteinase K

(1 mg ml)1). The mix was incubated for 2 h at 55�C, then

boiled for 10 min and centrifuged at 13 000 g for 5 min.

The DNA-containing supernatant was withdrawn and put

into sterile microtubes. TDG-degrading strains were iden-

tified on the basis of sequence analysis of near-complete

16S rRNA gene, using eubacterial universal primers P27f

and P1495r referred to an Escherichia coli nucleotide

sequence of 16S rRNA gene (Weisburg et al. 1991).

TDG degradation experiments

TDG degradation experiments were carried out in triplicate

in 500 ml bottles, each containing 90 ml of ME medium.

TDG was added to the bottles at the required concentra-

tion. Each bottle was inoculated with 10 ml of the cell sus-

pension grown on TDG, then closed with a butyl rubber

stopper and incubated under shaking at 150 rev min)1 at

30�C; samples were taken at intervals to determine cell

density, TDG consumption and metabolite formation.

To test the involvement of an alcohol dehydrogenase

activity in the initial breakdown on TDG, the strains were

grown in 100 ml bottles containing 20 ml of ME medium

containing 10 mmol l)1 of TDG in both the presence and

absence of 1 mmol l)1 4-methylpyrazole (Sigma-Aldrich),

an inhibitor of alcohol dehydrogenase (Brimfield et al.

1998). Cell density was measured at appropriate intervals,

Table 1 Analytical data of TDG and related metabolites

GC* (Rt) HPLC (Rt) 1H-NMR (DMSO-d6) GC–MS or MS (EI)�

TDG 7Æ02 4Æ20 4Æ75 (t, 2H, 2 OH)

3Æ50 (q, 4H, 2 CH2-O-)

2Æ58 (t, 4H, 2 CH2-S-)

266 (0%), 251 (7%), 191 (7%), 176 (30%), 161 (15%), 130 (20%),

117 (32%), 116 (90%), 103 (65%), 101 (25%), 87 (25%),

75 (42%), 73 (100%)

OTO 2Æ29 nd 4Æ69 (m, 1H, O-CH-O)

4Æ17 and 3Æ69

(2 m, 2 H, S-C-CH2-O),

2Æ67-2Æ45

(m, 3H, O-C-CH-S-CH2),

2Æ32 (bd, 1H, O-C-CH-S)

192 (32%), 170 (20%), 133 (17%), 119 (85%), 103 (73%), 79 (98%),

77 (75%), 73 (100%)

HETA 7Æ59 3Æ76 3Æ54 (t, 2H, CH2-O-)

3Æ24 (s, 2H, S-CH2-CO)

2Æ68 (t, 2H, CH2-S-)

280 (10%), 265 (15%), 204 (7%), 190 (52%), 133 (13%), 117 (18%),

103 (25%), 89 (9%), 73 (100%)

TDGA 8Æ33 3Æ56 3Æ35 (s, -CH2-S-) 294 (10%), 279 (7%), 204 (55%), 117 (12%), 87 (7%), 79 (2%),

75 (45%), 73 (100%)

BHEDS 9Æ46 3Æ68 4Æ85 (m, 2H, 2 OH)

3Æ62 (t, 4H, 2 CH2-O-)

2Æ79 (t, 4H, 2 CH2-S-)

298 (30%), 182 (11%), 154 (8%), 133 (28%), 117 (56%), 107 (48%),

103 (28%), 92 (14%), 73 (100%)

DGSO 9Æ69 3Æ75 4Æ95 (t, 2H, 2 OH)

3Æ80 (bq, 4H, 2 CH2-O-)

2Æ90 (m, 4H, 2 CH2-S-)

EI:

138 (7%)

94 (65%), 76 (100%), 63 (50%)

GC–MS:

283 (3%)

267 (45%), 238 (18%), 166 (62%), 135 (30%), 117 (100%), 103 (25%),

87 (7%), 73 (76%), 59 (10%)

DGSO2 9Æ87 3Æ62 5Æ06 (t, 2H, 2 OH)

3Æ80 (q, 4H, 2 CH2-O-)

3Æ26 (t, 4H, 2 CH2-S-)

298 (0%)

283 (82%), 239 (12%), 133 (7%), 117 (53%), 101 (22%), 88 (12%),

75 (58%), 73 (100%)

*The reported retention times (Rt) are relative to trimethylsilyl derivatives of the indicated products.

