-

View metadata, citation and similar papers at core.ac.uk brought to you byﬁ CORE

provided by AIR Universita degli studi di Milano

DIPARTIMENTO DI SCIENZE DELL'INFORMAZIONE

Rapporto interno N. 323 - 08

4)

Integer compositions and syntactic trees
of repeat-until programs

Luca Breveglieri, Stefano Crespi Reghizzi,
Massimiliano Goldwurm

https://core.ac.uk/display/187829132?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Integer compositions and syntactic trees of repeat-until programs

Luca Breveglieri! Stefano Crespi ReghiZ2i

Massimiliano Goldwurr?)

(1) Dipartimento di Elettronica e Informazione, Politecnico di Milano, via Ponzio 34/5, 20133 Milano — Italy
{luca.breveglieri, stefano.crespireghizzi}@polimi.it

(2) Dipartimento di Scienze dell'Informazione, Universita degli Studi di Milano
Via Comelico 39-41, 20135 Milano — Italy, goldwurm@dsi.unimi.it

Rapporto Interno
RI-DSIn. 323 - 08

Dipartimento di Scienze dell'Informazione
Universita degli Studi di Milano
via Comelico 39/41, 20135 Milano, Italy

Marzo 2008

Abstract

In this work we study some properties of integer compositions in connection with the recognition
of rational trace languages. In particular, we introduce some operations defined on integer compo-
sitions and present procedures for their computation that work in linear or in quadratic time. These
procedures turn out to be useful in the analysis of syntactic trees of certain regular expressions, called
repeat-until expressions, which intuitively represent programs of instructions nested in repeat-until
loops. Our main aim is to show how, in some cases, such an analysis allows us to design algorithms
for the recognition of (rational) trace languages defined by repeat-until expressions, which work in
quadratic time independently of the concurrency relation.

Keywords: Automata and Formal Languages, Trace Languages.

1 Introduction

The recognition of trace languages is a classical problem widely studied in the literature [4, 10, 6, 1].
In the rational case the problem can be defined as follows: given an independence alpHalsetd a
regular languagk C Z*, one has to verify for an inpute = whether[x]; "L # 0, i.e. whether the trace

[X]; belongs to the trace languafd; generated by. It is well-known that the problem can be solve

in time O(n%), wheren = |x| anda is the size of the maximum clique {((t, 1) [4, 6]. Moreover, the
uniform version of the problem, where bath, 1) and a description df are part of the input, becomes
Np-complete. Another algorithm is given in [1] which depends on the prefixes of the input trace, and
hence a probabilistic analysis of the procedure is obtained assuming equiprobable all input strings of
given length.

In this work we study the problem in the case when the languagedefined by a repeat-until
expression, i.e. a regular expression avehat includes only concatenation ahdperation and where
eacha € X occurs only once. An expressianof this type represents a program of nested repeat-until
loops, wherex is the set of instructions, and the langudagean be seen as the set of executions of the
program. Thus, given an independence relatiaver %, the recognition of the trace languafié, is
equivalent to verifying whether a sequence of instructions given in input can be rearranged according to
| to become an effective execution of the program

It turns out that the words of any language defined by a repeat-until expression admit a syntactic tree
that can be easily represented by integer compositions. For this reason we study some properties of the
integer compositions and in particular we introduce specific operations on such structures that can be
computed in linear or in quadratic time (with respect of the input compositions). These results can be
used to design algorithms for the recognition of rational trace languages represented by string languages
defined by repeat-until expressions. We show an empirical method that can produce algorithms for this
problem working inO(n?) time, independently of the concurrency relation. A drawback of the present
contribution is that such a method is not general and can yield an effective procedure only in some cases,
intuitively when the construction of the associated syntactic tree (by means of the above operations on
integer compositions) does not yield ambiguities.

The material we present is organized as follows. In Section 3 we introduce an algebra to manipulate
integer compositions, based on operations of product, quotient, matching, contraction, expansion, and
describe efficient algorithms for their computation. Repeat-until expressions are introduced in Section
4 together with a notion of syntactic tree for the words of any language defined by such an expression.
In Section 5 we show how one can design quadratic time algorithms for the recognition of rational trace
languages defined by certain repeat-until expressions.

2 Basic notions

Given a finite alphabeX and a wordx € Z*, |x| represents the length afwhile, for eacha € %, |x|a
is the number of occurrences afin x. More generally, for a worg¢ € X", |x|y denotes the number of
occurrences of in x. Moreover, given a subs&tC ¥, Tia(X) is the projection ok overA. Further, ifxis
not the empty word, P(x) andU (x) denote, respectively, the first and the last symbd{, efhile S;(x)
is the suffix ofx of length|x| — 1.

Given a wordx € {a,b}*, arun of ain x is an occurrence of a maximal factoroincluded in{a} .
An analogous definition holds fdr. For instance, the wordaabbabbbaadias 3 runs o& and 2 runs
of b (aaa a, aaaandbb, bbh, respectively). Clearly, two wordsy € {a,b}" are equal if they have the
same sequence of runsa@fthe same sequence of runsodndP(x) = P(y).

2

There is a natural relationship between runs of a letter in binary words and compositions of integers.
A compositiorof an integein > 1 is a nonempty finite sequen(e, io, ... ,in) of integers such thaf > 1
foreveryj=1,...,h andg?:lij = n (see for instance [8]). Thus, every woxd: {a,b} ", wherea # b,
IX|]a > 1 and|x|p > 1, defines two compositiong andy, determined respectively by the runsaénd
the runs ofb in x. More preciselyy, = (i1,iz,...,in) is @a composition ofx|a, whereh is the number of
runs ofain x and eachi; is the length of thg-th run. Analogouslyys is a composition ofx|, defined in
a similar way. We also say thgt (resp.,y») is the compositiomeneratedy x ona (resp.,b).

