
DIPARTIMENTO DI SCIENZE DELL’INFORMAZIONE

Rapporto interno N. 323 - 08

'

&

$

%

Integer compositions and syntactic trees
of repeat-until programs

Luca Breveglieri, Stefano Crespi Reghizzi,
Massimiliano Goldwurm

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIR Universita degli studi di Milano

https://core.ac.uk/display/187829132?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Integer compositions and syntactic trees of repeat-until programs

Luca Breveglieri(1) Stefano Crespi Reghizzi(1)

Massimiliano Goldwurm(2)

(1) Dipartimento di Elettronica e Informazione, Politecnico di Milano, via Ponzio 34/5, 20133 Milano – Italy

{luca.breveglieri, stefano.crespireghizzi}@polimi.it

(2) Dipartimento di Scienze dell’Informazione, Università degli Studi di Milano

Via Comelico 39-41, 20135 Milano – Italy, goldwurm@dsi.unimi.it

Rapporto Interno
RI - DSI n. 323 - 08

Dipartimento di Scienze dell’Informazione
Università degli Studi di Milano

via Comelico 39/41, 20135 Milano, Italy

Marzo 2008

Abstract

In this work we study some properties of integer compositions in connection with the recognition
of rational trace languages. In particular, we introduce some operations defined on integer compo-
sitions and present procedures for their computation that work in linear or in quadratic time. These
procedures turn out to be useful in the analysis of syntactic trees of certain regular expressions, called
repeat-until expressions, which intuitively represent programs of instructions nested in repeat-until
loops. Our main aim is to show how, in some cases, such an analysis allows us to design algorithms
for the recognition of (rational) trace languages defined by repeat-until expressions, which work in
quadratic time independently of the concurrency relation.

Keywords: Automata and Formal Languages, Trace Languages.

1

1 Introduction

The recognition of trace languages is a classical problem widely studied in the literature [4, 10, 6, 1].
In the rational case the problem can be defined as follows: given an independence alphabet(Σ, I) and a
regular languageL⊆ Σ∗, one has to verify for an inputx∈ Σ+ whether[x]I ∩L 6= /0, i.e. whether the trace
[x]I belongs to the trace language[L]I generated byL. It is well-known that the problem can be solve
in time O(nα), wheren = |x| andα is the size of the maximum clique in(Σ, I) [4, 6]. Moreover, the
uniform version of the problem, where both(Σ, I) and a description ofL are part of the input, becomes
Np-complete. Another algorithm is given in [1] which depends on the prefixes of the input trace, and
hence a probabilistic analysis of the procedure is obtained assuming equiprobable all input strings of
given length.

In this work we study the problem in the case when the languageL is defined by a repeat-until
expression, i.e. a regular expression overΣ that includes only concatenation and+ operation and where
eacha∈ Σ occurs only once. An expressionα of this type represents a program of nested repeat-until
loops, whereΣ is the set of instructions, and the languageL can be seen as the set of executions of the
program. Thus, given an independence relationI over Σ, the recognition of the trace language[L]I is
equivalent to verifying whether a sequence of instructions given in input can be rearranged according to
I to become an effective execution of the programα.

It turns out that the words of any language defined by a repeat-until expression admit a syntactic tree
that can be easily represented by integer compositions. For this reason we study some properties of the
integer compositions and in particular we introduce specific operations on such structures that can be
computed in linear or in quadratic time (with respect of the input compositions). These results can be
used to design algorithms for the recognition of rational trace languages represented by string languages
defined by repeat-until expressions. We show an empirical method that can produce algorithms for this
problem working inO(n2) time, independently of the concurrency relation. A drawback of the present
contribution is that such a method is not general and can yield an effective procedure only in some cases,
intuitively when the construction of the associated syntactic tree (by means of the above operations on
integer compositions) does not yield ambiguities.

The material we present is organized as follows. In Section 3 we introduce an algebra to manipulate
integer compositions, based on operations of product, quotient, matching, contraction, expansion, and
describe efficient algorithms for their computation. Repeat-until expressions are introduced in Section
4 together with a notion of syntactic tree for the words of any language defined by such an expression.
In Section 5 we show how one can design quadratic time algorithms for the recognition of rational trace
languages defined by certain repeat-until expressions.

2 Basic notions

Given a finite alphabetΣ and a wordx ∈ Σ∗, |x| represents the length ofx while, for eacha ∈ Σ, |x|a
is the number of occurrences ofa in x. More generally, for a wordy∈ Σ+, |x|y denotes the number of
occurrences ofy in x. Moreover, given a subsetA⊆ Σ, πA(x) is the projection ofx overA. Further, ifx is
not the empty wordε, P(x) andU(x) denote, respectively, the first and the last symbol ofx, while S1(x)
is the suffix ofx of length|x|−1.

Given a wordx∈ {a,b}∗, a run of a in x is an occurrence of a maximal factor ofx included in{a}+.
An analogous definition holds forb. For instance, the wordaaabbabbbaaahas 3 runs ofa and 2 runs
of b (aaa, a, aaaandbb, bbb, respectively). Clearly, two wordsx,y∈ {a,b}+ are equal if they have the
same sequence of runs ofa, the same sequence of runs ofb andP(x) = P(y).