�All the reported GC–MS data are relative to trimethylsilyl derivatives. For DGSO are reported also the data for the compound before

derivatisation (EI).
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while the metabolite concentrations in the culture broth

were measured only at the end of the experiments.

Analytical procedures and metabolite extraction

Growth was monitored by recording the increase in

OD600 nm with a model UV-1700 spectrophotometer

(Beckman model DU 640). TDG, HETA and TDGA con-

centrations were monitored by HPLC chromatograph

(Merck-Hitachi L6200 Intelligent pump with L4000 UV

detector; Japan Servo Co., Japan) equipped with a column

Supelco C18 Discovery (25-cm long). A mixture of water–

acetonitrile (60 : 40) was the mobile phase and the flow

rate was 0Æ7 ml min)1. The compounds were detected by

measuring UV absorbance at 220 nm and their relative

retention times (Rt) are reported in Table 1. The concen-

trations of TDG and TDGA were calculated using standards

of known concentrations; that of HETA using samples

extracted from culture broths. To identify the metabolites,
1H-NMR analyses of the crude organic extracts were per-

formed with a Bruker Ultrashield 400 using DMSO-d6 as

solvent. The values of the signals are reported in Table 1.

After derivatization of crude organic extracts with bis-

(trimethylsilyl)trifluoroacetamide, gas chromatography

(GC) and gas chromatography–mass spectrometry (GC–

MS) analyses were performed. The GC analyses were per-

formed using a DANI 1000 gas-chromatograph equipped

with an FID detector (hydrogen 0Æ9 bar, air 1Æ0 bar and

nitrogen 1Æ0 bar) and a fused silica capillary column

WCOT-CP-Sil 8 CB Chrompack (25 m · 0Æ32 mm i.d.),

carrier helium (0Æ8 bar), injector temperature 200�C, detec-

tor temperature 250�C, oven temperature 90�C (2 min),

temperature increase 10�C min)1, final isotherm 250�C,

injection volume 2 ll. All chromatograms and data were

generated and processed by DANI Data Station ver. 1.7

software (Dani Instruments, Cologno Monzese, Italy). The

same column and chromatographic conditions were used

for GC–MS, and mass spectra were recorded on a VG 7070

EQ instrument. For the extraction of the metabolites the

culture broth, after pH control, was treated with solid NaCl

until saturation, and then filtered into a separatory funnel.

In the presence of acidic pH, the broth was extracted by

ethyl acetate (3 times with a volume of ethyl acetate as 3 ⁄ 5
of the volume of aqueous solution) and the organic layers

collected, dried with solid Na2SO4 and filtered. The organic

solvent was eliminated by evaporation under reduced pres-

sure. In the presence of neutral pH, the broth was extracted

as described above and subsequently acidified by adding a

6-mol l)1 HCl solution to give a pH of 2–3 and then a sec-

ond extraction was performed. The obtained crude extracts

(from the neutral and acidic aqueous phases) were dis-

solved separately in 5-ml ethyl acetate; 4 ml of the solution

was dried and submitted to 1H-NMR analysis and 1 ml was

transferred drop by drop into a glass vial (0Æ1 ml) under

dry nitrogen stream to evaporate the solvent and prepare

the sample for the silylation procedure. To the raw mate-

rial, 100 ll of pyridine and 100 ll of bis-(trimethylsilyl)tri-

fluoroacetamide were added and the mixture maintained at

40�C for 30 min, after which it was ready for gas-chro-

matographic or gas–mass analyses. The Rt values and the

spectroscopic properties of TDG and the related meta-

bolites detected in the culture broths are shown in Table 1.

To determine the presence of any sulfates, aliquots of

the culture broth (0Æ5 ml), filtered through a 0Æ2-lm-

pore-size membrane filter, were acidified with 6-mol l)1

HCl (pH 2) and 0Æ5 ml of a 5-mol l)1 BaCl2 solution

were added to the sample. The precipitation of BaSO4

revealed sulfate formation.

Molecular methods

Genes potentially involved in TDG degradation were

searched for by PCR amplification of the following gene

fragments: tbmA for toluene 2-monoxygenase, responsible

for growth on ether and thioether compounds by Burk-

holderia cepacia G4 ⁄ PR1 (Hur et al. 1997); bdhA for

butanol dehydrogenase in Aeromonas hydrophila JMP636

(AF388671; Schmidt and Pemberton, unpublished data).