Now, let us recall some basic definitions on traces. An independence relatioX is a binary
relation onZ, i.e. | C X x X, that is irreflexive and symmetric. For evexyb € = we say that andb are
independentifa,b) € | and in this case we also wriggb. The dependence relati@is the complement
of I, thatisD = {(a,b) e Zx Z| (a,b) £ | }. We say that andb are dependent ifa,b) € D and also in
this case we writ@Db. An independence relatidnestablishes an equivalence relatispon Z* as the
reflexive and transitive closure of the relatisn defined by

xaby~ xbay ¥xyeZ* V(ab)el.

The relation=, is a congruence ovex*, i.e. an equivalence relation preserving concatenation between
words. For every € Z* the equivalence clags] = {y € 2* | y =, x} is called trace, the quotient monoid
>*/ = is called trace monoid and usually denoted\yZ,1). The pair(Z,l) is called independence
alphabet and it is usually represented by an undirected graph &hetée set of nodes aridhe set of
edges. For every trace mondw(Z, |) the subset3 C M(Z,I) are called trace languages and, for every
L C 2*, we definglL] = {[X] € M(Z,1) | x € L} as the trace language represented bj trace language
is called rational if it is represented by a regular language. The class of rational trace languages has been
widely studied in the literature and it coincides with the smallest family of trace languages including the
finite sets inM(Z,) and closed under the operation of union, product and Kleene closure (over the trace
monoid).

Here we are particularly interested in the recognition problem of rational trace languages. For a given
independence alphab@, |) and a given regular languageC >*, such a problem consists of verifying,
for an inputx € Z*, whether{x] € [L], that is whether there exists a wokd: [x] belonging toL.

3 Algebra of compositions

In this section we study some properties of the integer compositions. Our purpose is to present some
operations on such structures and describe the algorithms for their computation.

We recall that acompositionof an integemn > 1 is a nonempty finite sequen¢a, iy, ...,in) of
integers such that > 1 for everyj =1,...,hand zlj]:lij =n. Integer compositions are classical com-
binatorial structures. For instance it is well-known that there 8ré @ompositions of any integer> 1
[8]. A natural notion associated with such structures is the inclusion relation among compositions of the
same integer, that we denote By

Definition 1 Given two compositiong = (a3, a,...,an) and3 = (by, by, ... ,by) of an integer n> 1,
we say thati is finerthan (or B is coarsethana), and write

a=p
if h > m and there are m indiceg, /o, ..., {msuchthatl < ¢/ < fp < --- < ¢m=hand
01 Uy lm

b1:Zaj, b, = ; aj, ..., bm= z 4;
I= j=t1+1 j=lm-1+1

Note that ifa < 3 then there exists a uniquetuple of indiced, .. ., /i, satisfying the previous property.
Moreover,= is a partial order relation on the family of all compositionsnpfvhere(1,1,...,1) is the
smallest element angh) the largest one.

Clearly, there are) time algorithms that on input, verify whethera < 3 and, in the affirmative
case, compute the corresponding sequénce. , ¢/, defined above.

In the following, we often represent a composition= (a3, ay,...,an) in the forma = (&)y and
denote byng the corresponding integer, i.By = zih:la;.

3.1 Product operation
The product is our simplest operation between compositions and is defined as follows.

Definition 2 Consider two compositions = (&), and B = (bj)x, and assume= k, which implies
k > h. Then, the produdat - 3 is the compositioy = (g)» such that

I
9= > b forevery [=1,2....h
j=ji-1+1

where p=0and j =y!_,a foreachl=1,2...,h.
More precisely, we have

g1 = bi+by+---+by
g = ba1+1+ba1+2+"‘+ba1+a2

Oh = ba1+-~+ahfl+1 + ba1+---+ah,1+2 +F ba1+-~-+ah

Briefly, y is obtained fron by adding consecutive elements as indexed by the compositi@iearly,
we havefy < yandny = ng.
Here is an example:

02(1,2,2)3 B:(1,2,1,3,2)5 y:o(-B:(l,3,5)3

Notice that in general the product is not commutative. Moreover, for every compoBito(b;)x,
the following identities hold:

(1717"'71)k'B:B (k>1B:(nB)1 B'(:I-?la"'?l)nB:B

The product of two compositions can be computed by scanning their elements from left to right. Here is
an algorithm for computing the product of two compositions: (a;)n, B = (bj)«x such thany = k:
Algorithm - Product of compositions

input a, 3
=1
fori=1tohdo
g =0
for j =1to g do
gi=gi+b
l=1+1
end for
output g;
end for

The algorithm outputs the elements of the product composition. Clearly it has a linear time complexity
O(n), wheren = ny = k.
3.2 Quotient operation

If two compositions are related by the partial ordelit is possible to define a quotient operation between
them.