2

There is a natural relationship between runs of a letter in binary words and compositions of integers.
A compositionof an integern≥ 1 is a nonempty finite sequence(i1, i2, . . . , ih) of integers such thati j ≥ 1
for every j = 1, . . . ,h and∑h

j=1 i j = n (see for instance [8]). Thus, every wordx∈ {a,b}+, wherea 6= b,
|x|a ≥ 1 and|x|b ≥ 1, defines two compositionsγa andγb determined respectively by the runs ofa and
the runs ofb in x. More precisely,γa = (i1, i2, . . . , ih) is a composition of|x|a, whereh is the number of
runs ofa in x and eachi j is the length of thej-th run. Analogously,γb is a composition of|x|b defined in
a similar way. We also say thatγa (resp.,γb) is the compositiongeneratedby x ona (resp.,b).

Now, let us recall some basic definitions on traces. An independence relationI on Σ is a binary
relation onΣ, i.e. I ⊆ Σ×Σ, that is irreflexive and symmetric. For everya,b∈ Σ we say thata andb are
independent if(a,b)∈ I and in this case we also writeaIb. The dependence relationD is the complement
of I , that isD = {(a,b) ∈ Σ×Σ | (a,b) 6∈ I}. We say thata andb are dependent if(a,b) ∈ D and also in
this case we writeaDb. An independence relationI establishes an equivalence relation≡I on Σ∗ as the
reflexive and transitive closure of the relation∼I defined by

xaby∼I xbay ∀x,y∈ Σ∗, ∀(a,b) ∈ I .

The relation≡I is a congruence overΣ∗, i.e. an equivalence relation preserving concatenation between
words. For everyx∈ Σ∗ the equivalence class[x] = {y∈ Σ∗ | y≡I x} is called trace, the quotient monoid
Σ∗/ ≡I is called trace monoid and usually denoted byM(Σ, I). The pair(Σ, I) is called independence
alphabet and it is usually represented by an undirected graph whereΣ is the set of nodes andI the set of
edges. For every trace monoidM(Σ, I) the subsetsT ⊆M(Σ, I) are called trace languages and, for every
L⊆ Σ∗, we define[L] = {[x] ∈M(Σ, I) | x∈ L} as the trace language represented byL. A trace language
is called rational if it is represented by a regular language. The class of rational trace languages has been
widely studied in the literature and it coincides with the smallest family of trace languages including the
finite sets inM(Σ, I) and closed under the operation of union, product and Kleene closure (over the trace
monoid).

Here we are particularly interested in the recognition problem of rational trace languages. For a given
independence alphabet(Σ, I) and a given regular languageL⊆ Σ∗, such a problem consists of verifying,
for an inputx∈ Σ∗, whether[x] ∈ [L], that is whether there exists a wordw∈ [x] belonging toL.

3 Algebra of compositions

In this section we study some properties of the integer compositions. Our purpose is to present some
operations on such structures and describe the algorithms for their computation.

We recall that acompositionof an integern ≥ 1 is a nonempty finite sequence(i1, i2, . . . , ih) of
integers such thati j ≥ 1 for every j = 1, . . . ,h and∑h

j=1 i j = n. Integer compositions are classical com-
binatorial structures. For instance it is well-known that there are 2n−1 compositions of any integern≥ 1
[8]. A natural notion associated with such structures is the inclusion relation among compositions of the
same integer, that we denote by�.

Definition 1 Given two compositionsα = (a1,a2, . . . ,ah) and β = (b1,b2, . . . ,bm) of an integer n≥ 1,
we say thatα is finer thanβ (or β is coarserthanα), and write

α � β

if h≥m and there are m indices̀1, `2, . . . , `m such that1≤ `1 < `2 < · · ·< `m = h and

b1 =
`1

∑
j=1

a j , b2 =
`2

∑
j=`1+1

a j , . . . , bm =
`m

∑
j=`m−1+1

a j

3

Note that ifα� β then there exists a uniquem-tuple of indices̀ 1, . . . , `m satisfying the previous property.
Moreover,� is a partial order relation on the family of all compositions ofn, where(1,1, . . . ,1) is the
smallest element and(n) the largest one.

Clearly, there are O(n) time algorithms that on inputα, β verify whetherα� β and, in the affirmative
case, compute the corresponding sequence`1, . . . , `m defined above.

In the following, we often represent a compositionα = (a1,a2, . . . ,ah) in the formα = (ai)h and
denote bynα the corresponding integer, i.e.nα = ∑h

i=1ai .

3.1 Product operation

The product is our simplest operation between compositions and is defined as follows.

Definition 2 Consider two compositionsα = (ai)h and β = (b j)k, and assume nα = k, which implies
k≥ h. Then, the productα ·β is the compositionγ = (gl)h such that

gl =
j l

∑
j= j l−1+1

b j for every l= 1,2. . . ,h

where j0 = 0 and jl = ∑l
i=1ai for each l= 1,2. . . ,h.

More precisely, we have

g1 = b1 +b2 + · · ·+ba1

g2 = ba1+1 +ba1+2 + · · ·+ba1+a2

. . . = . . .
gh = ba1+···+ah−1+1 +ba1+···+ah−1+2 + · · ·+ba1+···+ah

Briefly, γ is obtained fromβ by adding consecutive elements as indexed by the compositionα. Clearly,
we haveβ � γ andnγ = nβ.