An iscS gene for cysteine desulfurase involved in sulfur

assimilation process was also searched (Mihara and Esaki

2002). Table 2 shows the primers used. Primers for iscS

were designed on the consensus region of Pseudomonas

fluorescens Pf-5 (CP000076) and Burkholderia pseudomallei

K96243 (BX571965), Ralstonia pickettii 12J (CP001068)

and Bradyrhizobium sp. BTAi1 (NC009485), and primers

for bdhA on the consensus region of Aer. hydrophila

JMP636 (AF388671), Burkholderia pseudomallei 1655

(DS981341) and of Rhizobium leguminosarum bv. viciae

Table 2 Oligonucleotide primers used for PCR amplification of genes potentially involved in TDG degradation and in the S assimilation pathway

Gene Forward primer (5¢–3¢) Reverse primer (5¢–3¢)
Theoretical PCR

product size (bp) References

tbmA AAGACCTATCCSGARTACGT GGCTGGATCWGRCCTGCSAGGAA 1200 Cavalca et al. (2004)

bdhA GTCCCTATCTTGTCAAA CGCCCAGGCTCGCGACCA 710 This work

iscS AAGCGGATCGAGCTGTGMGC GYGAAGGCTTCGARGTGACC 720 This work

S is for C + G; R, for A + G; W, for A + T, M, for A + C, Y, for C + T.
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3841 (NC008380). The PCR mix consisted of deoxynucle-

otide triphosphates at 200 lmol l)1 each, 0Æ30 lmol l)1

each primer, 2Æ0 mmol l)1 MgCl2, 1· PCR buffer and

1 U of Taq DNA polymerase (Invitrogen, Paisley, UK) in

a total volume of 50 ll. The annealing temperatures were

55�C for tbmA, 51�C for bdhA and 52�C for iscS.

For the semi-quantitative transcriptional analysis, a

reverse transcriptase (RT)-PCR approach was taken.

DNAse-treated total RNAs were reverse transcribed to

first-strand cDNA using Stratascript Reverse Transcriptase

(Stratagene, La Jolla, CA, USA) according to the manu-

facturer’s instructions; cDNA aliquots from the RT reac-

tions were used for the amplification of iscS gene with

Taq DNA Polymerase (Invitrogen, UK), using the primers

for iscS listed in Table 2. The PCR products were sepa-

rated on 2% agarose gels along with O’gene Ruler 1-kb

ladder (Fermentas, Burlington, ON, Canada). As positive

control, genomic DNA from the same strain was used as

template. As negative control, not-reverse transcribed

DNAse-treated RNA was used as template in order to

avoid false-positive results.

Total RNA was extracted from Achromobacter xylosoxy-

dans G5 cultures after 5-day growth in ME medium sup-

plemented either with TDG (6 mmol l)1) or succinate and

Na2SO4 (6 mmol l)1 each). Samples (1010 cells) were spun

down (8000 g for 15 min), the cell pellets were suspended

in 3Æ25-ml lysing buffer (80 mmol l)1 Tris–HCl buffer pH

7Æ6 containing 800 mmol l)1 NaCl and 8 mmol l)1 EDTA)

and digested for 1 h at 50�C with 1 mg proteinase K. RNA

was further extracted with phenol: chloroform: isoamyl

alcohol (25 : 24 : 1) and chloroform: isoamyl alcohol

(24 : 1). RNA was recovered after precipitation with etha-

nol and treated with RNAse-free DNAse I (GE Healthcare,

Stockholm, Sweden).

2-D IEF ⁄ SDS–PAGE and image analysis

G5 and E4 strains were grown separately in 100 ml ME

medium containing either succinate and Na2SO4

(6 mmol l)1 each) or TDG (6 mmol l)1). Cells were har-

vested by centrifugation (15 min at 10 000 g at 5�C) after

3 days of growth, washed twice with 50 mmol l)1 Tris–

HCl buffer (pH 7Æ5) containing 0Æ3 mol l)1 NaCl. Each

cell pellet was suspended in 10 ml of lysis buffer

[7 mol l)1 urea, 2 mol l)1 thiourea, 2% CHAPS,

65 mmol l)1 1,4-dithiothreitol (DTT)] and disrupted by

sonication (Sonifier 250; Branson, Marchan, Ontario,

Canada). The resultant lysate was centrifuged at 13 000 g

for 10 min at 4�C, and the supernatant was collected. The

protein concentration was determined using 2D Quant

Kit (Amersham Bioscience).

