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Abstract The telegraph process X (t), t ≥ 0, (Goldstein, Q J Mech Appl Math 4:129–156,
1951) and the geometric telegraph process S(t) = s0 exp{(µ − 1

2σ 2)t + σ X (t)} with µ a
known real constant and σ > 0 a parameter are supposed to be observed at n + 1 equidistant
time points ti = i"n, i = 0, 1, . . . , n. For both models λ, the underlying rate of the Poisson
process, is a parameter to be estimated. In the geometric case, also σ > 0 has to be estimated.
We propose different estimators of the parameters and we investigate their performance under
the asymptotics, i.e. "n → 0, n"n = T < ∞ as n → ∞, with T > 0 fixed. The process
X (t) in non markovian, non stationary and not ergodic thus we build a contrast function to
derive an estimator. Given the complexity of the equations involved only estimators on the
first model can be studied analytically. Therefore, we run an extensive Monte Carlo analysis
to study the performance of the proposed estimators also for small sample size n.

Keywords Telegraph process · Discretely observed process ·
Inference for stochastic processes

Mathematics Subject Classification (2000) Primary 60K99 · Secondary 62M99

1 Introduction

The random motions with finite velocity represent an alternative to diffusion models defined
by means of stochastic differential equations. The prototype of these models is the telegraph
process (see Goldstein (1951); Kac (1974)) that describes the position of a particle moving
on the real line, alternatively with constant velocity +v or −v. The changes of direction are
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governed by an homogeneous Poisson process N (t) with rate λ > 0. The telegraph process1

is defined by

X (t) = V (0)

∫ t

0
(−1)N (s)ds, t > 0, (1)

where the initial velocity V (0) assumes the values ±v with equal probability and indepen-
dently of N (t). We consider a particle initially located on the real line at point x0.

The explicit conditional density function of the process X (t) has been obtained by Orsin-
gher (1990) and reads

p(x, t; x0, 0) = e−λt

2v

{
λI0

(
λ

v

√
v2 t2 − (x − x0)2

)

+ ∂

∂t
I0

(
λ

v

√
v2 t2 − (x − x0)2

)}
χ{|x−x0|<vt}

+ e−λt

2
{δ(x − x0 − vt) + δ(x − x0 + vt)}

= e−λt

2v

{
λI0

(
λ

v

√
v2 t2 − (x − x0)2

)

+
vλt I1

(
λ
v

√
v2 t2 − (x − x0)2

)

√
v2t2 − (x − x0)2




χ{|x−x0|<vt}

+ e−λt

2
{δ(x − x0 − vt) + δ(x − x0 + vt)}

= e−λt

2v

{
λI0

(
λ

v

√
ut (x, x0)

)

+ vλt I1
(

λ
v

√
ut (x, x0)

)
√

ut (x, x0)

}

χ{ut (x,x0)>0}

+ e−λt

2
δ(ut (x, x0)) (2)

where x is such that |x − x0| ≤ vt , ut (x, x0) = v2 t2 − (x − x0)
2, χ(·), δ(·) and

Iν(x) =
∞∑

k=0

( x
2

)2k+ν 1
k!((k + ν + 1)

, |x | < ∞, | arg x | < π, ν ∈ R,

is the modified Bessel function with imaginary argument. Note that the second term in
Eq. 2 represents the singular component of the distribution of (1), of the position of the
particle at time t . Indeed, if no Poisson events occur in the interval [0, t], we have that
P {X (t) = +vt} = P {X (t) = −vt} = 1

2 e−λt .
Many authors analyzed over the years the telegraph process, see for example Orsingher

(1990, 1995), Foong and Kanno (1994), Stadje and Zacks (2004). Di Crescenzo and Pellerey
(2002) proposed the geometric telegraph process as a model to describe the dynamics of the
price of risky assets S(t). In the Black–Scholes (1973) – Merton (1973) model the process

1 In the literature, this process is alternatively called the telegraph process or the telegrapher’s process.
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S(t) is described by means of geometric Brownian motion

S(t) = s0 exp{αt + σ W (t)}, t ≥ 0. (3)