Here is an example:

α = (1,2,2)3 β = (1,2,1,3,2)5 γ = α ·β = (1,3,5)3

Notice that in general the product is not commutative. Moreover, for every compositionβ = (b j)k,
the following identities hold:

(1,1, . . . ,1)k ·β = β (k)1 ·β =
(
nβ

)
1 β · (1,1, . . . ,1)nβ

= β

The product of two compositions can be computed by scanning their elements from left to right. Here is
an algorithm for computing the product of two compositionsα = (ai)h, β = (b j)k such thatnα = k:
Algorithm - Product of compositions

input α, β
l = 1
for i = 1 to h do

gi = 0
for j = 1 to ai do

gi = gi +bl

l = l +1
end for
output gi

end for

4

The algorithm outputs the elements of the product composition. Clearly it has a linear time complexity
O(n), wheren = nα = k.

3.2 Quotient operation

If two compositions are related by the partial order�, it is possible to define a quotient operation between
them.

Definition 3 Given two compositionsα = (ai)h, β = (b j)k whereα � β (and hence k≤ h), consider the
sequence of indices̀0, `1, . . . `k such that0 = `0 < `1 < · · ·< `k = h and

b j =
` j

∑
i=` j−1+1

ai for every j= 1,2, . . . ,k

Then, the quotientβ/α is the compositionγ = (g j)k of h such that

g j = ` j − ` j−1 for every j= 1,2, . . . ,k

Intuitively, the quotient operation creates a new compositionγ representing the partition of elements of
α to be added up in order to getβ. It is clear thatγ = β/α impliesβ = γ ·α.

For instance:

β = (4,2,5)3 α = (1,3,2,1,1,3)6 γ = β/α = (2,1,3)3

Notice that we have the following special cases, for any compositionα = (ai)h:

α/α = (1,1, . . . ,1)h (nα)1/α = (h)1 α/(1,1, . . . ,1)nα
= α

Also the quotient of two compositions can be computed in linear time by scanning both operands
from left to right. Here is an algorithm that, for an inputα = (ai)h, β = (b j)k satisfying the relation
α � β, computes the compositionγ = (g j)k such thatγ = β/α.
Algorithm - Quotient of compositions

input α, β
i = 1
for j = 1 to k do

g j = 0
s= 0
while s+ai ≤ b j do

g j = g j +1
s= s+ai

i = i +1
end while
output g j

end for

This algorithm outputs the elements of the quotient composition and has a linear time complexityO(h).

5

3.3 Matching operation

We have seen that the quotient operation is the inverse of the product, in the sense thatα ·β = γ implies
α = γ/β. Here we introduce another operation, which allows us to determineβ from γ andα. The main
difference with respect to the previous operations is that now the result is not unique.

Formally, given two compositionsα = (ai)h andβ = (bi)h, whereai ≤ bi for eachi = 1, . . . ,h, a
matching ofα andβ is a compositionδ = (d j)nα such thatα · δ = β, that is setting 0= `0, `1 = a1,
`2 = a1 +a2, . . . ,`h = nα we have

bi =
`i

∑
j=`i−1+1

d j for everyi = 1, . . . ,h .

Observe thatδ� β. Moreover,δ may not be unique since its elements are obtained from possible different
decompositions of theb j ’s. We denote byβ�α the set of all matchings ofα andβ.

As an example, letα = (1,2,3)3 andβ = (1,3,3)3. Then,

β�α = {(1,1,2,1,1,1)6 ,(1,2,1,1,1,1)6}

Observe that a matching ofα = (ai)h andβ = (b j)k always exists wheneverh = k andai ≤ bi for every
i; the matching is unique ifα = β and in this case it coincides with(1,1, . . . ,1)nα

. It is also clear that
computing a matchingδ ∈ β�α (if any) can be done in timeO(nα).

3.4 Contraction of compositions

Here we study a another operation on compositions, called contraction, that is again partial and when
defined it may yield more than one result.

Definition 4 Consider two compositionsα = (ai)h, β = (b j)k such that h≥ k and nα ≤ nβ. We say that
a compositionα′ = (a′j)k is acontractionof α overβ if the following conditions hold:

α � α′ (1)

a′i ≤ bi for all i = 1,2, . . . ,k. (2)

Note that condition (1) impliesnα′ = nα. It is clear that there may be no contraction of two compositions:
for instance this occurs when the maximum element ofα is greater than any element ofβ. On the
contrary, there may be more than one contraction of two compositions; as an example, the contractions
of α = (1,2,1,1) overβ = (5,4) are the following compositions:

(1,4) (3,2) (4,1)

Also observe that there exists at most one contraction wheneverh= k, i.e. α andβ have the same length.
Now, let us define an algorithm that receives as input two compositionsα = (ai)h, β = (b j)k such

thath < k andnα ≤ nβ, it verifies whether there exists a contraction ofα overβ and, in the affirmative
case, it effectively computes such a contractionα′. Observe that we evoid the caseh = k, since this is
reduced to check whetherai ≤ bi for each indexi.

To solve the problem we compute ak-tupleS1,S2, . . . ,Sk where intuitively, eachSi is a set of possible
candidates fora′i defined by pairs of indices(j, `), j ≤ `, such thata′i = a j + · · ·+ a`. More formally,

6

everySi is a set of pairs(j, `) ∈ N2 where 1≤ j ≤ `≤ h, defined as follows:

S1 =

{
(1, `) ∈ N2 |

`

∑
t=1

at ≤ b1 , k−1≤ h− `

}

S2 =

{
(j, `) ∈ N2 |

`

∑
t= j

at ≤ b2 , ∃(s, j−1) ∈ S1 for somes∈ N , k−2≤ h− `

}
· · · · · ·

Si =

{
(j, `) ∈ N2 |

`

∑
t= j

at ≤ bi , ∃(s, j−1) ∈ Si−1 for somes∈ N , k− i ≤ h− `

}
· · · · · ·

Sk =

{
(j, `) ∈ N2 |

`

∑
t= j

at ≤ bk , ∃(s, j−1) ∈ Sk−1 for somes∈ N , `≤ h

}

Clearly, it may occur thatSi is empty for somei: in this case all subsequentSj ’s (with j > i) are empty
and there is no compositionα′ satisfying (1) and (2).