Definition 3 Given two compositions = (&), B = (bj), wherea < 3 (and hence k h), consider the
sequence of indice®, /1, ...k such thall = {g < {1 < --- < ¥y =hand
¢
bj = z aj forevery j=1,2,....k
i=lji_1+1
Then, the quotierft/a is the compositioly = (gj)x of h such that
gj=0j—{j-1 forevery j=1,2,...,k

Intuitively, the quotient operation creates a new composyicgpresenting the partition of elements of
o to be added up in order to gt It is clear thaty = /a impliesB=y-a.
For instance:

B: (47275)3 a= (17372717173)6 VZB/G = (27173)3
Notice that we have the following special cases, for any compositiona;)n:

a/a=(1,1,...,1), (Ng); /o= (h); a/(l,l,...,l)ng:a
Also the quotient of two compositions can be computed in linear time by scanning both operands
from left to right. Here is an algorithm that, for an input= (&), B = (bj), satisfying the relation
a =< [, computes the compositign= (gj)k such thay = /a.
Algorithm - Quotient of compositions

input a, B
i=1
for j=1tokdo
g;j=0
s=0
while s+ & < bj do
gi=9j+1
S=S+4§
i=i+1
end while
output g;
end for

This algorithm outputs the elements of the quotient composition and has a linear time conplgyity

3.3 Maitching operation

We have seen that the quotient operation is the inverse of the product, in the sensdthay implies
a = y/B. Here we introduce another operation, which allows us to deterfhfrem y anda. The main
difference with respect to the previous operations is that now the result is not unique.

Formally, given two compositiona = (&) andp = (bj)n, wherea; < b; for eachi =1,...,h, a
matching ofa andf3 is a compositiom = (dj)n, such thata -8 = B, that is setting G= {g, {1 = a,
lry=a1+ay,...,Ih =Ny We have

i
b = d foreveryi=1,....h.
j=li—1+1

Observe thad < 3. Moreover,d may not be unique since its elements are obtained from possible different
decompositions of the;'s. We denote by3 @ a the set of all matchings af and.
As an example, lett = (1,2,3); andp = (1,3,3)5. Then,

B@(X = {(17 17 27 17 17 1)67(17 27 17 17 17 1)6}

Observe that a matching of= (&), andB = (bj)k always exists whenevér= k anda; < b; for every
i; the matching is unique ift = 3 and in this case it coincides wif1, 1,...,1), . Itis also clear that
computing a matching € B @ a (if any) can be done in tim@®(ny).

3.4 Contraction of compositions

Here we study a another operation on compositions, called contraction, that is again partial and when
defined it may yield more than one result.

Definition 4 Consider two compositiors = (a)n, B = (bj)k such that h> k and ry < ng. We say that

a compositiorn’ = (a’j) is acontractionof a over3 if the following conditions hold:

a’ 1)
b forall i=12,... .k)

IN 1A

a

C
Note that condition (1) impliesy = ng. Itis clear that there may be no contraction of two compositions:
for instance this occurs when the maximum elementia§ greater than any element Bf On the

contrary, there may be more than one contraction of two compositions; as an example, the contractions
of a =(1,2,1,1) overB = (5,4) are the following compositions:

(1,4) (3,2) (4,1)

Also observe that there exists at most one contraction whehevég i.e. a andp have the same length.
Now, let us define an algorithm that receives as input two compositioaga;)n, B = (b;)k such
thath < k andny < ng, it verifies whether there exists a contractioriobver 3 and, in the affirmative
case, it effectively computes such a contractivn Observe that we evoid the calse- k, since this is
reduced to check whethay < b; for each index.
To solve the problem we computkdupleS;, S, ..., S where intuitively, eacly is a set of possible
candidates foe; defined by pairs of indice§j,?), j < ¢, such that = a; + --- +a,. More formally,

everyS is a set of pairgj,¢) € N2 where 1< j < ¢ < h, defined as follows:

S = (L0 6N2|2lat<b1,k—1§h—€}

S = {J[EN2 Zat<b2,3(517 1) € S forsomese N, k—2<h-— f}
{JZ EN2|Zat<b.,3(SJ— 1) S_;forsomese N, k—i <h-— 6}

14
S = {(Lé) eN?| Zat <bg, 3(s,j—1) € S forsomese N, Egh}
=]

Clearly, it may occur tha§ is empty for some: in this case all subseque8f's (with j > i) are empty
and there is no compositiax satisfying (1) and (2).

The following procedure computes &ls. Here, for a given, Init is the set of indiceg such that
some pair(j,¢) belongs toS. Analogously,Nextis the set of indiceg¢ such that some paifj,/— 1)
belongs tdS.

begin
Init := {1}
for i=1,2,...,kdo
begin
Next:=0
S=0
for j €lnit do
begin
L=
X:=a
add(j,/)to S
(=041

whilex<bjAk—i<h—/¢do
if £ <hthen {

X:=X+a
Next:= NextU {¢/}
end

ifS:Q)then{

Init := Next
end

return no
stop

end

Once the sequen&®,S,, ..., is built, we look for a pair(j, /) € S such that = h. If such a pair
does not exist then there is no contractiomadver3. Otherwise, such a contractiorcan be computed
by the following procedure, which builds a path backwards among the eleme®tssf. . ., .

begin

choose an elemeff,t) € S such that =h
computesy = aj +aj1+---+an
for i=k—1k—2,...,1do
begin
find in § an elementr, /) suchthat = j — 1
computea; = a + a1+ + &
ji=r
end
return (aj,a5,...,8)
end

Let us evaluate the time complexity required by the first procedure. Checking wlietii¢extcan
be done in constant time by using an array to implement theet Thus the inner loop require3(1)
time. Then, since the procedure executes three nested loops, it wakitf) time.

Concerning the second procedure one can representSeastan array oh lists §(¢), ¢ =1,...,h,
where eveng (¢) contains the elements of the foff ¢) in §. Then, searching fafj,t) in § witht = ¢
can be done by choosing the first elemengdf), which requires constant time. As a consequence the
second procedure tak€gh) time.

As far as the space complexity is concerned, assume to use the above array representation for each
setS. Then, in order to run the second procedure, we only need to maintain the first element of each
S(¢) (if any). This allows us to implement the first procedure by using @tlgh) space.