S(0) = s0, where W (t) is a standard Brownian motion and α = µ − 1
2σ 2, with µ ∈ R,

σ > 0. Di Crescenzo and Pellerey (2002) assume that S(t) evolves in time according to the
following process

S(t) = s0 exp{αt + σ X (t)}, t ≥ 0. (4)

where X (t) is the telegraph process. Given that X (t) has bounded variation, so is S(t) in Eq.
4. This seems a realistic way to model paths of assets in the financial markets. Mazza and
Rulliére (2004) linked the process (1) and the ruin processes in the context of risk theory. Di
Masi et al. (1994) propose to model the volatility of financial markets in terms of the tele-
graph process. Ratanov (2004, 2005) propose to model financial markets using a telegraph
process with two intensities λ± and two velocities c±. While such markets may admit an
arbitrage opportunity, linking opportunity velocities and interest rates, the author proves that
the market becomes arbitrage-free and complete. An analogous of the Black and Scholes
equation is established as well.

The aim of this paper is the estimation of the parameter λ when {X (t), 0 ≤ t ≤ T } is
observed at equidistant times 0 = t0 < · · · < tn (and also σ for discrete observations from
the process (4)). We assume that ti = i"n , i = 0, . . . , n, hence n"n = T . The asymptotic
framework is the following: n"n = T fixed and "n → 0 as n → ∞. When the telegraph
process X (t) is observed continuously then N (T )/T is the optimal estimator of the param-
eter λ as this statistical problem is equivalent to the one of the observation of the whole
Poisson process2 on [0, T ]. This situation corresponds indeed to the limiting experiment in
our asymptotic framework. This asymptotic framework is a well known scheme in the lit-
erature on estimation from discrete time observations of processes solution to the following
stochastic differential equation

dY (t) = b(Y (t), θ)dt + σ(Y (t), θ)dW (t) .

This field has been an active research area during the last twenty years. The reader can con-
sult Sørensen (2004) for a review on estimation techniques recently appeared in the literature
since the seminal papers of Le Breton (1976) and Florens-Zmirou (1989): e.g. estimating
functions, analytical and numerical approximations of the likelihood function, MCMC meth-
ods, indirect inference, etc. Unfortunately such methods are not directly applicable in our
case because the telegraph process is not ergodic or stationary nor markovian. The main idea
in the paper is to consider the observed increments of the process X (i"n) − X ((i − 1)"n)

as n copies of the telegraph process up to time "n and treat them as if they were indepen-
dent (which is untrue). From this idea we build a contrast function from which we derive an
estimator. We further propose a moment type estimator based on the second moment of the
telegraph process. Equations emerging in connection with the telegraph process are always
complicated to treat and closed form results are quite rare in the literature. This also happens
in our work, thus in some cases we rely on numerical simulations to study the properties of
the proposed estimators.

It is worth mention that, up to our knowledge, the only references about estimation prob-
lems for the telegrapher’s processes are Yao (1985) and Iacus (2001). The first author consid-
ers the problem of state estimation of the telegrapher’s process under white noise perturbation
and studies performance of nonlinear filters. The second paper is about the estimation of the

2 For more details on parametric estimation for Poisson process see Kutoyants (1998).
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parameter θ of the non-constant rate λθ (t) from continuous observations of the process. Very
recently, Iacus and Yoshida (2006) consider3 estimation problem for this process under the
large sample asymptotic scheme, i.e. T = n"n → ∞ and n"3

n → 0 as n → ∞, but their
approach is based on different arguments.

The paper is organized as follows. In Sect. 2 we will introduce the following contrast
function which plays the role of a pseudo-likelihood function

Ln(λ) = ∏n
i=1 p(Xi ,"n; Xi−1, ti−1) (5)

where p(Xi ,"n; Xi−1, ti−1) is defined by (2). We will then study the the estimator λ̂n sat-
isfying

∂

∂λ
log Ln(λ)

∣∣∣∣
λ=λ̂n

= 0

and then show that this estimator is also the unique solution of

λ̂n = arg max
λ>0

Ln(λ)

which is interpreted as a pseudo-maximum likelihood estimator. We also propose a moment
type estimator for λ based on the second moment of the process X (t). Inference problems and
estimators for the parameters λ and σ of the geometric telegrapher’s process are considered
in Sect. 3. Finally, Sect. 4 contains a Monte Carlo analysis to study empirically the behavior
of the estimators in a finite sample context (i.e. non asymptotically).

