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Abstract. In this paper we describe the structure of finite groups whose

real valued nonlinear irreducible characters have all prime degree. The more

general situation in which the real valued irreducible characters of a finite

group have all squarefree degree is also considered.

A classical problem in Character Theory is understanding to what extent the

set cd(G) of (distinct) degrees of the irreducible characters of a finite group G

determines the structure of G .

Here we consider the subset cdrv(G) of cd(G) whose elements are the degrees

of the real valued irreducible characters of G . In particular, we consider the case

when cdrv(G) \ {1} consists of prime numbers.

Theorem A. Let G be a finite group. If every real valued nonlinear irreducible

character of G has prime degree, then G is solvable.

It may be worth mentioning that our proof of Theorem A depends indirectly on

the Classification of Finite Simple Groups, as it involves an application of Theo-

rem 4.2 in [4]. Instead, with a direct use of the Classification, we can prove that

a finite group whose real valued irreducible characters have all squarefree degree

is either solvable or an extension of a solvable group by the alternating group A7

(Theorem 3.1).

We also prove the following.

Theorem B. Let G be a finite group. If every real valued nonlinear irreducible

character of G has prime degree, then cdrv(G) is contained in a set of the kind

{1, 2, p} , where p is an odd prime.

In the cases when cdrv(G) = {1, p} and cdrv(G) = {1, 2} , we obtain a complete

description of the structure of G . This is provided by Theorem 4.4 and Theorem 4.6.

The prime 2 plays a prominent role in the context of real valued characters.

Recall, for instance, that by a classical result of Burnside only groups of even order

may have real valued irreducible characters other than the principal character.

In this spirit, we determine upper bounds for the 2-length and the 2′ -length of

finite groups with real valued irreducible characters of prime degree.
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Theorem C. Let G be a finite group. If every real valued nonlinear irreducible

character of G has prime degree, then l2(G) ≤ 2 and l2′(G) ≤ 1 .

The bounds in Theorem C are attained, as cdrv(S4) = {1, 2, 3} , and l2(S4) = 2,

l2′(S4) = 1.

The notation is standard. Throughout the whole paper, every abstract group is

tacitly assumed to be finite.

1. Preliminary results

Let G be a group, let Irrrv(G) denote the set of real valued irreducible characters

of G and, as already mentioned, cdrv(G) the set of distinct degrees of the characters

in Irrrv(G).

We recall that Irrrv(G) = {1G} if |G| is odd. Also, if N is a normal subgroup

of G , we clearly have cdrv(G/N) ⊆ cdrv(G).

We shall also make use of the following theorems, which relate the arithmetical

structure of cdrv(G) and the group structure of G . The first one is Theorem 4.2

in [4].

Theorem 1.1. Let G be a group, and T a Sylow 2-subgroup of G . All the elements

in cdrv(G) are odd numbers if and only if T is normal in G and cdrv(T ) = {1} .

A 2-group T such that cdrv(T ) = {1} will be called a 2-group of Chillag-Mann

type, as this class of groups was studied in [2]. It is easily seen that T is of this type

if and only if the kernel of every real valued character of T contains the Frattini

subgroup Φ(T ). In [2], it is proved that this happens if and only if every element

of Φ(T ) has the same number of square roots in T .

The next two results appear in [13].

Theorem 1.2 ([13, Theorem A]). Let G be a group. All the elements in cdrv(G)\{1}
are even numbers if and only if G has a normal 2-complement.

Theorem 1.3 ([13, Theorem C(b)]). Let G be a group, and T a Sylow 2-subgroup

of G . All the elements in cdrv(G) are powers of 2 if and only if G has a normal

2-complement K and T centralizes K ′ .

For our purposes, we shall also need results relating the real valued characters

of a group to those of its normal subgroups, in order to apply Clifford Theory. We

start with a general observation. Let N be a normal subgroup of G , χ ∈ Irrrv(G),

and let Θ = {θ1, θ2, . . . , θt} be the set of irreducible constituents of χN . As χ is

real valued, the map γ : θi 7→ θi is a permutation of Θ. Now, if t = |Θ| is odd, then

γ fixes at least one θi , which is therefore real valued. Since the characters in Θ

form an orbit under the natural action of G on Irr(N), it follows that θi ∈ Irrrv(N)

for all i in {1, ..., t} .

From this one gets the following known results.

Lemma 1.4. Let G be a group, and N a normal subgroup of G such that |N |
is odd. If N centralizes a Sylow 2-subgroup of G , then N ≤ Ker(χ) for every

χ ∈ Irrrv(G) .
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Proof. Let χ ∈ Irrrv(G), and write

χN = e

t∑
i=1

θi .

Denoting by IG(θ1) the inertia subgroup of θ1 in G , we have that t = |G : IG(θ1)|
is odd, because N is centralized by a Sylow 2-subgroup of G . Thus, θi lies in

Irrrv(N) = {1N} , and hence N ≤ Ker(χ).

Lemma 1.5. Let G be a group, N a normal subgroup of G , and χ ∈ Irrrv(G) . If

|G : N | is odd, then every irreducible constituent of χN is real valued.

Proof. Just recall that the number of distinct irreducible constituents of χN is a

divisor of |G : N | .

Now some tools for building up real valued characters of a group. The following

lemma is essentially Lemma 2.2(b) in [11].

Lemma 1.6. Let G be a group which acts by automorphisms on the group M . If

|G/CG(M)| is even, then there exist x ∈ G and µ ∈ Irr(M) with µ 6= 1M , such

that µx = µ̄ .