Computing contractions in quadratic time

The previous computation can be improved by using an algorithm that solves the prollght)n
time and space. Here, we describe in detail such a procedure.

As a first task, we compute all coefficieg, for integers 1<i < j <h, such that

This requiresO(h?) time, since anyy; with i < j can be obtained from; j_1 by addinga;.

In a second phase the algorithm computes, for evesyl, ... k, a family of pairs(j,¢), where
1< j <2< h,suchthatAj, < bj; thusAj, is a possible candidate faf. The computation actually fills
up atableS={S,|i=1,....k, £=1,...,h}, where each entr§, equals the smallest indgxsuch that
Aj, <bjandS_1j-1 # 0 (S, is set to 0 if such an index does not exist). More precisely, the entrigs of
are defined as follows:

i) Forevery!=1,... h,
Sy — 1 ifAy<b
£~ 1 0 otherwise

i) Foranyi =2,... kand every = 2,... h, setting
T={jeN|1<|j<{ Ajy<b, S_1j-1#0},
we have

S, = min{jeT} IfT#0
“=1o0 otherwise

To fill up Sone can proceed row by row. For each 1,... Kk, thei-th row can be computed by using
a listInit of initial indices j such that5_1j_; > 0. The elements dfnit are maintained in increasing
order and at the beginnirligit only contains 1. During the computation, anotherN&wis determined
which contains the initial indices for row+ 1 (this is done by adding+ 1 to NewwheneverS; is set
to a positive value). Clearly, lewremains empty for some roi k then all entries of the subsequent
rows will only contain 0.

The details of the computation are described in the following procedure, where we assume that
initially all entries ofSare set to 0. Heré) denotes the empty listirst(Init) is the first element offnit
(which isnull if Init = A) and j scandnit from the first to the last element.

begin
Init := (1)
for i=1,2,...,kdo
begin
New:=A
j := first(Init)
L=
while j#null A £<hdo
begin
if < jthenl:=]j
Se=]
if Ajggbi then :=0+1
if £<h then add to New
else j:=nextj)
end
Init := New
end
end

This procedure consists of two main loops. The outer one is itekatedny times, once for every
i=1,...,k. Foreach value df the inner loop is repeated at mogh2-i + 1) many times, once for every
possible value of + ¢. Since each iteration requir€1) time, the procedure works i@(kh) time.

Once tableSis filled in, it is easy to see that a compositimhsatisfying (1) and (2) exists if and only
if Sch> 0. In this case, we can compute the integgrdor i = 1,...,k, by building a path backwards
throughout the rows db. The computation is described by the following procedure, which clearly works
in O(K) time.

begin
j =Sn
3= Apn
for i=k—1k—2,...,1do
begin
(=j-1
j=S
8 1= Ay
end

return (&, a,,...,8,)

end

Observe that the computation of the coefficieAts for 1 <i < j <h, is the most expensive task in
the algorithm. Hence the overal time and space complexi®y ig).

3.5 Expansions of compositions

Now, let us consider a sort of dual version of the previous operation. Also in this case the operation is
partial and may yield multiple results.

Definition 5 Consider two compositions = (a)n, B = (bj)k such that h< k and ry < ng. We say that
a compositiorn’ = (a’j)k is aexpansiorof a over3 if the following conditions hold:

/

o o 3)

by forall i =1,2,....k (4)

/

g

IA TA

Of course condition (3) impliesy = ng. Itis also clear that there may be no expansioo ofer3: this
occurs for instance wham, < k. On the contrarypy may admit many expansions o&ras an example,
if a =(2,3) andp = (3,2,3) the corresponding expansions are given by

(1,1,3) (2,1,2) (2,2,1)

Also in this case, ifh = k then there is at most one expansion (actually in this case contraction and
expansion ofx over[3 coincide).

Now, let us define an algorithm to compute an expansion of a compositimer another composi-
tion B, wherea = (g)n andP = (bj)k are given as input such that< k andny < ng (the caséh =kiis
easy to deal with). The procedure first checks whether such an expansion exists. Note that here we have
to compute a composition’ finer (and longer) thaa. This means to group adjacent element§ tfat
correspond to each.

Thus, the first step of the computation determines a sequence df;skts. .., L, where each;
contains the possible condidates for groups of adjabgmthat correspond te;. Formally, everyL;

contains pairgj, /) € N2, where 1< j < ¢ <k, such that

l

(—j+1 < a<yh 5)
=]
(r,j—1) € Li_1forsomer eN (6)
h—i < k—¢ @)
Condition (5) states that positive integersa;, ;. ..., & exist such thag| < bj,...,a, < b, and

zf:j a = g. Condition (6) guarantees that the fijst 1 elements ofi’ can be computed which corre-
spond to the firsi— 1 elements ofi. Finally, condition (7) assures that the remainkig ¢ elements of
o’ (that are still to be computed) are enough to cover the remakmingelements ofx.

10

Therefore, we have:

l
L = {(L@GNZMSalS Zlbt, h—1§k—z}
t=

¢

L, = {(j,é)eNZM—jJrlgangb[,h—2§k—€,E(S,j—l)eLlforsomeseN}
=]
¢

L = (j,g)eN2|e_j+1§ai§Zb[,h—igk—é,H(S,j—l)eLi,lforsomeseN
t=]

¢
L, = {(j,é) eN2|£—j+l§ah§ th, L<Kk, H(S,j—l)eLh_lforsomeseN}
t=]

Also here, it may occur thdf; is empty for somé: in this case all the subsequent(with j > i) are
empty and hence there is no expansion aiver 3.