2 Inference for the telegraph process

We assume that the telegraph process {X (t), 0 ≤ t ≤ T }, with X (0) = x0 = 0, is observed
only at equidistant discrete times 0 < t1 < · · · < tn = T , with ti = i"n , i = 0, . . . , n (hence
n"n = T ). We use the following notation to simplify the formulas: X (ti ) = X (i"n) = Xi .
The asymptotic is considered as n tends to infinity under the conditions "n → 0 and n"n=T .
The interest is in the estimation of the parameter λ whilst v is assumed to be known.

As mentioned in the Introduction, if one can observe the whole trajectory, λ can be esti-
mated as N (T )/T where N (T ) is the number of times the process switches its velocity during
the interval [0, T ] which is, of course, the number of Poisson events counted in [0, T ]. This
is certainly the best estimator of λ and it is indeed our target.

The estimation of v is always an uninteresting problem. In fact, if there are no switchings
in [(i − 1)"n, i"n] then Xi − Xi−1 = v"n , hence if "n is sufficiently small, there is high
probability of observing N (ti+1) − N (ti ) = 0 and v can be estimated (actually calculated)
without error.

The process X (t) itself is not markovian, whilst the two dimensional process (X (t), V (t))
(where V (t) = V (0)(−1)N (t)) has the Markov property. However, a scheme of observation
in which one is able to observe both the position and the velocity of the process at discrete
time instants is not admissible, so we can rely only on the observation of the X (t) compo-
nent. Hence we cannot write an explicit likelihood of the process in the form of a product of
transition densities as, for example, for the case of diffusion processes. Another unfortunate
fact about the telegraph process is that it is not even stationary (at the second order) as

E X (t) = 0 (6)

3 The cited reference chronologically follows the present work.
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and

E X2(t) = v2

λ

(
t − 1 − e−2λt

2λ

)
(7)

(see Orsingher (1990)) nor it posseses an ergodic property, so we cannot use the same approach
proposed, e.g., in Sørensen (2000).

2.1 The pseudo-likelihood function

By taking into account the distribution (2), we build a contrast function (which is a pseudo-
likelihood function of the process) as follows

Ln(λ) = Ln(λ|X0, X1, . . . , Xn) =
n∏

i=1

p(Xi ,"n; Xi−1, ti−1)

=
n∏

i=1

{
e−λ"n

2v

{

λI0

(
λ

v

√
un,i

)
+ vλ"n I1

(
λ
v

√
un,i

)
√

un,i

}

χ{un,i >0}

+ e−λ"n

2
δ(un,i = 0)

}
(8)

where un,i = un(Xi , Xi−1) = v2"2
n − (Xi − Xi−1)

2.
The density p(Xi ,"n; Xi−1, ti−1) appearing in (8) is the probability law of a telegraph

process initially located in Xi−1, that reaches the position Xi at time ti . The construction
of Ln(λ) is based on the following assumption: the observed increments Xi − Xi−1 are n
copies of the process X ("n) (i.e. the process X (t) up to time "n) and treated as if they were
independent. This is of course untrue, but the estimators based on Ln(λ) posses reasonable
properties. It is clear that (8) is equivalent to

Ln(λ) =
(

e−λ"n

2

)n−n+

×
n+∏

i=1

e−λ"n

2v

{

λI0

(
λ

v

√
un,i

)
+ vλ"n I1

(
λ
v

√
un,i

)
√

un,i

}

= e−λn"n

2n

1
vn+

n+∏

i=1

{

λI0

(
λ

v

√
un,i

)
+ vλ"n I1

(
λ
v

√
un,i

)
√

un,i

}

(9)

where n+ is equal to the number of telegraph processes X ("n) with at least one change of
direction (see Fig. 1).