Proof. Let CG(M)x be an involution in G/CG(M). We can certainly find an

element m of M such that mx 6= m . Setting y := m−1mx , we get (yx)−1 = y

with y 6= 1. Consider now the permutation π on the elements of M defined by

zπ := (zx)−1 (observe that π2 is the identity map). This π induces a well defined

permutation on the set of conjugacy classes of M , given by (zM )π := (zπ)M for

every z in M . Moreover, for λ in Irr(M) and z in M , we get

λπ(z) := λ(zπ
−1

) = λ(zπ) = λ((zx)−1) = λ̄(zx) = λ̄x
−1

(z).

Therefore, π induces the permutation λ 7→ λ̄x
−1

on Irr(M).

We are now in a position to apply the Brauer’s Permutation Lemma (see [9,

6.32]): since π fixes the conjugacy class of the nonidentity element y , it must fix

also a nonprincipal µ in Irr(M). In other words, there exists a nonprincipal µ in

Irr(M) such that µ = µ̄x
−1

, hence µx = µ̄ , as desired.

Lemma 1.7. Let G be a group, H a subgroup of G , ψ a character of H , and

x ∈ NG(H) such that ψx = ψ̄ . Then ψG is a real valued character of G .

Proof. Since x normalizes H , by the definition of induced character we have

(ψx)G = ψG . Then, ψG = (ψ̄)G = (ψx)G = ψG .

Lemma 1.8. Let G be a group, N a normal subgroup of G with (|N |, |G : N |) = 1 ,

and θ ∈ Irr(N) . Assume that there exists an x ∈ G such that θx = θ̄ . Then there

exists a real valued χ ∈ Irr(G) such that |G : IG(θ)| divides χ(1) .

Proof. Let I be the inertia subgroup of θ in G . Observe that I = IG(θ) and

that x ∈ NG(I). Since (|N |, |G : N |) = 1, by Corollary 6.28 in [9] there exists a

unique ψ ∈ Irr(I|θ) such that the determinantal orders o(ψ) and o(θ) coincide.

Now, both ψx and ψ lie over θx = θ . Since o(ψx) = o(θx) = o(θ) = o(ψ), we get
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ψx = ψ . By Clifford Theory, χ = ψG is irreducible, and |G : IG(θ)| divides χ(1).

By Lemma 1.7, χ is real valued.

With some extra assumptions concerning the prime 2, one can somewhat con-

trol the occurrence of real valued characters “lying over” real valued characters of

normal subgroups.

Proposition 1.9 ([12, 2.1 and 2.2]). Let N be a normal subgroup of G , and

θ ∈ Irrrv(N) . If |G : N | is odd, then θ allows a unique real valued extension to

IG(θ) . Further, there exists a unique real valued character χ in Irr(G|θ) .

Proposition 1.10 ([12, 2.3]). Let N be a normal subgroup of G , and θ ∈ Irrrv(N) .

Suppose that θ(1) is odd and that o(θ) = 1 . Then θ allows a real valued extension

to IG(θ) , and there exists a real valued character χ in Irr(G|θ) .

Next, two easy and well known results.

Lemma 1.11 ([6, V.8.9(d)]). Let x be an automorphism of a group G . If x has

order 2 and CG(x) = 1 , then G is abelian and gx = g−1 for every g ∈ G .

Lemma 1.12. Let M be a minimal normal subgroup of a group G . Then M has

no irreducible character of degree 2 .

Proof. We can clearly assume that M is nonabelian, so that M = S1×S2×· · ·Sn ,

where Si ' S is a nonabelian simple group. An irreducible character of M is the

“direct product” of irreducible characters of the Si . So, if there is a χ ∈ Irr(M)

with χ(1) = 2, there must be a θ ∈ Irr(S) with θ(1) = 2. As θ(1) divides

|S| , there exists an involution x ∈ S . If Θ is a representation affording θ , then

the eigenvalues of Θ(x) are either 1 or −1. But det(Θ(x)) = 1, as det(Θ) is

a homomorphism from the perfect group S to the abelian group C∗ , and this

implies that the two eigenvalues of Θ(x) coincide. Hence |θ(x)| = θ(1), and then

x ∈ Z(θ) = 1, a contradiction.

Finally, we point out the following elementary fact, that we are going to use in

the proof of Theorem C.

Lemma 1.13. Let G be a group, and assume G = A × B , where |A| is a prime

q . Then the number of complements for A in G is a power of q .

Proof. Let us denote by Ω the set of all complements for A in G . Observe that, if

H is in Ω, then H contains G′ , and H/G′ is a complement for the direct factor

G′A/G′ (whose order is q ) in G/G′ . This yields that, denoting by Ω̄ the set of

complements for G′A/G′ in G/G′ , the map H 7→ H/G′ from Ω to the set of

subgroups of G/G′ has image in Ω̄. This map is injective, and it is easy to see

that its image is the whole Ω̄, so that |Ω| = |Ω̄| . In other words, we can assume

that G is abelian.

Next, if H is in Ω, we clearly have Oq′(G) ≤ H . Arguing as above with Oq′(G)

in place of G′ , we can assume that G is an abelian q -group.
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As the last reduction, we now have that every H in Ω contains Φ(G). Therefore

we can assume that G is an elementary abelian q -group, which can be viewed as

an n -dimensional vector space over GF(q) for a suitable n in N .

Finally, |Ω| is the number of hyperplanes of G not containing A . This is given

by the total number of hyperplanes of G minus the total number of hyperplanes of

the quotient space G/A (which has dimension n− 1). It is now clear that we get

|Ω| = qn−1 , as claimed.

Occasionally we shall also make use, with no reference, of some well known

results concerning coprime actions, and of the Odd Order Theorem by Feit and

Thompson: if a finite group has odd order, then it is solvable.

2. Proof of Theorem A

We now restate and prove Theorem A.