The following procedure computes &lfs, wherelnit andNextplay the same role as in the previous
section.

begin
Init := {1}
for i=1,2,...,hdo
begin
Next:=0
Li:=0
for j€lnit do
begin
L=
x:=0
while /—j+1<a A h—i<k—/{do
begin
X:=X+by
, add(j,?) toL;
1£& < Xthen { if £(<J k)thenNext:: Nextu{¢+1}
=(+1
end
end
if Li =0then { return no
stop
Init := Next
end
end

Once the sequendg,L,,...,Ly is built, we go ahead as in the previous algorithm by choosing an
element in each list and choosing the lists from the last one backwards to the first one. First, we look for
an elementj,) in Ly such that = k. If such a pair does not exist then there isarisatisfying (3) and
(4). Otherwise, such an expansiohcan be computed by the following procedure.

11

begin

r:=k
for i=hh—-1....1do
begin
find inL; an elementj,) such that =r
fort=j,....0doa:=1
Xi=a—({—]+1)
ti=j
u:=h—4a
if x>u thena := by
while x> 0do elseal :=a +x
X:=X—Uu
ti=t+1
r=j-—1
end

return (&, a,,...,8,)
end

The first procedure works in tim®(hk?) while the second one také€}k) steps once we maintain
the setd’s as theS’s in the previous section. By the same reason, both procedures can be implemented
using a total space of the ord@(hk).

Computing expansions in quadratic time

However, also the previous algorithm can be improved and one can obtain an anologous procedure
that works inO(k?) time. Let us now describe such an optimal version.

In this case our first task is the computation of all valBgsfor indices 1<i < j <k, such that

i
Bj = > by
=l

As before, this can be done @(k?) time (for our convenience we assuig = 0 for everyj < i).

In a second phase, for eveiry=1,...,h, we compute a family of possible candidates for groups of
adjacenty’s corresponding te;. We look for pairg(j,¢) € N2, with 1 < j < ¢ <k, that satisfy conditions
(5), (6) and (7). However, rather than computing all possible pairs having these properties, more simply
we fills up atablede = {Lj; |i=1,...,h, £=1,... k}, where each entrl;, is the smallesj such that
(j,¢) meets the required conditions. More precisklis defines as follows:

i) forevery/=1,... Kk,
L., — 1 iff<a;<By,h-1<k-/¢
Y=\ 0 otherwise
i) Foranyi=2,... ,hand every = 2,... Kk, setting
T={jeN|1<j<l l—j+1<a<Bj, Li_1j-1#0},
we have

L, min{jeT} ifT#0andh—i<k-/
=0 otherwise

12

The computation oL is described by the following procedure. Again we proceed row by row. For
a given rowi, Init is the list of possible inital values gfthat could be put in some entty,. Here, the
key observation is that for fixedand j the constraints (5) and (7) allow us to look for a requifeuly
scanning backwards the interjalk — h+i]. This can be done efficiently by considering evérsuch

thati < ¢ < k—h+i, at most once for al] € Init.

begin
Init := (1)
for i=1,2,...,hdo
begin
New:=A
j = first(Init)
foZ:j
while j#null do
begin
¢C:=min{fk—h+i,a+j—1}
Li¢ := |
while fo</{ A & <Bj, do{ if £<k thenadd+1toNew
L=0-1
lo:=min{fk—h+ig+j—-1}+1
j i=next(j)
end
Init := New
end
end

The analysis of the procedure can be carried on as in the previous section. Note that the inner loop
is repeated at mo&t— h+i times and it require®(1) time. As a consequence both the time and space
complexity of the procedure are of the ordthk).

Once tabld. is filled in, one checks whethé&gy > 0; if this is not the case then there is no composi-
tion o’ satisfying (3) and (4). Otherwise, such an expansitis computed by building a path backwards
throughout the rows df. The computation is described by the following procedure, which clearly works

in O(k) time.

begin
l:=k
for i=hh—-1...,1do
begin
j =L
fort=j,....,0doa =1
Xi=a—(({—]+1)
t:i=]
u=h—a
if x>u thena := by
while X > 0do elsea) :=a +x
X:=X—U
ti=t+1

13

(=j—-1
end
return (aj,a,,...,8,)
end

Note that, in this case, the computation of Bjl's, for 1 <i < j <k, is the most expensive task of
the algorithm. Hence the overal time and space complexi®yks).

4 Repeat-until languages

Given a finite alphab€eX, let N be the set of all regular expressions o¥esuch that:
i) everyae X belongs ta\,

i) if a,3 € Nthena -3 € N (often represented hyp),

iii) if a is a symbol inZ or an expressiofd -y, for someB,y € N, then(a)™ € N.

We define aepeat-until expressioas an expressiom € N containing just one occurrence afor every
ac Z. Thus,mz(a) defines a linear order ov&rand, for evenya, b € %, we writea < b if a occurs before
bin 1= (a). We also denote by RUE the set of all repeat-until expressions>over

For everya € RUE, letL(a) be the language representedchyClearly, for every € L(a) and every
a,be X, we have

a< bimpliesyp(x) € afa,b}*b (8)
Moreover, we define aycle of a as a subexpressioff8)* of a such that € N. The stringr(B)
is the body of the cycle,P(1=(B)) andU (1i=(B)) are its header and exit, respectively. For instance,
((ac)™(bde*)* is a cycle ofa = h((ac)™ (bde)™) " fg, with headem and exite.

Note that in everyx € L(a) the body of any cycle appears at least once, possibly as a subword
consisting of more factors. This justifies the definition of our expressionsoanRUE represents a
program scheme of nested repeat-until cycles and eveily(a) represents an execution of the program.