In the expression (9), the factor
(

e−λ"n

2

)n−n+
concerns the singular part of the densities

p(Xi ,"n; Xi−1, ti−1), while the product represents the absolutely continuous component of
the distributions of the telegraph processes. Note that for increasing values of λ, the absolutely
continuous component of (9) has a bigger weight than the discrete component; viceversa for
small values of λ. This has consequences in the performance of the estimators as shown
in Sect. 4. Figure 1 shows how the two components of the function Ln(λ) emerge for this
scheme of observation.
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Fig. 1 Discrete time sampling of the telegraph process. Between X3 and X4 no Poisson event occurred with
probability e−λ"n , hence the singular part of the approximated likelihood emerges in the Ln(λ). For this
example trajectory n = 5 and n+ = 4

2.2 Minimum contrast estimator

Given the following contrast function

F(λ; X1, . . . , Xn) = ∂

∂λ
log Ln(λ) (10)

we consider the estimator λ̂n solution to F(λ) = 0, i.e.

λ̂n : F(λ = λ̂n; X1, . . . , Xn) = 0 (11)

and next theorem proves the uniqueness of the solution of (11).

Theorem 2.1 The estimator λ̂n in (11) is unique.

Proof To prove the result, we show that the second partial derivative of log Ln(λ) is negative.
We start by writing

log Ln(λ) = −λn"n − log(2nvn+
)

+
n+∑

i=1

log

{

λI0

(
λ

v

√
un,i

)
+ vλ"n I1

(
λ
v

√
un,i

)
√

un,i

}

(12)

and direct differentiation of (12) with respect to λ gives

− n"n +
n+∑
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
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λ
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√
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2

)
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√
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)
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 (13)

123



Stat Infer Stoch Process (2008) 11:249–263 255

In view of the following property of Bessels functions

Iν−1(z) − Iν+1(z) = 2ν

z
Iν(z) (14)

we have that

−λ"n

2

{
I0

(
λ

v

√
un,i

)
− I2

(
λ

v

√
un,i

)}
= − "nv

√
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I1

(
λ

v

√
un,i

)

therefore (13) can be rewritten as

∂

∂λ
log Ln(λ) = −n"n

+
n+∑
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{ √
un,i v (1 + "n λ) I0

(
λ
v

√
un,i

)

v λ
(√

u I0
(

λ
v

√
un,i

)
+ v "n I1
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λ
v

√
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(

λ
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√
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(√

u I0
(

λ
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√
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+ v "n I1

(
λ
v

√
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}

(15)

Differentiating (15) again with respect to λ and posing x = λ
v

√
un,i to simplify the equa-

tions4, we obtain, after tedious calculations, that

∂2

∂λ2 log Ln(λ) =
n+∑

i=1

gi

2 v2 λ2
(√

un,i I0(x) + v "n I1(x)
)2

where the generic term gi is the sum of the following terms

− 2
√

un,i v3 "n I1(x)I0(x) < 0, (16)

un,i
{
un,i λ2 − v2 (

2 + "n λ + "2
n λ2)} I 2

0 (x), (17)

2 un,i λ
{
−λun,i + v2 "n (1 + "n λ)

}
I 2
1 (x), (18)

un,i λ
(
un,i λ − v2 "n (1 + "n λ)

)
· · · I2(x)I0(x). (19)

Recalling that un,i = v2"2
n − (Xi − Xi−1)

2 > 0, Eq. 17 can be rewritten as

− un,i
{
v2 "n λ + (Xi − Xi−1)

2 λ2} I 2
0 (x) − 2un,iv

2 I 2
0 (x). (20)

Summation of (18) and (19) gives

− un,i
{
v2 "nλ + (Xi − Xi−1)

2 λ2} (
2 I 2

1 (x) − I0(x)I2(x)
)
. (21)

Putting together

−un,i
{
v2 "n λ + (Xi − Xi−1)

2 λ2} I 2
0 (x)

and Eq. 21 it remains to study the sign of

I 2
0 (x) + 2 I1(x)2 − I0(x)I2(x) = I0(x)(I0(x) − I2(x)) + 2 I 2

1 (x)

which is positive due to the fact that I0(x) > I2(x) for positive x (from property (14)). This
concludes the proof. )*