Theorem 2.1. Let G be a group, and assume that every element in cdrv(G) \ {1}
is a prime number. Then G is solvable.

Proof. We argue by induction on |G| . Let M be a minimal normal subgroup of G .

Since the assumption is inherited by factor groups, by induction G/M is solvable.

It is hence enough to show that M is solvable.

If M is not solvable then, by Theorem 1.2, there exists a real valued nonlinear

θ ∈ Irr(M) of odd degree. Also, o(θ) = 1 and, by Proposition 1.10, there exists a

real valued χ ∈ Irr(G|θ). Since 1 6= θ(1)|χ(1) and χ(1) is prime, we have χM = θ .

By Gallagher’s Theorem ([9, 6.17]), it follows that cdrv(G/M) = {1} .

If every real valued irreducible character of G has odd degree, then, by Theo-

rem 1.1, G is solvable. So, there exists a real valued χ ∈ Irr(G) such that χ(1) = 2.

By Lemma 1.12, χM is the sum of two linear characters and, as 1M is the only

linear character of M , it follows that M ≤ Ker(χ). Hence 2 ∈ cdrv(G/M), a

contradiction.

Therefore M is solvable, and the proof is complete.

3. Squarefree degrees

We now consider, as a natural generalization, the groups with real valued ir-

reducible characters of squarefree degree. Here we can not hope for solvability,

as

cdrv(A7) = {1, 6, 14, 15, 21, 35}.
Anyway, using the Classification of Finite Simple Groups, we can prove the follow-

ing.

Theorem 3.1. Let G be a group, and assume that every element in cdrv(G) is

a squarefree number. Then either G is solvable, or there exists a solvable normal

subgroup R of G such that G/R ' A7 .

For proving Theorem 3.1 we need the next preliminary result.
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Lemma 3.2. Let G be a group, and assume that every element in cdrv(G) is a

squarefree number. Then every nonabelian chief factor of G is isomorphic to A7 .

Proof. Let M/N be a nonabelian chief factor of G . We first show that M/N is a

simple group.

As M/N is a minimal normal subgroup of G/N , there exists a nonabelian simple

group S such that M/N is isomorphic to the direct product of n copies of S , where

n is a suitable positive integer. By Theorem 1.2, there exists a σ in Irrrv(S) such

that σ(1) is an odd number greater than 1. Let θ be the irreducible character

of M/N defined as the product of n copies of σ . We have that θ(1) is odd,

o(θ) is 1, and of course θ is real valued. Therefore, we are in a position to apply

Proposition 1.10, concluding that there exists a real valued χ in Irr((G/N)|θ).

Now, χ (which we regard as a character of G , by inflation) has degree divisible by

σ(1)n . This yields n = 1, and hence that M/N ' S is a simple group.

Also, the previous paragraph shows that every odd number in cdrv(M/N) is

squarefree.

Let C be the subgroup of G containing N and such that C/N = CG/N (M/N).

The group G/C acts faithfully by conjugation on CM/C , which is isomorphic to

S , and so G/C is an almost-simple group with socle CM/C . In what follows, we

analyze the possible isomorphism type of S .

A direct check of [3] shows that the Tits group and every sporadic simple group,

except J1 , have a real valued irreducible character whose degree is odd but not

squarefree. Anyway, the group J1 has a real valued irreducible character whose de-

gree is not squarefree, and since Out(J1) is trivial, S ' J1 would imply G/C ' J1 ,

a contradiction.

Next, assume that S is isomorphic to an alternating group An , with n ≥ 5

and n 6= 7. As cdrv(A6) contains 9, we can also assume n 6= 6, so that G/C is

isomorphic either to An or to Sn . As explained in [7, proof of Lemma 2.1], for every

n ≥ 5, n 6= 7, the group Sn has a (real valued) irreducible character whose degree

is not squarefree and which restricts irreducibly to An , again a contradiction.

Finally, if S is isomorphic to a simple group of Lie type, except the Tits group,

then we can consider the Steinberg character of S . This irreducible character allows

a real valued extension to Aut(S) (see [15, Remark]), and from [3, Table 6 on page

xvi] we see that its degree is not squarefree unless S is isomorphic to PSL(2, p)

where p is an odd prime (greater than 3). But then G/C is isomorphic either

to PSL(2, p) or to PGL(2, p), so that cdrv(G/C) contains p + 1 and p − 1 (see

[5, Theorem 38.1] and [16, Table III]), except for the case G/C ' PSL(2, 5) ' A5

which has been already considered. Of course, one among p+1 and p−1 is divisible

by 4, against our assumptions.

We conclude that the only possibility is S ' A7 , as desired.

Proof of Theorem 3.1. We argue by induction on |G| . Assume first that there

exists a solvable minimal normal subgroup M of G . Since the hypothesis in the

statement is inherited by G/M , either G/M is solvable or there exists a normal sub-

group R of G , containing M , such that (G/M)/(R/M) ' A7 and R/M is solvable.
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In the former case we get that G is solvable, whereas in the latter case we obviously

have that R is a solvable normal subgroup of G and G/R ' (G/M)/(R/M) ' A7 .

In view of the previous discussion, we can assume that every minimal normal

subgroup of G is nonsolvable, and thus, by Lemma 3.2, isomorphic to A7 . If G

has two distinct minimal normal subgroups U1 and U2 , then the normal subgroup

U1 × U2 ' A7 × A7 has a real valued irreducible character θ whose degree is odd

but not squarefree, and o(θ) = 1. By Proposition 1.10, there exists a real valued

character χ in Irr(G|θ) and χ(1) is divisible by θ(1), a contradiction.

The conclusion is that G has a unique minimal normal subgroup U ' A7 , so

that either G = U , or G ' S7 . Since S7 has a real valued irreducible character

whose degree is not squarefree, the only possibility is G = U , and the proof is

complete.