The following procedure computes allSi ’s. Here, for a giveni, Init is the set of indicesj such that
some pair(j, `) belongs toSi . Analogously,Next is the set of indices̀ such that some pair(j, `−1)
belongs toSi .

begin
Init := {1}
for i = 1,2, . . . ,k do

begin
Next:= /0
Si := /0
for j ∈ Init do

begin
` := j
x := a`

while x≤ bi ∧ k− i ≤ h− ` do


add(j, `) to Si

` := `+1

if `≤ h then

{
x := x+a`

Next:= Next∪{`}
end

if Si = /0 then

{
return no
stop

Init := Next
end

end

Once the sequenceS1,S2, . . . ,Sk is built, we look for a pair(j, `) ∈ Sk such that̀ = h. If such a pair
does not exist then there is no contraction ofα overβ. Otherwise, such a contractionα′ can be computed
by the following procedure, which builds a path backwards among the elements ofS1,S2, . . . ,Sk.

begin

7

choose an element(j, t) ∈ Sk such thatt = h
computea′k = a j +a j+1 + · · ·+ah

for i = k−1,k−2, . . . ,1 do
begin

find in Si an element(r, `) such that̀ = j−1
computea′i = ar +ar+1 + · · ·+a`

j := r
end

return (a′1,a
′
2, . . . ,a

′
k)

end

Let us evaluate the time complexity required by the first procedure. Checking whether` ∈ Nextcan
be done in constant time by using an array to implement the setNext. Thus the inner loop requiresO(1)
time. Then, since the procedure executes three nested loops, it works inO(kh2) time.

Concerning the second procedure one can represent eachSi as an array ofh lists Si(`), ` = 1, . . . ,h,
where everySi(`) contains the elements of the form(j, `) in Si . Then, searching for(j, t) in Si with t = `
can be done by choosing the first element ofSi(`), which requires constant time. As a consequence the
second procedure takesO(h) time.

As far as the space complexity is concerned, assume to use the above array representation for each
setSi . Then, in order to run the second procedure, we only need to maintain the first element of each
Si(`) (if any). This allows us to implement the first procedure by using onlyO(kh) space.

Computing contractions in quadratic time
The previous computation can be improved by using an algorithm that solves the problem inO(h2)

time and space. Here, we describe in detail such a procedure.
As a first task, we compute all coefficientsAi j , for integers 1≤ i ≤ j ≤ h, such that

Ai j =
j

∑
t=i

at

This requiresO(h2) time, since anyAi j with i < j can be obtained fromAi j−1 by addinga j .
In a second phase the algorithm computes, for everyi = 1, . . . ,k, a family of pairs(j, `), where

1≤ j ≤ ` ≤ h, such thatA j` ≤ bi ; thusA j` is a possible candidate fora′i . The computation actually fills
up a tableS= {Si` | i = 1, . . . ,k, ` = 1, . . . ,h}, where each entrySi` equals the smallest indexj such that
A j` ≤ bi andSi−1 j−1 6= 0 (Si` is set to 0 if such an index does not exist). More precisely, the entries ofS
are defined as follows:

i) For everỳ = 1, . . . ,h,

S1` =
{

1 if A1` ≤ b1

0 otherwise

ii) For any i = 2, . . . ,k and everỳ = 2, . . . ,h, setting

T = { j ∈ N | 1≤ j ≤ `, A j` ≤ bi , Si−1 j−1 6= 0} ,

we have

Si` =
{

min{ j ∈ T} if T 6= /0
0 otherwise

8

To fill up Sone can proceed row by row. For eachi = 1, . . . ,k, thei-th row can be computed by using
a list Init of initial indices j such thatSi−1 j−1 > 0. The elements ofInit are maintained in increasing
order and at the beginningInit only contains 1. During the computation, another listNewis determined
which contains the initial indices for rowi +1 (this is done by adding̀+1 to NewwheneverSi` is set
to a positive value). Clearly, ifNewremains empty for some rowi < k then all entries of the subsequent
rows will only contain 0.

The details of the computation are described in the following procedure, where we assume that
initially all entries ofSare set to 0. Here,Λ denotes the empty list,f irst(Init) is the first element ofInit
(which isnull if Init = Λ) and j scansInit from the first to the last element.

begin
Init := (1)
for i = 1,2, . . . ,k do

begin
New:= Λ
j := f irst(Init)
` := j
while j 6= null ∧ `≤ h do

begin
if ` < j then ` := j

if A j` ≤ bi then


Si` := j
` := `+1
if `≤ h then add̀ to New

else j := next(j)
end

Init := New
end

end

This procedure consists of two main loops. The outer one is iteratedk many times, once for every
i = 1, . . . ,k. For each value ofi, the inner loop is repeated at most 2(h− i +1) many times, once for every
possible value ofj + `. Since each iteration requiresO(1) time, the procedure works inO(kh) time.