4 We remind that this x = √un,i λ/v is strictly positive because it refers to the n+ terms for which un,i > 0.

123



256 Stat Infer Stoch Process (2008) 11:249–263

By previous theorem, it emerges that the contrast estimator λ̂n is also a pseudo maximum
likelihood estimator in the following sense

λ̂n = arg max
λ>0

Ln(λ) . (22)

Of course, λ̂n is not a true maximum likelihood estimator as Ln(λ) is not itself a true likeli-
hood, nevertheless such estimators can be effective as in Kessler (2000). We now show that
λ̂n converges to the true maximum likelihood estimator of λ in the case of continuous time
observations of the telegraph process.

Theorem 2.2 Under the condition n"n = T , "n → 0 as n → ∞, we have that

λ̂n → λ̂∞ = N (T )

T
. (23)

Proof In order to prove (23) we recall some properties of Bessel’s functions (see e.g. Sect.
5.7, Lebedev (1972))

d
dx

In(x) = 1
2

(In−1(x) + In+1(x))

and

lim
u→0

I1(k · u)

u
= k

2
, lim

u→0
I0(k · u) = 1 ,

lim
u→0

I1(k · u) = 0, lim
u→0

I2(k · u) = 0 .

In the limit as n → ∞ we have, "n → 0, n"n = T , u = un,i = v2"2
n − (Xi − Xi−1)

2 → 0
and n+ → N (T ). Therefore (13) converges to

−T + N (T )

λ
,

which concludes the proof. )*

2.3 A moment type estimator

We already mentioned that the telegrapher’s process is not stationary at the second order, but
we can still think to use (7) to obtain a moment type estimator. If, as before, we consider the
observations Xi − Xi−1 as n copies of the process X ("n), then looking at (7) for t = "n
we have

E X2("n) = v2

λ

(
"n − 1 − e−2λ"n

2λ

)
.

Consider now the sample second moment of the observed increments Xi − Xi−1

m2 = 1
n

n∑

i=1

(Xi − Xi−1)
2 ,

then the following estimator can be considered

λ̃n = arg min
λ>0

{
m2 − v2

λ

(
"n − 1 − e−2λ"n

2λ

)}2

. (24)
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The estimator λ̃n is also unique. Indeed, consider Vn = m2/"
2
n which is an unbiased estimator

of

gn(λ) = v2

λ"2
n

(
"n − 1 − e−2λ"n

2λ

)
.

By Taylor’s expansion we have that gn(λ) + v2 − 2
3v2λ"n , hence gn(λ) is a monotonic and

decreasing function of λ such that limλ→0 gn(λ) = v2 and limλ→∞ gn(λ) = 0. On the other
hand Vn is in [0, v2] because 0 ≤ (Xi − Xi−1)

2 ≤ v2"2
n , hence λ̃n is the unique solution

to (24).

Remark 2.1 We notice that for small "n , we have

v2

λ

(
"n − 1 − e−2λ"n

2λ

)
= v2"2

n − 2
3
v2λ"3

n + o("3
n)

hence an approximate explicit solution of (24) is

λ̃n = 3
2

(
1

"n
− m2

v2"3
n

)
+ o(1) .

Properties of moment type estimators under the additional assumption n"3
n → 0 and in the

asymptotic framework n"n = T → ∞ have been studied in Iacus and Yoshida (2006).
Under the current scheme, i.e. when n"n = T is fixed, we are only able to investigate
numerically the properties of λ̃n for small sample sizes and compare it with the estimator λ̂n
(see Sect. 4).