We note here that Theorem 2.1 can be also deduced from Theorem 3.1, since A7

has real valued irreducible characters whose degree is not a prime.

We also remark that, by Theorem 2.8 in [7], if G is a nonsolvable group such that

every element in cd(G) is a squarefree number, then there exists a solvable normal

subgroup R of G such that G ' R × A7 . It may be worth stressing that we can

not pursue such a strong conclusion under the weaker assumptions of Theorem 3.1.

In fact the group 3.A7 , whose character table appears in [3, page 10], fulfills the

assumptions of Theorem 3.1, but it is a non-split extension of a normal subgroup

of order 3 by A7 .

Finally, we observe that there is no upper bound for | cdrv(G)| , when G varies

in the class of finite groups with real valued irreducible characters of squarefree

degree. We denote by Fp the semidirect product of the additive group of the field

K = GF(2k), for some k ∈ N , by the subgroup of prime order p , p a suitable prime,

of the multiplicative group K× . Then the nonlinear irreducible characters of Fp
are real valued and cdrv(Fp) = cd(Fp) = {1, p} . By using Zsigmondy’s Theorem,

for every positive integer n we can produce groups Fp1 , Fp2 , . . . , Fpn , for distinct

primes p1, p2, . . . , pn . Consider

G = Fp1 × Fp2 × · · · × Fpn .

Then

cdrv(G) = {
∏
i∈I

pi | I ⊆ {1, 2, . . . , n}}

where the product on I = ∅ is meant to be 1.

Hence the degrees of the real valued irreducible characters of G are all squarefree,

and | cdrv(G)| = 2n . Also, there are n distinct prime divisors of the degrees in

cdrv(G).

4. Degree patterns.

In this section we shall prove Theorem B, which we state again.

Theorem 4.1. Let G be a group, and assume that every element in cdrv(G) \ {1}
is a prime number. Then cdrv(G) is contained in a set of the kind {1, 2, p} , where

p is an odd prime.
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The proof of Theorem 4.1 will be postponed after the proof of Theorem 4.4.

We first analyze the structure of groups whose real valued nonlinear irreducible

characters have odd prime degree. In Theorem 4.4 we shall see that in this case

the nonlinear characters in Irrrv(G) are forced to have all the same degree.

Let us introduce some notation. We shall denote by Γ(K) the semilinear group

on K = GF(rn), where r is a prime:

Γ(K) := {x 7→ axσ : a ∈ K \ {0}, σ ∈ Gal(K)}.

(Here Gal(K) denotes the Galois group of K over its prime subfield). The subgroup

of Γ(K) consisting of all the maps of the kind x 7→ ax with a ∈ K \ {0} will be

denoted by Γ0(K).

Example 4.2. Let G be the semidirect product of K = GF(rn) by the subgroup

H = 〈α, β〉 of Γ(K), where α : x 7→ ax , β : x 7→ xσ are such that a has prime

order q in K \ {0} , and σ has prime order p in Gal(K); also, assume that p , q ,

r satisfy the relation

(1)
rn − 1

rn/p − 1
= q .

Observe that q is coprime with rn/p − 1, because ((sp − 1)/(s− 1), s− 1) divides

p for every integer s > 1; but, as an easy consequence of (1), we have q 6= p . As

|CΓ0(K)(β)| = |CK\{0}(β)| = rn/p − 1, it follows that H is a nonabelian group of

order pq .

Further, since no nontrivial element of K can be centralized by two distinct

Sylow p -subgroups of H , by (1) it follows that {CK(P ) \ {0} : P ∈ Sylp(H)} is

a partition of K \ {0} . So, again by (1), it follows that |H : CH(x)| = q for all

nontrivial x ∈ K .

Now, K has a structure of GF(r)-vector space, and we can view it as a GF(r)[H] -

module. If L is a submodule of it, we get that {CL(P ) \ {0} : P ∈ Sylp(H)} is

a partition of L \ {0} , and hence q = (rm − 1)/(rh − 1) where rm = |L| and

rh = |CL(P )| for any P ∈ Sylp(H). Then the uniqueness of the representation of

q in base r implies that h = n/p and that m = n . Hence, K is an irreducible

GF(r)[H] -module.

Thus, K is minimal normal in G , and the Frobenius group H of order pq acts

on K in such a way that |H : CH(x)| = q for every nontrivial x in K .

We are going to apply the following lemma in the proof of Theorem 4.4. Anyway,

we state it in greater generality than needed there, since the proof is pretty much

the same.

Lemma 4.3. Let H be a solvable group of automorphisms of a group K . As-

sume that H and K have coprime orders and that, for every nontrivial x ∈ K ,

|H : CH(x)| is a prime. Then one of the following occurs.

(a) H has prime order, K is nilpotent and KH is a Frobenius group with kernel

K and complement H ; or



REAL VALUED IRREDUCIBLE CHARACTERS OF PRIME DEGREE 9

(b) H is a nonabelian group of order pq , where p, q are distinct primes, K is an

elementary abelian r -group for a suitable prime r , and KH is isomorphic to

one of the groups described in Example 4.2.

Proof. If H has prime order, then it acts fixed-point freely on K . So, KH is

a Frobenius group with kernel K and complement H , and by [6, V.8.14] K is

nilpotent.

We hence assume that |H| is not a prime. As (|H|, |K|) = 1, by Lemma 2.6.2

of [8] there exists an abelian group of squarefree exponent A such that H ≤ Aut(A)

and A and K are isomorphic as H -sets. In particular, |K| = |A| and |H : CH(a)|
is a prime for every nontrivial a ∈ A .