Once tableS is filled in, it is easy to see that a compositionα′ satisfying (1) and (2) exists if and only
if Skh > 0. In this case, we can compute the integersa′i , for i = 1, . . . ,k, by building a path backwards
throughout the rows ofS. The computation is described by the following procedure, which clearly works
in O(k) time.

begin
j := Skh

a′k := A jh

for i = k−1,k−2, . . . ,1 do
begin

` = j−1
j := Si`

a′i := A j`

end
return (a′1,a

′
2, . . . ,a

′
k)

9

end

Observe that the computation of the coefficientsAi j , for 1≤ i ≤ j ≤ h, is the most expensive task in
the algorithm. Hence the overal time and space complexity isO(h2).

3.5 Expansions of compositions

Now, let us consider a sort of dual version of the previous operation. Also in this case the operation is
partial and may yield multiple results.

Definition 5 Consider two compositionsα = (ai)h, β = (b j)k such that h≤ k and nα ≤ nβ. We say that
a compositionα′ = (a′j)k is aexpansionof α overβ if the following conditions hold:

α′ � α (3)

a′i ≤ bi for all i = 1,2, . . . ,k. (4)

Of course condition (3) impliesnα′ = nα. It is also clear that there may be no expansion ofα overβ: this
occurs for instance whennα < k. On the contrary,α may admit many expansions overβ; as an example,
if α = (2,3) andβ = (3,2,3) the corresponding expansions are given by

(1,1,3) (2,1,2) (2,2,1)

Also in this case, ifh = k then there is at most one expansion (actually in this case contraction and
expansion ofα overβ coincide).

Now, let us define an algorithm to compute an expansion of a compositionα over another composi-
tion β, whereα = (ai)h andβ = (b j)k are given as input such thath < k andnα ≤ nβ (the caseh = k is
easy to deal with). The procedure first checks whether such an expansion exists. Note that here we have
to compute a compositionα′ finer (and longer) thanα. This means to group adjacent elements ofβ that
correspond to eachai .

Thus, the first step of the computation determines a sequence of setsL1,L2, . . . ,Lh, where eachLi

contains the possible condidates for groups of adjacentbt ’s that correspond toai . Formally, everyLi

contains pairs(j, `) ∈ N2, where 1≤ j ≤ `≤ k, such that

`− j +1 ≤ ai ≤
`

∑
t= j

bt (5)

(r, j−1) ∈ Li−1 for somer ∈ N (6)

h− i ≤ k− ` (7)

Condition (5) states that positive integersa′j ,a
′
j+1, . . . ,a

′
` exist such thata′j ≤ b j , . . . ,a′` ≤ b` and

∑`
t= j a

′
t = ai . Condition (6) guarantees that the firstj −1 elements ofα′ can be computed which corre-

spond to the firsti−1 elements ofα. Finally, condition (7) assures that the remainingk− ` elements of
α′ (that are still to be computed) are enough to cover the remainingh− i elements ofα.

10

Therefore, we have:

L1 =

{
(1, `) ∈ N2 | `≤ a1 ≤

`

∑
t=1

bt , h−1≤ k− `

}

L2 =

{
(j, `) ∈ N2 | `− j +1≤ a2 ≤

`

∑
t= j

bt , h−2≤ k− ` , ∃(s, j−1) ∈ L1 for somes∈ N

}
· · · · · ·

Li =

{
(j, `) ∈ N2 | `− j +1≤ ai ≤

`

∑
t= j

bt , h− i ≤ k− ` , ∃(s, j−1) ∈ Li−1 for somes∈ N

}
· · · · · ·

Lh =

{
(j, `) ∈ N2 | `− j +1≤ ah ≤

`

∑
t= j

bt , `≤ k, ∃(s, j−1) ∈ Lh−1 for somes∈ N

}
Also here, it may occur thatLi is empty for somei: in this case all the subsequentL j (with j > i) are

empty and hence there is no expansion ofα overβ.
The following procedure computes allLi ’s, whereInit andNextplay the same role as in the previous

section.

begin
Init := {1}
for i = 1,2, . . . ,h do

begin
Next:= /0
Li := /0
for j ∈ Init do

begin
` := j
x := 0
while `− j +1≤ ai ∧ h− i ≤ k− ` do

begin
x := x+b`

if ai ≤ x then

{
add(j, `) to Li

if ` < k thenNext:= Next∪{`+1}
` := `+1

end
end

if Li = /0 then

{
return no
stop

Init := Next
end

end

Once the sequenceL1,L2, . . . ,Lh is built, we go ahead as in the previous algorithm by choosing an
element in each list and choosing the lists from the last one backwards to the first one. First, we look for
an element(j, `) in Lh such that̀ = k. If such a pair does not exist then there is noα′ satisfying (3) and
(4). Otherwise, such an expansionα′ can be computed by the following procedure.

11

begin
r := k
for i = h,h−1, . . . ,1 do

begin
find in Li an element(j, `) such that̀ = r
for t = j, . . . , ` do a′t := 1
x := ai − (`− j +1)
t := j

while x > 0 do


u := bt −a′t
if x≥ u thena′t := bt

elsea′t := a′t +x
x := x−u
t := t +1

r := j−1
end

return (a′1,a
′
2, . . . ,a

′
k)

end

The first procedure works in timeO(hk2) while the second one takesO(k) steps once we maintain
the setsLi ’s as theSi ’s in the previous section. By the same reason, both procedures can be implemented
using a total space of the orderO(hk).