Isoelectric focussing was performed on 7 cm, pH 3–10

linear IPG strips (GE Healthcare, Milan, Italy). The strips

were rehydrated overnight in a solution consisting of

7 mol l)1 urea, 2 mol l)1 thiourea, 2% CHAPS,

65 mmol l)1 1,4-dithiothreitol, 2% IPG buffer pH 3–10

(GE Healthcare, Milan, Italy) containing 50 lg of the

protein sample. Strips were focussed at 6500 V-h, with a

maximum of 3000 V, at 20�C using the Multiphor II

electrophoresis unit (Amersham Biosciences, Milan, Italy).

Prior to the second dimension, the strips were incubated

in equilibration buffer (375 mmol l)1 Tris–HCl, pH 8Æ8,

6 mol l)1 urea, 2% SDS, 20% glycerol) with 65 mmol l)1

DTT for 15 min, then with 243 mmol l)1 iodoacetamide

in the same buffer without DTT for 10 min. The separa-

tion was performed in 12% SDS–PAGE gels using a

mini-PROTEAN III cell (Bio-Rad, Milan, Italy). Three gel

replicates were produced for each sample. The gels were

stained with Coomassie Brilliant Blue (CBB), scanned in

an Epson Expression 1680 Pro Scanner and analysed with

imagemaster 2-D Platinum Software (GE Healthcare,

Milan, Italy).

Protein in-gel digestion and liquid chromatography

electrospray ionization tandem mass spectrometry

Protein spot was excised from CBB stained 2-DE gel and

in-gel digested as described by Magni et al. (2007).

The obtained sample was analysed using a Finnigan

LCQ Deca XP MAX IT mass spectrometer equipped with

a Finnigan Surveyor (MS Pump Plus) HPLC system

(Thermo Fisher Scientific). Chromatography separations

were conducted on a BioBasic C18 column (180 lm i.d.,

150-mm long, 5-lm particle size), using a linear gradient

from 5% to 80% solvent B [solvent A: 0Æ05% (v ⁄ v) for-

mic acid; solvent B: ACN containing 0Æ05% (v ⁄ v) formic

acid] with a flow of 2Æ5 ll min)1. The capillary tempera-

ture and the spray voltage were set at 220�C and at

3Æ0 kV, respectively. For MS ⁄ MS scans, the normalized

collision energy was set at 35%. Acquisitions were per-

formed in data-dependent MS ⁄ MS scanning mode and

enabling a dynamic exclusion window of 3 min. Protein

identification was conducted by TurboSEQUEST� Bio-

works Browser 3Æ2 (Thermo Fisher Scientific) software

through correlation of uninterpreted spectra to the entries

of the P. denitrificans protein database downloaded from

the National Center for Biotechnology Information

(NCBI). The software was set to allow two missed cleav-

ages per peptide and to take into account cysteine carb-

oxyamidomethylation and methionine oxidation. The

parent ion and fragment ion mass tolerance were set to

±2 and ±1 Da, respectively. In order to identify proteins,

only peptides with Xcorr > 1Æ5 (+1 charge state), >2Æ0
(+2 charge state), >2Æ5 (‡3 charge state) and peptide

probability <1 · 10)3 were considered. Theoretical molec-

ular weight and pI of the characterized protein were
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calculated by processing sequence entry at http://www.

expasy.org/tools/pi_tool.html.

Sequence accession numbers

The nucleotide sequences of the 16S rRNA genes of

strains E4 and G5 were registered in GenBank ⁄ EMBL as

accession numbers FM207553 and FM207511, respec-

tively. The nucleotide sequence of putative iscS gene has

been registered as accession number EU523110.

Results

Isolation, identification and growth characteristics of

TDG-degrading bacteria

One enrichment culture capable of growing on

4Æ8 mmol l)1 of TDG was obtained. Thirty colonies from

the plates of the culture grown on TSA 0Æ1· were isolated

and re-streaked on TSA 0Æ1· to obtain pure cultures.

Among the isolates, two strains, named E4 and G5,

utilized TDG as sole C and S source.

Phylogenetic analysis based on 16S rRNA sequences

indicated that the strains E4 and G5 were identified as

P. denitrificans (99Æ1% sequence identity to GenBank acc.

num. CP000490) and A. xylosoxydans (93% sequence

identity to GenBank acc. no. AY468369), respectively.