By Maschke’s Theorem, A is a completely reducible H -module, possibly over

fields of different characteristic.

Assume that there exists a nontrivial decomposition A = B⊕C of the H -module

A . Then, for all b ∈ B and c ∈ C , CH(bc) = CH(b) ∩ CH(c). Our hypothesis

implies that, for all nontrivial b ∈ B and c ∈ C , we get CH(b) = CH(c) = CH(bc),

whence every nontrivial element of A has the same centralizer in H . It easily

follows that |H| is a prime, against our assumption.

Therefore A is an irreducible H -module and, in particular, |A| = |K| = rn

where r is a prime and n is a positive integer.

Let N be a nontrivial normal subgroup of H . Since CA(N) is a proper submod-

ule of A , we have that CA(N) is trivial. As a consequence, for every nontrivial

x in A , N does not lie in CH(x), and the maximality of CH(x) in H yields

H = CH(x)N .

As the next step, we claim that N acts irreducibly on A . In fact, let B be a

nontrivial N -submodule of A , and consider a nontrivial x ∈ B and an element h

in H . We can write h as a product cn , where c is in CH(x) and n is in N . Now

we get xh = xcn = xn ∈ B , thus B is H -invariant. We conclude that B = A , and

our claim is proved.

Observe that every nontrivial abelian normal subgroup of H must be cyclic, as

it acts faithfully and irreducibly on A ([6, II.3.10]).

Consider now a minimal normal subgroup M of H . Since H is solvable, M is an

elementary abelian q -group, where q is a suitable prime number, so M has order

q . For every nontrivial x in A we get H = MCH(x), and this forces |H : CH(x)|
to be q . Also, we clearly have Ot(H) = 1 for every prime t 6= q , so that F := F (H)

is a q -group. Finally, if we assume Φ(H) 6= 1, we get H = Φ(H)CH(x) (whence

H = CH(x)) for every nontrivial x in A , a contradiction. The conclusion is that

F is an elementary abelian q -group, whence its order is indeed q .

Since F is abelian and it acts irreducibly on A , by Theorem 2.1 of [10] we can

assume that A = GF(rn), H ≤ Γ(A) and that F ≤ Γ0(A). Further, by [6, II.3.10],

n = dimGF(r)(A) is the order of r modulo q .

Write L = CH(x) for a nontrivial x ∈ A . Observe that F ∩ L = 1, and hence

L is a complement for F in A . So, L acts fixed-point freely (by conjugation) on
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F = CH(F ), and H = FL is a Frobenius group with kernel F and complement

L .

As Γ(A) acts transitively on A \ {0} , up to conjugation in Γ(A) we can assume

that L is a subgroup of the stabilizer of 1 in Γ(A), i.e. L ≤ {x 7→ xσ|σ ∈ Gal(A)} .

Assume now that L has a nontrivial proper subgroup U . Hence we have

|CA(U)| = rn/|U | > |CA(L)| = rn/|L| and there exists an element y ∈ CA(U)

such that y 6∈ CA(L). Now, CH(y) ∩ L ≥ U 6= 1 and |CH(y)| = |L| . Since H is a

Frobenius group, this yields CH(y) = L , a contradiction. We conclude that L has

no nontrivial proper subgroups, so its order is a prime number p . Hence, H is a

Frobenius group of order pq .

Observe now that

q =
rn − 1

rn/p − 1
,

as every nontrivial element of A is fixed by exactly one conjugate of L in H .

As K is an r -group and r does not divide |H| , we have that H acts faithfully

on K = K/Φ(K). Again, CK(H) = Φ(K)CK(H)/Φ(K) is trivial, and hence

|H : CH(x)| = q for all nontrivial x ∈ K . As above, we see that F acts irreducibly

on K and hence, by [6, II.3.10], we get that dimGF(r)(K) is the order of r modulo

q = |F | . It follows that Φ(K) = 1, and hence that K is an elementary abelian

r -group. Working with K in place of A , we can thus identify K with GF(rn) and

H with a subgroup of order pq of Γ(K). Then F is the unique subgroup of order

q of Γ0(K), and L ∈ Sylp(H) is conjugate in Γ(K) to the subgroup 〈β : x 7→ xσ〉 ,
where σ ∈ Gal(K) has order p . Therefore, G = KH is isomorphic to one of the

groups described in Example 4.2.

We are now ready to determine the structure of the groups with real valued

nonlinear irreducible characters of odd prime degree.

Theorem 4.4. Let G be a group, T a Sylow 2-subgroup of G , and U = O2
′(G) .

Then the following conditions are equivalent.

(a) Every element in cdrv(G) \ {1} is an odd prime.

(b) There exists an odd prime q such that cdrv(G) = {1, q} .

(c) T is normal in G , T is a 2-group of Chillag-Mann type, and either |G : TU |
is a prime or, writing G = G/Φ(T )U , we have

G = Z(G)×G0

where G0 is isomorphic to one of the groups described in Example 4.2 (with

r = 2 and p odd).

Remark 4.5. If the group G satisfies the equivalent conditions in the statement of

Theorem 4.4, then (using the notation of that statement) the subgroup Φ(T )U is

in the kernel of every real valued character. This is true for U by Lemma 1.4, since

U centralizes the normal Sylow 2-subgroup T of G . Further, for any χ ∈ Irrrv(G),

by Lemma 1.5 the irreducible constituents of χT are real valued and hence, as T is

of Chillag-Mann type, their kernels contain Φ(T ). It follows that Φ(T ) ≤ Ker(χ).



REAL VALUED IRREDUCIBLE CHARACTERS OF PRIME DEGREE 11

Proof of Theorem 4.4. Let us start by proving that (a) implies (c). The fact that G

has a normal Sylow 2-subgroup T of Chillag-Mann type is ensured by Theorem 1.1.