3 Parametric estimation for the geometric telegraph process

Consider the process Y of the observed log-returns

Yi = log
Si

Si−1
= α"n + σ(Xi − Xi−1)

where Si = S(ti ) are discrete observations from the geometric telegraph process (4). We
assume µ to be known, which is usually the case in finance where µ is related to the expected
return of non risky assets like bonds, etc. The parameters σ and λ are to be estimated. As in
the previous sections, we can assume v to be known as well, if not we will show in the next
paragraph a simple way to obtain it. We assume Yi to be n copies of the process

Y ("n) = α"n + σ X ("n)

with X ("n) = Xi − Xi−1 and X (0) = x0 = 0. Therefore, by (6), we have

EY ("n) = α"n

and by (7) we obtain

VarY ("n) = σ 2VarX ("n) = σ 2 v2

λ

(
"n − 1 − e−2λ"n

2λ

)
(25)

A good estimator of the volatility σ can be derived from the sample mean of the log returns.
Indeed,

Ȳn = 1
n

n∑

i=1

Yi = α"n + σ

n
Xn (26)
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and

EȲn = α"n + σ

n
EXn = α"n =

(
µ − 1

2
σ 2

)
"n (27)

again by (6) and for the properties of the log-returns. From (27) we have that

σ 2 = 2
(

µ − EȲn

"n

)

from which the following unbiased estimator of σ 2 can be derived

σ̂ 2
n = 2

(
µ − Ȳn

"n

)
.

Therefore, a reasonable moment type estimator of σ is

σ̂n =
√

2
(

µ − Ȳn

"n

)
(28)

which not always exists because there is no guarantee that µ > Ȳn/"n . Moreover, it should
be noticed that in practice, given µ, σ and "n the estimator essentially depends on the last
value of the telegraph process Xn . In fact, we can write (28) in terms of the telegraph process

√

2
(

µ − Ȳn

"n

)
=

√
2

(
µ − α − σ

T
Xn

)
. (29)

We then use σ̂n to estimate λ making use of (25). Let

s̄2
Y = 1

n

n∑

i=1

(Yi − Ȳn)2

then the proposed estimator of λ is

λ̇n = arg min
λ>0

(
s̄2

Y − σ̂ 2
n

v2

λ

(
"n − 1 − e−2λ"n

2λ

))2

. (30)

Similar considerations of Remark 2.1 on the estimator λ̃n apply to λ̇n .

3.1 Filtering of the geometric telegraph process

If the velocity v is not known one can proceed as follows: set

Zi = Yi − EȲn

σ
= Xi − Xi−1 = X ("n) ,

an estimator of the increments of the telegraph process is

Ẑi = Yi − Ȳn

σ̂n
= X̂("n), i = 1, . . . , n.

Then

Ẑ1 = X̂1, Ẑ2 + Ẑ1 = X̂2, Ẑ3 + Ẑ2 + Ẑ1 = X̂3, . . .

where X̂i are the estimated states of the underlying telegrapher’s process. From these esti-
mates, one can proceed as in previous sections and estimate both λ and v.
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Table 1 Empirical performance of the minimum contrast estimator (22) for different values of the parameter
λ and different sample size

λ Bias
√

MSE(λ) min λ̂n max λ̂n n

0.10 −0.002 0.018 0.04 0.20 50
−0.001 0.016 0.05 0.16 100
−0.000 0.014 0.06 0.16 500
−0.000 0.014 0.05 0.15 1000

0.25 −0.011 0.041 0.13 0.47 50
−0.003 0.031 0.16 0.41 100
−0.000 0.023 0.16 0.34 500
−0.000 0.023 0.16 0.35 1000

0.50 −0.062 0.092 0.26 0.78 50
−0.011 0.059 0.32 0.85 100
−0.001 0.035 0.37 0.65 500
−0.000 0.033 0.37 0.63 1000

0.75 −0.151 0.175 0.36 1.01 50
−0.031 0.091 0.47 1.18 100
−0.001 0.048 0.58 0.96 500
−0.000 0.043 0.60 0.92 1000

1.00 −0.264 0.283 0.45 1.23 50
−0.064 0.128 0.62 1.53 100
−0.001 0.058 0.79 1.26 500
−0.001 0.051 0.81 1.22 1000

1.50 −0.546 0.558 0.58 1.48 50
−0.162 0.227 0.90 2.16 100
−0.003 0.080 1.24 1.86 500
−0.001 0.066 1.27 1.77 1000