Computing expansions in quadratic time
However, also the previous algorithm can be improved and one can obtain an anologous procedure

that works inO(k2) time. Let us now describe such an optimal version.
In this case our first task is the computation of all valuesBi j , for indices 1≤ i ≤ j ≤ k, such that

Bi j =
j

∑
t=i

bt

As before, this can be done inO(k2) time (for our convenience we assumeBi j = 0 for every j < i).
In a second phase, for everyi = 1, . . . ,h, we compute a family of possible candidates for groups of

adjacentbt ’s corresponding toai . We look for pairs(j, `)∈N2, with 1≤ j ≤ `≤ k, that satisfy conditions
(5), (6) and (7). However, rather than computing all possible pairs having these properties, more simply
we fills up a tableL = {Li` | i = 1, . . . ,h, ` = 1, . . . ,k}, where each entryLi` is the smallestj such that
(j, `) meets the required conditions. More precisely,L is defines as follows:

i) for every` = 1, . . . ,k,

L1` =
{

1 if `≤ a1 ≤ B1`, h−1≤ k− `
0 otherwise

ii) For any i = 2, . . . ,h and everỳ = 2, . . . ,k, setting

T = { j ∈ N | 1≤ j ≤ `, `− j +1≤ ai ≤ B j`, Li−1 j−1 6= 0} ,

we have

Li` =
{

min{ j ∈ T} if T 6= /0 andh− i ≤ k− `
0 otherwise

12

The computation ofL is described by the following procedure. Again we proceed row by row. For
a given rowi, Init is the list of possible inital values ofj that could be put in some entryLi`. Here, the
key observation is that for fixedi and j the constraints (5) and (7) allow us to look for a required` by
scanning backwards the interval[j,k−h+ i]. This can be done efficiently by considering every` such
that i ≤ `≤ k−h+ i, at most once for allj ∈ Init .

begin
Init := (1)
for i = 1,2, . . . ,h do

begin
New:= Λ
j := f irst(Init)
`0 := j
while j 6= null do

begin
` := min{k−h+ i,ai + j−1}

while `0 ≤ ` ∧ ai ≤ B j` do


Li` := j
if ` < k then add̀ +1 toNew
` := `−1

`0 := min{k−h+ i,ai + j−1}+1
j := next(j)

end
Init := New

end
end

The analysis of the procedure can be carried on as in the previous section. Note that the inner loop
is repeated at mostk−h+ i times and it requiresO(1) time. As a consequence both the time and space
complexity of the procedure are of the orderO(hk).

Once tableL is filled in, one checks whetherLhk > 0; if this is not the case then there is no composi-
tion α′ satisfying (3) and (4). Otherwise, such an expansionα′ is computed by building a path backwards
throughout the rows ofL. The computation is described by the following procedure, which clearly works
in O(k) time.

begin
` := k
for i = h,h−1, . . . ,1 do

begin
j := Li`

for t = j, . . . , ` do a′t := 1
x := ai − (`− j +1)
t := j

while x > 0 do


u := bt −a′t
if x≥ u thena′t := bt

elsea′t := a′t +x
x := x−u
t := t +1

13

` = j−1
end

return (a′1,a
′
2, . . . ,a

′
k)

end

Note that, in this case, the computation of allBi j ’s, for 1≤ i ≤ j ≤ k, is the most expensive task of
the algorithm. Hence the overal time and space complexity isO(k2).

4 Repeat-until languages

Given a finite alphabetΣ, let N be the set of all regular expressions overΣ such that:

i) everya∈ Σ belongs toN,

ii) if α,β ∈ N thenα ·β ∈ N (often represented byαβ),

iii) if α is a symbol inΣ or an expressionβ · γ, for someβ,γ ∈ N, then(α)+ ∈ N.

We define arepeat-until expressionas an expressionα ∈N containing just one occurrence ofa for every
a∈ Σ. Thus,πΣ(α) defines a linear order overΣ and, for everya,b∈ Σ, we writea< b if a occurs before
b in πΣ(α). We also denote by RUE the set of all repeat-until expressions overΣ.

For everyα ∈RUE, letL(α) be the language represented byα. Clearly, for everyx∈ L(α) and every
a,b∈ Σ, we have

a < b impliesπa,b(x) ∈ a{a,b}∗b (8)

Moreover, we define acycle of α as a subexpression(β)+ of α such thatβ ∈ N. The stringπΣ(β)
is the body of the cycle,P(πΣ(β)) andU(πΣ(β)) are its header and exit, respectively. For instance,
((ac)+(bde)+)+ is a cycle ofα = h((ac)+(bde)+)+ f g, with headera and exite.

Note that in everyx ∈ L(α) the body of any cycle appears at least once, possibly as a subword
consisting of more factors. This justifies the definition of our expressions: anyα ∈ RUE represents a
program scheme of nested repeat-until cycles and everyx∈ L(α) represents an execution of the program.

Clearly, for anyα ∈RUE,L(α) is a local language [2]. A natural local automatonA(α) recognizing
L(α) can be obtained as follows. Given the stringπΣ(α) = a1a2 · · ·am, with ai ∈ Σ for eachi, the set of
states ofA(α) is Q= {q0,a1, . . . ,am}, whereq0 6∈ Σ is the initial state andam the unique final state. Also,
the family of transitionsE is given by the pairs

E = {(q0,a1)}∪{(ai ,ai+1) | i = 1,2. . . ,m−1}
∪{(a j ,ai) | ai = P(πΣ(β)),a j = U(πΣ(β)) for a cycle(β)+ of α}

Any transition(a,b) ∈ E is labelled by the incoming stateb. For anyq∈Q we also denote bySuc(q) the
family of its successors, i.e. the set{a∈ Σ | (q,a) ∈ E}.