Table 3 shows the different growth characteristics of

the strains to assimilate substrates with molecular struc-

ture similar to TDG, intermediates of TDG oxidation,

and other substrates as alcohol and aliphatic hydrocar-

bons. They grew on TDG, TDGA, ethylene glycol, ethanol

and on 1-butanol, but not on ethyl 2-hydroxyethyl ether,

diethylene glycol, diethyl sulfide, DGSO, DGSO2, DMSO

and MeET. Paracoccus denitrificans E4 grew well on MAA

and SAA, possible derivatives of TDG degradation and on

methanol, but very poorly on ethyl 2-hydroxyethyl sul-

fide. On the contrary, G5 scarcely grew on methanol and

failed to grow on MAA and SAA. In addition, the growth

of G5 on TDG in the presence of MAA was inhibited and

the inhibitory effect increased with increasing MAA con-

centration (data not shown). Finally, A. xylosoxydans G5

grew on middle long-chain alkanes. All the results

indicated a strain specificity in recognizing as growth

substrates only the compounds containing a sulfide

bound to oxidized chains as in the TDG molecule and

not to alkylic chains as in diethylsulfide.

Identification of metabolites in growing cell experiments

Figure 1 shows profiles of pH variation (Fig. 1a), TDG

disappearance and OD600 nm increase (Fig. 1b) of the

culture broths of the isolates. During growth and TDG

consumption, the pH values of the cultures dropped from

7Æ2 to 5Æ2 for strain E4 and from 7Æ0 to 5Æ0 for strain G5

in 48 h. The data concerning TDG degradation by P. den-

itrificans E4 are shown in Fig. 2. HETA, TDGA, i.e. the

mono and diacid derivatives of TDG, and small amounts

of bis-(2-hydroxyethyl)disulfide (BHEDS), which is the

oxidation product of MeET were detected. At 36 h of

incubation, HETA was the dominant metabolite and the

sulfate test was negative. HETA and BHEDS disappeared

at 72 and 96 h, respectively, while TDGA was still present.

The sulfate release became evident when the pH dropped

to 5Æ2.

TDGA was the sole metabolite extracted from the

cultures of A. xylosoxydans G5. At 24 h of incubation,

there was the presence of 3 mmol l)1 of TDGA, which

became completely degraded at 40 h to coincide with the

sulfate release.

Growth of strains E4 and G5 and TDG oxidation were

affected differently when 4-methyl pyrazole was added to

the cells growing on TDG. A growth inhibitory effect of

78% and 30% for E4 and G5 was observed, respectively

(Fig. 3). At the end of the incubation time (192 h),

1,4-oxathian-2-ol (OTO), as the main metabolite,

together with traces of HETA and TDGA were detected

in P. denitrificans E4 cultures. OTO was derived from

the cyclization of [(2-hydroxyethyl)thio]acetic aldehyde

Table 3 Growth of E4 and G5 strains in ME medium supplemented

with various organosulfur compounds and with related compounds

Substrate* E4 G5

Thiodiglycol (TDG) + +

Diethylene glycol ) )
Diethyl sulfide ) )
Ethyl 2-hydroxyethyl sulfide ± )
Ethyl 2-hydroxyethyl ether ) )
2,2¢-Sulfenyldiethanol (DGSO) ) )
2,2¢-Sulfonyldiethanol(DGSO2) ) )
Thiodiglycolic acid (TDGA) + +

Dimethyl sulfoxide (DMSO) ) )
2-Mercaptoethanol (MeET) ) )
Mercaptoacetic acid (MAA) + )
Sulfoacetic acid (SAA) + )
Methanol + ±

Ethanol + +

Ethylene glycol + +

1-Butanol + +

Hexane ) )
Dodecane ) +

Hexadecane ) +

*Each compound was added at a final concentration of 5 mmol l)1.

Growth after 4 days of incubation: growth, + (OD600 nm > 0Æ3); scarce

growth, ± (OD600 nm 0Æ10–0Æ18); absence of growth, ) (OD600 nm <

0Æ08).
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(HETAL). Instead, traces of HETA were detected in the

cultures of A. xylosoxydans G5. The analytical data of

these metabolites are reported in Table 1.