2.00 −0.874 0.882 0.75 1.65 50
−0.298 0.357 1.11 2.67 100
−0.006 0.106 1.63 2.47 500
−0.000 0.083 1.68 2.33 1000

The time horizon T is fixed to 500. Results over 10,000 Monte Carlo paths of the telegraph process. See text
for more details

4 Monte Carlo analysis

To assess the properties of the estimators (22) and (24) for fixed n < ∞ we run extensive
Monte Carlo analysis. We simulate 10000 trajectories of the telegrapher’s process on the
interval [0, T ], T = 500, for different values of λ and with v = 1 fixed. Each trajectory
has then been resampled on a regular grid of n = 50, 100, 500 and 1000 points and the
corresponding observations have been used to estimate the unknown parameter. The results
have been collected in Table 1. It emerges that, as expected, the bias tends asymptotically to
zero as well as the mean square error. Furthermore, bias and variance are strictly correlated to
the value of the unknown parameter λ. This is expected as well because, for fixed n, the more
λ increases the more Poisson events remain hidden to the observer. For the same experiment
(and on the same sample trajectories), Table 2 reports the performance on the moment type
estimator λ̃n from Eq. 24.

Tables 3 and 4 reports estimates results on the geometric telegrapher’s process respectively
for the estimation of λ and σ . The paths of the geometric telegrapher’s process have been
generated from the ones of the telegrapher process of Tables 1 and 2. As it can be seen, the
estimator λ̇n in Table 3 strongly depends on the quality of the estimate σ̂n (reported in Table
4). For low values of λ, in some cases the condition for the existence of σ̂n , i.e. µ > Ȳn/"n ,
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Table 2 Empirical performance of the moment-type estimator (24) for different values of the parameter λ
and different sample size

λ Bias
√

MSE(λ) min λ̃n max λ̃n n

0.10 0.002 0.022 0.04 0.24 50
0.001 0.018 0.05 0.18 100
0.000 0.016 0.05 0.16 500

−0.000 0.016 0.05 0.16 1000
0.25 0.007 0.051 0.13 0.55 50

0.003 0.037 0.14 0.41 100
0.000 0.026 0.16 0.36 500
0.000 0.025 0.17 0.35 1000

0.50 0.018 0.106 0.25 1.13 50
0.007 0.070 0.32 0.93 100
0.001 0.040 0.35 0.66 500
0.000 0.037 0.35 0.65 1000

0.75 0.028 0.161 0.40 1.72 50
0.012 0.105 0.45 1.32 100
0.001 0.054 0.56 1.01 500
0.000 0.048 0.58 0.96 1000

1.00 0.040 0.219 0.53 2.42 50
0.017 0.141 0.62 1.80 100
0.002 0.066 0.73 1.27 500
0.001 0.057 0.77 1.25 1000

1.50 0.059 0.329 0.72 3.00 50
0.028 0.218 0.92 2.78 100
0.003 0.093 1.19 1.89 500
0.001 0.075 1.25 1.79 1000

2.00 0.080 0.412 1.05 3.00 50
0.035 0.290 1.22 3.00 100
0.006 0.120 1.59 2.46 500
0.003 0.095 1.66 2.39 1000

The time horizon T is fixed to 500. Results over 10,000 Monte Carlo paths of the telegraph process. See text
for more details

has not been fulfilled hence we report the percentage of valid paths over the 10,000 replica-
tions. For λ ≥ 0.75, it seems that λ̇n performs quite similarly to λ̃n in terms of bias. This
seems consistent with the definition of the estimators and the performance of the estimator
σ̂n . Tables also report the column

√
MSE. Values under this column are calculated, e.g. for

the estimator λ̂n , as follows

√
MSE(λ) =

√√√√ 1
N

N∑

i=1

(λ̂
(i)
n − λ)2

where N is the number of Monte Carlo simulations (N = 10, 000 in our case) and n is the
fixed sample size. Notice that, by (29) the estimator σ̂ 2

n depends on the observations only
through Xn . Therefore, in our simulation scheme, because we sub-sample the observations
X0, . . . , Xn keeping fixed both X0 and Xn , the estimator itself does not depend on the sample
size n.