We shall denote by L a complement for T in G .

Let θ be any irreducible character of T whose kernel contains Φ(T ). Then we

know that θ is real valued. Since T has odd index in G , by Proposition 1.9

there exists a real valued character χ in Irr(G|θ). Now, χ(1) is divisible by

|G : IG(θ)| = |L : IL(θ)| , so that |L : IL(θ)| is either a prime or 1. Now,

V = T/Φ(T ) and Irr(V ) are isomorphic L -sets because (|L|, |V |) = 1 ([9, 13.24]),

and hence |L : CL(v)| is either a prime or 1 for every v ∈ V .

Write H = L/U . Since |L| and |T | are coprime, we have CL(V ) = CL(T ).

Hence CL(V ) = U , and H acts faithfully on V . Further, V = Z ×W , where

Z = CV (H) and W = [V,H] . Observe that |H : CH(w)| is a prime for every

nontrivial w ∈W . Hence we are in a position to apply Lemma 4.3, and we conclude

that either |H| = |G : TU | is a prime, or WH is isomorphic to one of the groups

described in Example 4.2. Moreover, we get G ' V H , so that G = Z(G) × G0 ,

with G0 'WH .

We show next that (c) implies (b). Consider the quotient G , and denote by T its

Sylow 2-subgroup. We have that both O2
′(G) and Φ(T ) are trivial, and G satisfies

our assumptions. Arguing by induction on the order of the group, and taking into

account Remark 4.5, the claim follows if Φ(T )U is not trivial. Therefore, we can

assume Φ(T ) = U = 1. Clearly, we can also assume that G has no nontrivial direct

central factors. Thus, G is either a Frobenius group with Frobenius complement of

prime order, or G is isomorphic to one of the groups of Example 4.2 (with r = 2).

In any case, there exists an odd prime q such that |G : CG(x)| = q for every

nontrivial x ∈ T . Let χ be a nonprincipal character in Irrrv(G), and let θ be

an irreducible constituent of χT . Then θ is real valued by Lemma 1.5, and it is

nonprincipal of degree 1.

By coprimality, Irr(T ) and T are isomorphic G/T -sets. Hence |G : IG(θ)| = q ,

and |IG(θ) : T | is either 1 or a prime. Then, by [9, 6.19], every ψ ∈ Irr(IG(θ)|θ)
extends θ and hence, by Clifford Correspondence, χ(1) = θ(1)|G : IG(θ)| = q .

We conclude that cdrv(G) = {1, q} , as desired.

The fact that (b) implies (a) is straightforward.

It might be worth pointing out that, while conditions (a) and (b) in Theorem 4.4

are equivalent for cdrv(G), the same conditions for cd(G) are not. For instance, the

semidirect product KΓ(K), where K = GF(23), is such that cd(G) = {1, 3, 7} . As

an explanation for this possibly surprising behavior, one can just recall that odd

order groups have no real valued irreducible characters other than the principal

character.

We add a further remark. Let G be as in Example 4.2. Then cd(G) = {1, p, q}
by Lemma 2.3 of [14]. Assume also r = 2. If p is odd, then cdrv(G) = {1, q}
(see (c) ⇒ (b) of Theorem 4.4, in the special case G = G0 ). But if p = 2, then

cdrv(G) = {1, 2, q} by Theorem 1.1 and Theorem 1.2. Observe that in this case q
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is a Fermat prime. As of this writing, it is not known exactly which odd primes q

can occur in cdrv(G), for a group G , when this set is of the kind {1, 2, q} .

Proof of Theorem 4.1. We consider the prime graph Γrv(G) on cdrv(G). The ver-

tices of Γrv(G) are the primes dividing some degree in cdrv(G), and two primes p

and q are connected in Γrv(G) if some degree in cdrv(G) is divisible by pq .

If the real valued nonlinear irreducible characters of G have all prime degree,

then Γrv(G) has precisely | cdrv(G)| − 1 connected components. By Theorem A,

G is solvable, and hence Theorem 5.1(ii) of [4] tells us that Γrv(G) has at most

two connected components. It follows that cdrv(G) = {1, p, q} , where p and q are

primes (possibly, p = q ). If p and q are distinct primes, then by Theorem 4.4 one

of them must be 2, and we are done.

Next, we shall derive some detailed structural information on a group G such that

cdrv(G) = {1, 2} .

Theorem 4.6. Let G be a group, and T a Sylow 2-subgroup of G . Then we have

cdrv(G) = {1, 2} if and only if G has a normal 2-complement K , K ′ ≤ CK(T ) ,

and one of the following holds.

(a) G = T ×K , with cdrv(T ) = {1, 2} ; or

(b) cdrv(T ) ⊆ {1, 2} , cdrv(O2(G)) = {1} and G/CK(T )O2(G) is a Frobenius

group with Frobenius complement of order 2 .

Proof. Let us assume cdrv(G) = {1, 2} . By Theorem 1.3, G has a normal 2-

complement K and T centralizes K ′ . If T is normal in G , then we get (a).

Therefore, we shall assume that T acts nontrivially (by conjugation) on K , and

we shall prove (b).

Since T is isomorphic to G/K , we immediately get cdrv(T ) ⊆ {1, 2} .

As for the claim that G/CK(T )O2(G) is a Frobenius group with Frobenius

complement of order 2, we argue by induction on the order of the group.