Molecular analysis

Molecular determinants for enzymes potentially involved

in TDG degradation and sulfur assimilation were searched

for by PCR amplification of gene fragments with primers

for tbmA, bdhA and iscS (Table 1). None of the strains

yielded amplicons related to tbmA and bdhA. This implies

that genes with different nucleotide sequence composition

than the known tbmA and bdhA genes may be present in

strains E4 and G5, or alternately these genes may be

absent. However, a fragment of 720 bp was amplified

with primers for iscS in A. xylosoxydans G5 grown on

TDG, in agreement with the expected size value. The iscS

nucleotide sequence of A. xylosoxydans G5 revealed a

similarity of 94% to part of iscS gene of Bordetella

parapertussis 12822 (GenBank acc. no. BX640429). The

deduced aminoacidic sequence showed a similarity of

78% with the cysteine desulfurase IscS of Pseudomonas

aeruginosa PAO1 (Protein acc. no. Q9HXI8).

To determine whether the iscS gene was actually tran-

scribed in response to TDG, transcriptional analysis was

performed on total RNA isolated from TDG-grown and

succinate-grown cells of A. xylosoxydans G5 (Fig. 4). With

the use of a primer for iscS, an expected fragment of

720 bp was amplified from the total RNA extracted from

cells grown on TDG, while the product was barely ampli-

fied from cells grown on succinate, thus indicating that

the growth of A. xylosoxydans G5 on TDG led to increas-

ing the expression of the iscS gene.

2-D electrophoretic analysis

Total protein extracts from the strains, obtained as

described in section ‘Materials and methods’, were used
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to generate two-dimensional isoelectric focusing-gel elec-

trophoresis (2-D IEF ⁄ SDS–PAGE) maps (Fig. 5). Glob-

ally, a comparison of the maps of the strains grown on

succinate or TDG evidenced several differences in the

protein profiles. The map of TDG-grown G5 cells denotes

a large increase in the amount of one spot around

55 kDa with pI 5Æ5 and two spots near 45 kDa with pI

between 7Æ5 and 8Æ5. In regard to strain E4, the most

important change in the maps concerns the spot of

70 kDa with pI 5Æ0. This spot was excised from the gel,

digested with trypsin and analysed by liquid chromatogra-

phy electrospray ionization tandem mass spectrometry

(LC-ESI-MS ⁄ MS), as described in section ‘Materials and

methods’. The protein was identified as a methanol dehy-

drogenase [MDH subunit 1 precursor from P. denitrifi-

cans (acc. no. P12293), with theoretical MW and pI of

69 799 Da and 5Æ08, respectively] with amino acid cover-

age of 19Æ5% (eight peptides).

Discussion

The results presented here demonstrate that micro-organ-

isms of different genera capable of TDG degradation

may exist in contaminated sites. Previously, degradation

studies of TDG have been mainly focussed on the cata-

bolic pathway (Lee et al. 2000; Ermakova et al. 2002;

Medvedeva et al. 2007) and up to now the genes and

enzymes involved in TDG breakdown have not yet been

characterized.

The initial breakdown of TDG can occur via three pos-

sible reactions: (i) oxidation of sulfur of TDG to DGSO

and DGSO2, (ii) C–S bond cleavage yielding MeET and

(iii) oxidation of the alcoholic groups.

DGSO and as a minor metabolite DGSO2, that can

serve as a biological marker for sulfur mustard poison-

ing (Black and Read 1995), have been reported as
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Succinate (mmol l–1)  TDG (m mol l–1) 

720 bp 

Figure 4 Transcriptional analysis of iscS gene for cysteine desulfurase

of Achromobacter xylosoxydans G5. Total RNA from cells grown on

succinate or on TDG was used as template for amplification. NC, neg-

ative control; DNA, positive control; M, O’Gene Ruler 1-kb ladder.
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in vivo metabolites of sulfur mustard in the urine of

men and rats, providing evidence of the occurrence of

oxidative processes other than the oxidation of the

alcoholic group in TDG metabolism. Both the

cytochromes, P450 and flavin monooxygenases, have

been implicated in this type of transformation (Levi

and Hodgson 1988).