All the tables report the values min θ̂n and max θ̂n (θ̂n one among λ̂n , λ̃n , λ̇n and σ̂ 2
n ) which

represent the minimal and maximal value of the estimator over all Monte Carlo replications.
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Table 3 Empirical performance of the moment-type estimator (30) given the estimate σ̂n (see Table 4), for
different values of the parameter λ and different sample size

λ Bias
√

MSE(λ) min λ̇n max λ̇n % valid cases n

0.10 0.018 0.107 0.00 1.01 96 50
0.042 0.157 0.00 1.12 96 100
0.301 0.609 0.00 3.40 96 500
0.634 1.189 0.00 6.48 96 1000

0.25 0.009 0.132 0.00 0.91 99 50
0.006 0.161 0.00 0.95 99 100
0.123 0.427 0.00 2.27 99 500
0.320 0.776 0.00 4.00 99 1000

0.50 0.022 0.185 0.00 1.64 100 50
0.010 0.186 0.00 1.27 100 100
0.031 0.395 0.00 2.03 100 500
0.139 0.635 0.00 3.33 100 1000

0.75 0.031 0.239 0.08 1.99 100 50
0.014 0.215 0.00 1.90 100 100
0.002 0.394 0.00 2.25 100 500
0.049 0.612 0.00 3.28 100 1000

1.00 0.045 0.304 0.31 2.68 100 50
0.021 0.256 0.26 2.24 100 100

−0.000 0.388 0.00 2.65 100 500
0.012 0.608 0.00 3.69 100 1000

1.50 0.061 0.419 0.57 4.22 100 50
0.028 0.330 0.59 3.22 100 100

−0.004 0.380 0.03 3.00 100 500
−0.014 0.580 0.00 3.97 100 1000

2.00 0.094 0.529 0.80 6.49 100 50
0.038 0.402 0.93 4.16 100 100
0.005 0.380 0.64 3.46 100 500

−0.002 0.536 0.00 4.08 100 1000

The time horizon T is fixed to 500. Results over 10,000 Monte Carlo paths of the geometric telegraph process.
‘% valid cases’ = percentage of valid cases, i.e. simulated paths such that the estimator exists, i.e. simulated
paths such that the estimator of σ exists, i.e. µ > Ȳn/"n . See text for more details

Table 4 Empirical performance of the estimator σ̂n of (28) for different values of the parameter λ, for different
sample size and σ = 0.5

λ Bias
√

MSE(σ ) min σ̂n max σ̂n % valid cases n

0.10 −0.008 0.138 0.01 0.85 96 50, 100, 500, 1000
0.25 −0.007 0.094 0.02 0.74 99 50, 100, 500, 1000
0.50 −0.003 0.065 0.09 0.69 100 50, 100, 500, 1000
0.75 −0.002 0.053 0.22 0.66 100 50, 100, 500, 1000
1.00 −0.002 0.045 0.30 0.66 100 50, 100, 500, 1000
1.50 −0.002 0.037 0.33 0.64 100 50, 100, 500, 1000
2.00 −0.001 0.031 0.36 0.61 100 50, 100, 500, 1000

The time horizon T is fixed to 500. Results over 10,000 Monte Carlo paths of the geometric telegraph pro-
cess. ‘% valid cases’ = percentage of valid cases, i.e. simulated paths such that the estimator of σ exists, i.e.
µ > Ȳn/"n . See text for more details
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5 Conclusions

Despite the analytical problems in dealing with the telegraph process, in this paper we have
shown that statistical inference on the process can be attempted. Moreover, numerical results
seem to suggest that also for the geometric telegraph process this attempt might be successful
which encourages the study of the analytical properties of this process in view of financial
applications. In particular, a detailed description of the law of the increments of the process
of the log-returns might be of interest because, numerical evidence, show that these have
heavy tails but their law do not need a high number of parameters like other distributions
proposed in the literature (see e.g. Eberlain and Keller 1995). Moreover, the parameters have
a direct interpretation as in the standard geometric Brownian motion. This will be a topic for
future research.
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