Example 1 Consider the repeat-until expressionα = (a(b)+c)+(d(e)+)+. Then, the corresponding lo-
cal automatonA(α) is defined by the following diagram.

-����
q0

-����
a -����

b -����
c -����

d -����ne?
� �

U?

� �Z

?
� �

Y?

� �X

where X,Y,Z,U represent the cycles(a(b)+c)+, (b)+, (d(e)+)+ and(e)+, respectively.

14

4.1 Hierarchical trees

Here we describe a tree representation of expressions in RUE based on the cycles and the nesting relation.
Givenα ∈ RUE, let us represent the cycles ofα by capitol letters and letC be the family of all of them
together with a special symbolS, which will represent the root of the tree. For everyX,Y ∈ C , we define
X �Y if X is nested intoY or X = Y. We also setX �S for everyX ∈ C . Moreover, we writeX �Y if
X �Y andX 6= Y.

Then we define thehierarchical treeof α as the ordered treeT(α) with rootS, satisfying the following
properties:

1. C is the set of internal nodes andπΣ(α) = a1a2 · · ·am is the ordered list of leaves;

2. For anyX,Y ∈ C , X is son ofY if X �Y andX is immediately nested inY, i.e. there is noZ ∈ C
such thatX �Z�Y;

3. A leafa∈ Σ is son of a nodeX ∈ C if X is the smallest cycle ofα includinga. If a is not included
in any cycle thena is son ofS;

4. sinceT(α) is an ordered tree, there is a linear order< among the sons of any nodeX ∈ C : given
two sonsu,v of X, u < v if u (either as a cycle or as a letter inΣ) occurs beforev in α.

Note thatX �Y holds ifX is descendant ofY in T(α).

Example 2 The hierarchical tree of the repeat-until expressionα defined in Example 1 is described by
the following picture.

ib ie
ia iY ic id iU� @ � A

iX iZ�� @

iS

For everya ∈ Σ, let C(a) be the father ofa in T(α): thusC(a) either is the smallest cycle ofα
containinga or C(a) = S if a is not included in any cycle. Analogously, for everya,b ∈ Σ, a 6= b, let
C(a,b) be the root of the smallest subtree ofT(α) including botha andb. The following proposition
states that all cycles are of the formC(a) or C(a,b) for somea,b∈ Σ.

Proposition 1 Let α ∈ RUE and let X∈ C be a symbol different from S. Then, X= C(a) for some a∈ Σ
or X = C(a,b) for some distinct a,b∈ Σ.

Proof. The property is proved by induction on the height of the nodeX in the hierarchical treeT(α). 2

4.2 Syntactic trees

Now, givenα ∈ RUE, let C andS be defined as in the previous section. Consider the grammar with
regular right partsG(α) defined by the tuple(C ,Σ,S,P), whereC is the set of nonterminals,S is the
initial symbol,Σ is the set of terminals andP is the family of productions given by

P = {(X → γ) | X ∈ C , γ is obtained from the list of sons ofX in T(α)
by replacing each variableY ∈ C by Y+}

15

Example 3 If α is defined as in Example 2 then

P = {(S→ X+Z+),(X → aY+c),(Y → b),(Z→ dU+),(U → e)}

It is clear thatG(α) generatesL(α) in the usual way [9]. Thus, for anyx ∈ L(α) we define the
syntactic treeof x as the derivation tree ofx in G(α). It corresponds to thenested iterated tree(NIT) in
[12].

Example 4 Let α be the repeat-until expression defined in Example 1 and let x be the string

x = abbbcabcdeeedede

Then x∈ L(α) and its syntactic tree is given by the following picture:

ib ib ib ib ie ie ie ie ie
ia !!!iY � iY iY@ icaaa ia � iY ic@ id �

�iU� iUA iUQ
Q id� iUA id� iUA

iX
������������

iX
�

�
�

�

iZAA
A

A

iZHH
HHH

HHH

iZPPPPPPPPPPPP
ilS

Proposition 2 A word x∈ Σ∗ belongs to L(α) if and only if there exists a syntactic tree T that generates
x.

Note that also the syntactic trees are ordered trees. They share several properties in common with
the RUE treeT(α). First of all, they all have rootS. Note that inT(α) there is just one nodeu for every
u∈ Σ∪C , while in a syntactic treeT there may be several nodes labelled byu: for the sake of brevity,
they will be calledu-nodesor u-vertices.

Moreover, if a nodeu ∈ Σ∪ C in T(α) is at a distancek from S then inT all u-nodes are at the
distancek from the root. Since theu-vertices inT are ordered they can be identified by their occurrence
number: if there arem nodes of labelu the i-th u-node is univocally determined for anyi = 1, . . . ,m.

Other properties of the syntactic treeT of a wordw∈ L(α) are the following:

1. For everya∈ Σ, |w|a equals the number of nodes ofT labelled byC(a);

2. For everya,b∈ Σ with a < b, |πa,b(w)|ab equals the number of nodes ofT labelled byC(a,b);

3. For everya,b∈ Σ with a < b, if α = (ai)h is the composition generated byπa,b(w) ona, then inT
there areh nodes labelled byC(a,b) and for anyi = 1, . . . ,h there areai nodes of labelC(a) that
are descendants of thei-th node of labelC(a,b). Moreover, an analogous property holds for the
composition generated byπa,b(w) onb.