DGSO and DGSO2 were never found to be formed by

E4 and G5 cells growing on TDG. This result, together

with the incapacity of the strains to grow on DGSO and

DGSO2 led us to exclude that TDG degradation in these

isolates occurred with the initial S oxidation. The C–S

bond cleavage of TDG with the formation of MeET has

been proposed by Medvedeva et al. (2007). Paracoccus

denitrificans E4 and A. xylosoxydans G5 did not utilize

MeET as carbon source to grow. These isolates attacked

the TDG molecule by oxidizing both the primary alcohol

groups to yield TDGA, according to Lee et al. (2000) and

Ermakova et al. (2002). However, in P. denitrificans E4

cultures, the transient formation of small amounts of

BHEDS, i.e. the oxidation product of MeET, was evi-

denced (Fig. 2). The transformation of MeET into

BHEDS probably served E4 to preserve the MDH activity.

This hypothesis can be supported by the results of Leono-

vich et al. (2001) which found that MeET inhibited the

alcohol oxidase activity of Pichia methanolica growing on

different carbon sources, methanol included. BHEDS

could be subsequently oxidized to bis-(mercaptoacetic

acid) disulfide and then cleaved to MAA.

A butanol ⁄ thiodiglycol dehydrogenase was proposed to

carry out the initial oxidation of TDG by Alc. xylosoxy-

dans SH91 (Lee et al. 1997). The failure in the amplifica-

tion of the bdhA gene can exclude the involvement of

such enzyme in G5 and E4 strains. Moreover, with regard

to strain E4, the 2-D IEF ⁄ SDS–PAGE maps evidenced an

important change of the spot of 70 kDa with pI 5Æ0 of

protein profiles (Fig. 5). This protein spot was identified

as an MDH subunit 1 precursor by LC-ESI-MS ⁄ MS anal-

ysis, thus indicating that MDH oxidizes TDG to HETAL.

The capability of P. denitrificans E4 to utilize methanol as

carbon source strengthened this finding. 4-Methylpyrazole

inhibited TDG oxidation in P. denitrificans E4 and

partially in A. xylosoxydans G5, probably suggesting that

different dehydrogenases may be responsible for TDG

oxidation.

On the basis of the overall experimental results

obtained with P. denitrificans E4, we suggest for TDG

degradation the pathways shown in Fig. 6. According to
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this scheme, TDG is oxidized to HETAL and then to

HETA, whose subsequent oxidation can follow two

routes. According to route 1, HETA is oxidized to TDGA

with subsequent cleavage of the C–S bond to form MAA

and acetic acid. MAA is oxidized to SAA, and the second

C–S bond is cleaved forming acetate and sulfate. This

pathway is in agreement with the growth characteristics

and the identified metabolites. On the contrary, the

presence of BHEDS in the culture broths allows us to

consider that HETA, or even HETAL, can also be sub-

strates for the enzymatic C–S bond cleavage. According to

this possibility, in route 2, which represents a minor

pathway, the C–S cleavage leads to the formation of acetic

acid and MeET.

In G5, an iscS gene that encodes for cysteine desul-

furase activity was amplified. Cysteine desulfurase is a

pyridoxal-5¢-phosphate (PLP)-dependent enzyme that

catalyses the conversion of l-cysteine to l-alanine and

sulfane sulfur, via the formation of an enzyme-bound

persulfide intermediate. However, cysteine desulfurase is

not directly involved in the C–S cleavage of TDG

because the enzyme requires substrates containing an

amino group for binding PLP (Mihara and Esaki

2002). IscS-related genes have been found to play a role

in the biosynthesis of NAD (Sun and Setlow 1993; Lau-

hon and Kambampati 2000) and in the mobilization of

sulfur from cysteine to construct and repair Fe–S clus-

ters in protein substrates that, in turn, catalyse essential

redox reactions in critical metabolic pathways (Lauhon

and Kambampati 2000; Tantalean et al. 2003). A high

NAD-requirement to oxidize the two TDG alcoholic

groups might explain the higher expression level of the

iscS gene in TDG-growing, rather than in succinate-

growing, cells of A. xylosoxydans G5. Besides, alcohol

dehydrogenase of some micro-organisms utilizes NAD

as cofactor and as coenzyme (Arfman et al. 1997;

Zachariou et al. 1986).

In conclusion, two new bacterial strains that success-

fully degraded TDG, the product of Yperite hydrolysis,

have been described in this study. The strains can serve as

powerful agents for the bioremediation of TDG-contami-

nated soils as well as for two-stage-tailored Yperite

destruction processes. Furthermore, in bioaugmentation

processes, growth and activity of P. denitrificans E4 and

A. xylosoxydans G5 can be monitored by the detection of

functional markers easily identifiable.
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