Set N = CK(T )O2(G), and G = G/N . Observe that cdrv(G) = {1, 2} . In

fact, cdrv(G) ⊆ cdrv(G); on the other hand, since |G| is even and O2(G) = 1,

an application of Theorem 1.1 yields that G has nonlinear real valued irreducible

characters. Also, denoting respectively by K and T the images of K and T under

the natural homomorphism of G onto G , by coprimality we get CK(T ) = 1. Now,

if N 6= 1 we apply our inductive hypothesis, concluding that G = G/CK(T )O2(G)

is a Frobenius group with Frobenius complement of order 2, as desired.

We can hence assume N = 1, and it will be enough to show that |T | = 2. Note

that, in this situation, K is abelian as K ′ ≤ CK(T ) = 1 and, since O2(G) = 1, T

acts faithfully on the dual group K̂ of the irreducible characters of K .

Let x be a central involution of T . By coprimality, K̂ = A × B where

A = [K̂, 〈x〉] and B = CK̂(x) (observe that A and B are T -invariant). Then

CA(x) = 1 and, by Lemma 1.11, αx = α for every α ∈ A . By Lemma 1.8, we get

|T : IT (α)| = |G : IG(α)| = 2

for every nonprincipal α ∈ A .
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Let T̃ denote the quotient T/CT (A). If |T̃ | > 2, then T̃ has a subgroup

L̃ of order 4, which is clearly abelian and acts faithfully on A . As an immediate

consequence of a theorem by Brodkey (see [1]), there exists an element α in A which

lies in an L̃-orbit of length 4, and this implies |T : IT (α)| ≥ 4, a contradiction.

The conclusion so far is |T̃ | = 2. As the next step, we show that CT (A) is trivial.

If it is not, choose an involution y in CT (A) and a nonprincipal β in B such that

βy = β̄ (which exists as y inverts the elements of [B, y] 6= 1). Again by Lemma

1.8, we get |T : IT (β)| = 2. Consider now the character αβ ∈ Irr(K). We have

(αβ)xy = αyxβxy = αxβy = αβ,

whence |T : IT (αβ)| = 2. On the other hand, we get IT (αβ) = IT (α) ∩ IT (β),

and IT (α)IT (β) = T , so that |T : IT (αβ)| = 4, a contradiction. We conclude that

|T | = 2, and the claim follows.

It remains to show that cdrv(O2(G)) = {1} (observe that O2(G) has index 2 in

T ). Suppose that there exists λ in Irrrv(O2(G)) which is not a linear character.

This λ must be G-invariant, otherwise it is easy to see that (1K × λ)G ∈ Irrrv(G)

has degree greater than 2, a contradiction. Now, as T does not centralize K ,

we can find t in T and µ 6= 1K in Irr(K) such that µt = µ̄ . We see that

µ×λ ∈ Irr(KO2(G)) is such that (µ×λ)t = µ× λ , hence (µ×λ)G is in Irrrv(G),

by Clifford Theory and Lemma 1.7. But (µ× λ)G(1) > 2, the final contradiction.

We move now to the converse statement. It is clear that, if (a) holds, then

cdrv(G) = cdrv(T ) = {1, 2} . Therefore, we shall assume that G has a normal

2-complement K such that the Sylow 2-subgroup T of G centralizes K ′ , together

with (b). As K ′ ≤ CK(T ), by Lemma 1.4 every real valued character of G has K ′

in the kernel. Moreover, the quotient G/K ′ satisfies our assumptions. Therefore,

arguing by induction on the order of the group, if K ′ 6= 1 the claim is proved. We

can hence suppose K ′ = 1. Set R = KO2(G), so that |G : R| = 2. Consider

χ ∈ Irrrv(G). As cdrv(R) = {1} and χR has at most |G : R| = 2 irreducible

constituents, we see that χ(1) ≤ 2 if the constituents of χR are real valued. We

can hence assume χR = ϕ+ϕx , where x is in T , ϕx 6= ϕ ∈ Irr(R), and ϕ , ϕx are

not real valued. Write ϕ = α× β for some α ∈ Irr(K) and β ∈ Irr(O2(G)).

Now, ϕ̄ is an irreducible constituent of χR = χR . As ϕ̄ 6= ϕ , we have ϕ̄ = ϕx

and, in particular, βx = β̄ . If β is real valued, we have β(1) = 1, whereas if it is

not, by Lemma 1.7 (and Clifford Correspondence) we get βT ∈ Irrrv(T ). In any

case we get β(1) = 1, so that χ(1) = 2α(1)β(1) = 2, and the proof is complete.

Example 4.7. We note that, in (b) of Theorem 4.6, the condition cdrv(T ) ⊆ {1, 2}
is in general not a consequence of the condition cdrv(O2(G)) = {1} (whereas

cd(O2(G)) = {1} would imply cd(T ) ⊆ {1, 2} , as O2(G) would be an abelian

normal subgroup of T having index 2 in T ). In fact, consider the group

G = 〈a, b, c | a8 = b2 = c2 = 1, ba = bc, ac = a5〉,

which has order 32. Then the subgroup H = 〈a, c〉 has index 2 in G and

cdrv(H) = {1} , but cdrv(G) = {1, 2, 4} .



14 S. DOLFI, E. PACIFICI, AND L. SANUS

5. Proof of Theorem C

We state and prove Theorem C.

Theorem 5.1. Let G be a group, and assume that every element in cdrv(G) \ {1}
is a prime number. Then l2(G) ≤ 2 , and l2′(G) ≤ 1 .

Proof. If the degrees of the real valued nonlinear irreducible characters of G are

either all odd or all even, then, by Theorem 1.1 and Theorem 1.2 respectively, G

has either a normal Sylow 2-subgroup or a normal 2-complement, and we are done.

We hence assume cdrv(G) = {1, 2, p} , where p is an odd prime, and prove that

l2′(G) ≤ 1. Clearly, this also implies l2(G) ≤ 2.