Clearly, for anya € RUE,L(a) is a local language [2]. A natural local automat@fo) recognizing
L(a) can be obtained as follows. Given the strimgo) = ajay- - - am, with & € X for eachi, the set of
states of4(a) isQ = {do,as,...,am}, Wwhereqo ¢ Z is the initial state andy, the unique final state. Also,
the family of transition€ is given by the pairs

E = {(a0.a)}Uf{(a.a:1)|i=12...,m—1}
U{(aj,a) | & = P(m(B)),a; = U (1 (B)) for a cycle(B)* of a}

Any transition(a, b) € E is labelled by the incoming stake For anyq € Q we also denote b$udq) the
family of its successors, i.e. the §ete 2 | (q,a) € E}.

Example 1 Consider the repeat-until expressian= (a(b)*c)™(d(e)*)*. Then, the corresponding lo-
cal automatonq(a) is defined by the following diagram.

X Z
o006
where XY,Z,U represent the cycleg(b)*c)*, (b)*, (d(e)*)" and(e)™, respectively.

14

4.1 Hierarchical trees

Here we describe a tree representation of expressions in RUE based on the cycles and the nesting relation.
Givena € RUE, let us represent the cycleswby capitol letters and lef” be the family of all of them
together with a special symb8] which will represent the root of the tree. For evetyY € C, we define
X QY if X is nested inte¥ or X =Y. We also seX < Sfor everyX € C. Moreover, we writeX <Y if
XY andX £Y.

Then we define thiierarchical treeof a as the ordered tréle(a) with rootS, satisfying the following
properties:

1. Cisthe set of internal nodes amgl(a) = ayaz - - - an is the ordered list of leaves;

2. ForanyX,Y € ¢, X is son ofY if X <Y andX is immediately nested i, i.e. thereis n& € C
such thaX <Z «;

3. Aleafae Zis son of a nod&X € Cif X is the smallest cycle af includinga. If ais not included
in any cycle therais son ofS,

4. sinceT (o) is an ordered tree, there is a linear ordeamong the sons of any nodec C: given
two sonsu, v of X, u < vif u (either as a cycle or as a letterii occurs before in a.

Note thatX <Y holds if X is descendant of in T (a).

Example 2 The hierarchical tree of the repeat-until expressimulefined in Example 1 is described by
the following picture.

@

@éi

For everya € Z, let C(a) be the father ok in T(a): thusC(a) either is the smallest cycle of
containinga or C(a) = Sif ais not included in any cycle Analogously, for evaayb € %, a# b, let
C(a,b) be the root of the smallest subtreeTofa) including botha andb. The following proposition
states that all cycles are of the fof&a) or C(a,b) for somea,b € .

Proposition 1 Leta € RUE and let Xe C be a symbol different from S. Then=XC(a) for some & Z
or X =C(a,b) for some distinct g € .

Proof. The property is proved by induction on the height of the ngde the hierarchical tre& (a). O

4.2 Syntactic trees

Now, givena € RUE, let ¢ and S be defined as in the previous section. Consider the grammar with
regular right parts5(a) defined by the tupl¢C,%, S P), where(is the set of nonterminal§ is the
initial symbol,Z is the set of terminals aridis the family of productions given by

P = {(X—=y)|XeC(, yisobtained from the list of sons of in T(a)
by replacing each variab¥ e C by Y*}

15

Example 3 If a is defined as in Example 2 then
P={(S—X"Z"),(X —aY'c),(Y = b),(Z—dU"),(U —e)}

It is clear thatG(a) generated (a) in the usual way [9]. Thus, for any € L(a) we define the
syntactic treeof x as the derivation tree ofin G(a). It corresponds to theested iterated treNIT) in

[12].
Example 4 Leta be the repeat-until expression defined in Example 1 and let x be the string
x = abbbcabcdeeedede

Then xe L(a) and its syntactic tree is given by the following picture:

9
7

°f $33°8°1

Proposition 2 A word xe Z* belongs to L) if and only if there exists a syntactic tree T that generates
X.

@ G0 @
®

Note that also the syntactic trees are ordered trees. They share several properties in common with
the RUE tree€T (a). First of all, they all have rods. Note that inT (a) there is just one nodefor every
ue 2ZU(C, while in a syntactic tre@ there may be several nodes labelledubyor the sake of brevity,
they will be calledu-nodesor u-vertices

Moreover, if a nodeu € ZU C in T(a) is at a distancé from Sthen inT all u-nodes are at the
distancek from the root. Since tha-vertices inT are ordered they can be identified by their occurrence
number: if there aren nodes of label thei-th u-node is univocally determined for any=1,....m.

Other properties of the syntactic tr€eof a wordw € L(a) are the following:

1. Foreverya € %, |w|, equals the number of nodesDflabelled byC(a);
2. For everya,b € X with a < b, [T n(W)|ap €quals the number of nodesDflabelled byC(a, b);

3. For everya, b € X with a < b, if a = (&) is the composition generated Iy ,(w) ona, then inT
there areh nodes labelled bZ(a,b) and for anyi = 1,...,hthere areg; nodes of labeC(a) that
are descendants of tlie¢h node of labelC(a,b). Moreover, an analogous property holds for the
composition generated by p(w) onb.

Property 3 above actually shows that integer compositions can be used to represent an entire syntactic
tree. To this end we introduce the notion of labelled composition.