Let G be a counterexample of minimal order. Recall that, by Theorem 2.1, G is

solvable. First, we claim that G has a unique minimal normal subgroup M , which

is an elementary abelian q -group for a suitable odd prime q . In fact, if M , N are

distinct minimal normal subgroups of G , then G embeds into the direct product

G/M × G/N . But the hypothesis in the statement is inherited by factor groups,

so that (by induction) the 2′ -length of both G/M and G/N is at most 1, and the

same holds for every subgroup of G/M × G/N , including the isomorphic copy of

G . We reached a contradiction, whence G has a unique minimal normal subgroup

M . It is clear that M can not be a 2-group, otherwise the inductive hypothesis

applied to G/M would yield l2′(G) ≤ 1.

Set O/M := O2(G/M), and note that O/M can not be trivial, since other-

wise the inductive hypothesis applied to G/M yields the existence of a normal

2-complement in G/M , a contradiction.

Observe now that the Frattini subgroup Φ := Φ(G) must be trivial. In fact, if

Φ(G) 6= 1, then M ≤ Φ(G). We get that ΦO/Φ ' O/(Φ∩O) is a 2-group. Hence,

ΦO is a nilpotent group, so that O is nilpotent, whence O has a nontrivial Sylow

2-subgroup which is normal in G . This is a contradiction, as the 2′ -group M is

the unique minimal normal subgroup of G .

Recall that, by [6, III.4.4], the condition Φ = 1 implies that every abelian normal

subgroup of G has a complement in G . We shall take advantage of an application

to M of this fact.

Using the above notation, we have that O = MoS , where S is a (nontrivial)

Sylow 2-subgroup of O . S does not centralize M , because O2(G) = 1, and hence

by Lemma 1.6 there exists x ∈ S and a nonprincipal irreducible character µ of M

such that µx = µ̄ .

Write I = IG(µ). As M has a complement in G , it has a complement I0 in

I as well. Denoting by K the kernel of µ , it is easy to see that K is a normal

subgroup of I . Moreover, since µ can be regarded as a faithful linear character

of M/K , we get that M/K has prime order and it is a central subgroup of I/K .

Thus, I/K ' M/K ×KI0/K and by Lemma 1.13 the number of complements of

M/K in I/K is odd.

Observe now that both I and K are normalized by the 2-element x . Therefore,

the conjugation by x induces a permutation on the set of complements for M/K
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in I/K . As this set has an odd number of elements, we conclude that there exists

a complement L/K for M/K in I/K which is normalized by x .

Let θ be the irreducible character of I arising as the inflation of µ×1L/K . Then

θ is an extension of µ and θx = θ̄ .

Consider the character χ := θG of G . By Clifford Correspondence, χ is irre-

ducible, and it is real valued by Lemma 1.7. Since the 2-element x of G does not

lie in I , χ(1) = |G : I| is forced to be 2.

We now observe that there exists ψ ∈ Irrrv(G/M) having degree p . Otherwise,

by Theorem 1.2, G/M would have a normal 2-complement, whence we would get

l2′(G) ≤ 1.

Since |G : I| = 2, I is normal in G and, by Corollary 6.19 of [9], ψI is irreducible.

Recalling that θ is linear and that θM = µ , it follows that θψI ∈ Irr(I|µ) and

hence, again by Clifford Correspondence, (θψI)
G is an irreducible character of G .

But (θψI)
G = θGψ = χψ is a real valued character of degree 2p , against our

assumptions. This contradiction completes the proof.

References

[1] J.S. Brodkey, A note on finite groups with an abelian Sylow group, Proc. Amer. Math. Soc.

14 (1963), 132–133.

[2] D. Chillag, A. Mann, Nearly odd-order and nearly real finite groups, Comm. Algebra 26

(1998), 2041–2064.

[3] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, Atlas of finite groups,

Clarendon Press, Oxford, 1985.

[4] S. Dolfi, G. Navarro, P.H. Tiep, Primes dividing the degrees of the real characters, Math.

Z. 259 (2008), 755–774.

[5] L. Dornhoff, Groups representations theory, Part A, Dekker, New York, 1971.

[6] B. Huppert, Endliche Gruppen I, Springer, Berlin, 1983.

[7] B. Huppert, O. Manz, Degree-problems I. Squarefree character degrees, Arch. Math. (Basel)

45 (1985), 125–132.

[8] B. Hartley, A. Turull, On characters of coprime operator groups and the Glauberman char-

acter correspondence, J. Reine Angew. Math. 451 (1994), 175–219.

[9] I.M. Isaacs, Character theory of finite groups, Dover, New York, 1976.

[10] O. Manz, T.R. Wolf, Representations of solvable groups, Cambridge University Press, Cam-

bridge, 1993.

[11] G. Navarro, L. Sanus, P.H. Tiep, Groups with two real Brauer characters, J. Algebra 307

(2007), 891–898.

[12] G. Navarro, P.H. Tiep, Rational irreducible characters and rational conjugacy classes in

finite groups, Trans. Amer. Math. Soc. 360 (5) (2008), 2443–2465.

[13] G. Navarro, L. Sanus, P.H. Tiep, Real characters and degrees, to appear in Israel J. Math..

[14] T. Noritzsch, Groups having three complex irreducible character degrees, J. Algebra 175

(1995), 767–798.

[15] P. Schmid, Extending the Steinberg Representation, J. Algebra 150 (1992), 254–256.

[16] R. Steinberg, The representations of GL(3, q) , GL(4, q) , PGL(3, q) , and PGL(4, q) ,

Canad. J. Math. 3 (1951), 225–235.



16 S. DOLFI, E. PACIFICI, AND L. SANUS

Silvio Dolfi, Dipartimento di Matematica U. Dini,
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