Given a syntactic tre@, consider two cycles, B € ¢ such thaB <A and assum& hash nodes of
label A andm nodes of labeB. If A # B define the labelled integer compositiaf} by

af = (ag,a,...,an)

16

where, for each = 1,...,h, g is the number oB-nodes that are descendants of ittie A-node inT.
Clearly we haven= Nga- On the contrary, iA = B then set formallyog = (1,1,...,1).

The symbolsA andB are respectively the exponent and the basegflt is clear that any syntactic
tree is entirely described by the set of its labelled compositions. Actually a reduced set of such compo-
sitions would be sufficient to define a syntactic tree, since the other ones can be computed by using the
operations of product or quotient, as shown by the following proposition, whose proof is consequence of
the definitions.

Proposition 3 Given a syntactic tree T, let, B,C be cycles irC such that GIB<A. Then the following
properties hold:

1) a8 < ol

2) ag = ok-08 andhence ag=o08/0d, adc (aBoap)
Further, if AB,C,D € C satisfy DAC <IB<A then

3) af isacontraction obg overaf and of € (0B @ ad)
4) af isanexpansion aif overaB and af e (aB 2 af)

We also observe that the set of all labelled compositions of a given syntatid toeatains the
compositions of the form(>3(= (kx) for everyX € C, whereky is the number oX-nodes inT. Note in
particular that, ifX is father ofY in the hierarchical tre& (a) thenad is a matching ob§; andos.

The previous properties can be used to construct a syntatic tree from a subset of its labelled compo-
sitions. A key property in such a construction is called coherence and concerns the inclusion telation
among labelled compositions having equal base.Qa@ahpbe a set of labelled compositions. We say
thatCompis referred to a hierachical trég(a) if, for any af € Comp the cycleB is descendant o
in T(a) and, for eactB < A, there is at most one compositio§ in Comp We further say thaEomp
is coherentif for every pair of compositionaé,a% € Comp B<JA implies 0(8 =< aé. We know from
Section 3 that coherence can be checked in linear time.

5 RUE trace language recognition

In this section we describe some general properties of trace languages defined by RUE expressions and
show how they can be used to design algorithms for solving the corresponding recognition problem.
We recall that, given an independence alphdlet) and a RUE expressiom on %, the membership
problem for the trace languadie(a)] € M(Z,1) consists of verifying, for an input € =+, whether the

set[x] NL(a) is empty.

Theorem 4 Given a RUE expressiom and an independence alphaliét |) with dependence relation
D, for any xe * we havex] NL(a) # if and only if the following conditions hold.

a) For every ab € X such that a< b and aDb, we havey ,(x) € a{a,b}*b.
b) There exists v& L(a) having syntactic tree T such that:

bl) For all a € Z, there are|x|, nodes labelled by &) in T;

b2) For every ab € Z such that aDb and & b,
labelled by Ga, b);

Thb(X)|ap €quals the number of nodes of T

17

b3) For any ab € X such that aDb, letiy,io,...,in) be the composition generated iy, (x) on
a. Then, the firstjinodes labelled by &) in T are descendants of the first&b)-node,
the subsequent inodes labelled by &) are descendants of the seconta()-node, and
so on till the last j nodes labelled by @), that are descendants of the lastaCb)-node.
Moreover, an analogous property holds for the composition generated) on b.

Proof. First recall that a wordv belongs tox] if and only if |x|a = |w|a for everya € ¥ and T p(X) =
T (W) for every pair of distinct symbola, b € X such thaeDb. Therefore, if there exists € [x NL(a)
thenw satisfies condition (8) and properties 1, 2, 3 of Section 4.2. Since the projectigrandiv on
the pairs of (possible coincident) dependent symbols are equal, the same properties kgbddang
both conditions a) and b).

On the other hand, if these two conditions are true then kathdw have the same projections on
the pairs of (possible coincident) dependent symbols, and this proves ¢hpd NL(a). O

A natural idea to solve the problem is to try to construct the syntacticTtiafea wordw € [x] NL(a).
The computation may consist of two phases: first the nodes are determined, i.e. one calculates the
number ofX-nodes inT for every cycleX. Then, all edges are established by computing the labelled
compositionsg of T for every pairA, B € € such thaiA is father ofB in T (a).

5.1 Construction of the nodes

First of all, the root is the unique node labelled 8y Then, the leaves of are determined by the
occurrences of symbols a&fin x: for everya € X one checks thdk|, > 1 and adds$x|, leaves labelled
byainT.

As far as the internal nodes are concerned, it is clear that for e¢ernyC, X # S the number of
X-nodes inT must satisfy conditions b1) and b2) of Theorem 4. This leads to consider thiexsaisl
Gx defined by the following equations:

Fx = {acZ|X=C(a)})
Gx = {(a,b) € 2?|a<b,aDb X =C(a,b)} (10)

If Fx # 0 or Gx # 0 we verify whether there existsx € N such thatkx = |x|, for all a € Fx, and
kx = |Tap(X)|ap for all (a,b) € Gx. If both conditions are true, then any possibleontainskx nodes
labelled byX, otherwise such a tree does not exist.

However, if Fx = Gx = 0 the previous computation cannot apply. In this case, to determine the
number ofX-nodes inT we can use the following proposition, stating that we are allowed to introduce
as manyX-node as the number of verticesTinabelled by the father ok in T (a).

Proposition 5 Given Xe C such that X# S and k = Gx = 0, let Y be the father of X in (&r) and
consider a word v L(a). Then, there existsz L(a) N[w] such that every Y -node in the syntactic tree
of z has just one son labelled by X (and hence the number of X-nodes equals the number of Y -nodes).

For the proof see Proposition 1 in [12].
Taking into account Propositions 1 and 5, we can summarize the previous discussion by the following
program that constructs the set of internal nodeg different fromsS.

begin
B:=0

18

for X € C\{S} do
begin
computeFx andGy
if ik =Gx =0 then addX toB
else if Jke N such thatk = |x|, for everya € Fx
andk = [Ty p(X) |ap fOr every(a,b) € Gx
then addk manyX-nodes inT
else rejectx and stop
end
for X € B (in order of distance fron®) do
begin
Y := father ofX in T(a)
h := number ofY-nodes inT
addh manyX-nodes inT
fori=1,2,...,hdo
make thd-th X-node son of thé-th Y-node inT
end
end

Note that the non-root internal nodes computed by the previous procedure are partitioned according
to their labels. In particular, for evedy € C\{S} there arekx nodes inT labelled byX.

5.2 Construction of the edges: an example

Once the nodes &f are computed, one can try to determine the father of each vertex (except for the root)
by using the operations over labelled compositions introduced in Section 4.2. We are not able here to
give a general procedure (as we did for the nodes) because the previous operations do not always yield a
unique result and this ambiguity may affect the final result. We only present here an example that shows
how to define an algorithm in specific cases when the structure of the hierarchical tree allows us to evoid
ambiguities in the applications of the operations on compositions.

The idea is to use properties bl), b2) and b3) of Theorem 4 to define an initial set of compositions
and then close such a set with respect to the operations of product, quotient, contraction, expansion and
matching. In some cases the structure of the expression allows us to complete the tree even if some
operations (contraction and expansion) admit multiple solutions.

Leta € RUE be defined by the following diagram:

B
(DC GBA
@D A D@

Here the set of cycle is defined loy= {S A,B,C,D,F,G} and the correspoding hierarchial tree is given
by

19

)

Moreover, assume that the dependency pairsad), (b,c), (f,g). Therefore the nodes of a possi-
ble syntactic tree are determined as in Section 5.1 by usmg the following relations:

A=C(a)=C(d,a), B=C(b) =C(c,b), C=C(c)
D=C(d), F=C(f)=C(g,f), G=C(g)

Thus, given an inpuk € ¥, for each cycleX e C different fromS we can obtain the numbda of
X-nodes in the syntactic tréeof a possiblev € [x]NL(a). Note that in our case there is Xoc C such
thatFx = Gx = 0.

Then the contruction of the edgesTfs described by the following computation that determines the
setCompof compositions defining the tree.

1)Comp:=0

2) for all X € ¢ add toCompthe labelled compositioa§ = (kx)

3) compute the labelled compositioy generated byya(x) overd
compute the labelled compositiu@ generated byt,(x) overc
compute the labelled compositiof, generated byt (x) overg
addajf, ag anda§ toComp

4) Check coherence @omp

5) compute a contractiom? of ag overaf and a corresponding matchiog
add botha? anda§ to Compand check coherence

6) compute the quotients = a2/ag and add it taComp

7) compute a matching® = a2 @ a3 and add it tadComp

If any of the previous step cannot be completed then the procedure stops and rejects the input. Other-
wise, at the end of the computation, theGetn pcontains all the labelled compositioa$ for every pair
father-sonX,Y) in T(a). Moreover, by constructioBompis coherent and hence its closure with respect
to the product yields the set of all labelled composition of the syntacticTtrafea wordw € [x] N L(a).

We conclude observing that the procedure works in te?) wheren = |x|, since this is the time
required by step 5) while the other ones can be executed in linear time.

References

[1] A. Avellone, M. Goldwurm. Analysis of algorithms for the recongnition of rational and context-free
trace languagefRAIRO Theoretical Informatics and ApplicatioB8: 141-152, 1998.

[2] J. Berstel, J.-E. Pin. Local languages and the Berry-Sethi algoritheoret. Comput. Sc155:439-
446, 1996.

20

[3] A. Bertoni, M. Goldwurm, G. Mauri, N. Sabadini. Counting techniques for inclusion, equivalence
and membership problems, Tine book of traces. Diekert and G. Rozenberg Editors, World Scien-
tific, 131-163, 1995.

[4] A. Bertoni, G. Mauri, N. Sabadini. Equivalence and memberchip problems for regular trace lan-
guages. Proc. 9th ICALP, LNCS 140: 61-71, Springer-Verlag, 1982.

[5] A. Bertoni, G. Mauri, N. Sabadini. Unambiguous regular trace languages. Proc. Coll. on Algebra,
Combinatorics and Logic in Computer Science, Colloquia Mathematica Soc. J. Bolyai, 42: 113-123,
North-Holland, 1985.

[6] A. Bertoni, G. Mauri, N. Sabadini. Membership problems for regular and context-free trace lan-
guagesinformation and Computatio@2 (2): 135-150, 1989.

[7] L. Breveglieri, S. Crespi Reghizzi, A. Savelli. Efficient word recognition of certain locally defined
trace languages. Proc. 5th Int. Conf. on Words, Montreal (Canada), September 2005.

[8] P. Flajolet. Mathematical methods in the analysis of algorithms and data structufeenats in
Theoretical Computer Sciende. Borger Editor, Computer Science Press, 225-304, 1988.

[9] W. LaLonde. Regular right part grammars and their parseosnmunications of the ACKIO (10):
731-741,1977.

[10] W. Rytter. Some properties of trace languagasd. Inform.7:117-127, 1984.
[11] J. Sakarovitch. On regular trace languagédworet. Comput. Scb2: 59-75, 1987.

[12] A. Savelli, Two contributions to automata theory on parallelization and data compression, Doctoral
Thesis, Politecnico di Milano, Université de Marne-la-Vallée, June 2007.

21