Property 3 above actually shows that integer compositions can be used to represent an entire syntactic
tree. To this end we introduce the notion of labelled composition.

Given a syntactic treeT, consider two cyclesA,B∈ C such thatB�A and assumeT hash nodes of
labelA andm nodes of labelB. If A 6= B define the labelled integer compositionαA

B by

αA
B = (a1,a2, . . . ,ah)

16

where, for eachi = 1, . . . ,h, ai is the number ofB-nodes that are descendants of thei-th A-node inT.
Clearly we havem= nαA

B
. On the contrary, ifA = B then set formallyαA

B = (1,1, . . . ,1).
The symbolsA andB are respectively the exponent and the base ofαA

B. It is clear that any syntactic
tree is entirely described by the set of its labelled compositions. Actually a reduced set of such compo-
sitions would be sufficient to define a syntactic tree, since the other ones can be computed by using the
operations of product or quotient, as shown by the following proposition, whose proof is consequence of
the definitions.

Proposition 3 Given a syntactic tree T , let A,B,C be cycles inC such that C�B�A. Then the following
properties hold:

1) αB
C � αA

C

2) αA
C = αA

B ·αB
C and hence αA

B = αA
C/αB

C, αB
C ∈ (αA

C�αA
B)

Further, if A,B,C,D ∈ C satisfy D�C�B�A then

3) αA
C is a contraction ofαB

C overαA
D and αC

D ∈ (αA
D�αA

C)
4) αB

C is an expansion ofαA
C overαB

D and αC
D ∈ (αB

D�αB
C)

We also observe that the set of all labelled compositions of a given syntatic treeT contains the
compositions of the formαS

X = (kX) for everyX ∈ C , wherekX is the number ofX-nodes inT. Note in
particular that, ifX is father ofY in the hierarchical treeT(α) thenαX

Y is a matching ofαS
X andαS

Y.
The previous properties can be used to construct a syntatic tree from a subset of its labelled compo-

sitions. A key property in such a construction is called coherence and concerns the inclusion relation�
among labelled compositions having equal base. LetCompbe a set of labelled compositions. We say
thatCompis referred to a hierachical treeT(α) if, for any αA

B ∈Comp, the cycleB is descendant ofA
in T(α) and, for eachB� A, there is at most one compositionαA

B in Comp. We further say thatComp
is coherentif for every pair of compositionsαA

C,αB
C ∈Comp, B� A implies αB

C � αA
C. We know from

Section 3 that coherence can be checked in linear time.

5 RUE trace language recognition

In this section we describe some general properties of trace languages defined by RUE expressions and
show how they can be used to design algorithms for solving the corresponding recognition problem.
We recall that, given an independence alphabet(Σ, I) and a RUE expressionα on Σ, the membership
problem for the trace language[L(α)] ⊆ M(Σ, I) consists of verifying, for an inputx∈ Σ+, whether the
set[x]∩L(α) is empty.

Theorem 4 Given a RUE expressionα and an independence alphabet(Σ, I) with dependence relation
D, for any x∈ Σ+ we have[x]∩L(α) 6= if and only if the following conditions hold.

a) For every a,b∈ Σ such that a< b and aDb, we haveπa,b(x) ∈ a{a,b}∗b.

b) There exists w∈ L(α) having syntactic tree T such that:

b1) For all a ∈ Σ, there are|x|a nodes labelled by C(a) in T ;

b2) For every a,b ∈ Σ such that aDb and a< b, |πa,b(x)|ab equals the number of nodes of T
labelled by C(a,b);

17

b3) For any a,b∈ Σ such that aDb, let(i1, i2, . . . , ih) be the composition generated byπa,b(x) on
a. Then, the first i1 nodes labelled by C(a) in T are descendants of the first C(a,b)-node,
the subsequent i2 nodes labelled by C(a) are descendants of the second C(a,b)-node, and
so on till the last ih nodes labelled by C(a), that are descendants of the last C(a,b)-node.
Moreover, an analogous property holds for the composition generated byπa,b(x) on b.

Proof. First recall that a wordw belongs to[x] if and only if |x|a = |w|a for everya∈ Σ andπa,b(x) =
πa,b(w) for every pair of distinct symbolsa,b∈ Σ such thataDb. Therefore, if there existsw∈ [x]∩L(α)
thenw satisfies condition (8) and properties 1, 2, 3 of Section 4.2. Since the projections ofx andw on
the pairs of (possible coincident) dependent symbols are equal, the same properties hold forx, proving
both conditions a) and b).

On the other hand, if these two conditions are true then bothx andw have the same projections on
the pairs of (possible coincident) dependent symbols, and this proves thatw∈ [x]∩L(α). 2

A natural idea to solve the problem is to try to construct the syntactic treeT of a wordw∈ [x]∩L(α).
The computation may consist of two phases: first the nodes are determined, i.e. one calculates the
number ofX-nodes inT for every cycleX. Then, all edges are established by computing the labelled
compositionsαA

B of T for every pairA,B∈ C such thatA is father ofB in T(α).

5.1 Construction of the nodes

First of all, the root is the unique node labelled byS. Then, the leaves ofT are determined by the
occurrences of symbols ofΣ in x: for everya∈ Σ one checks that|x|a ≥ 1 and adds|x|a leaves labelled
by a in T.

As far as the internal nodes are concerned, it is clear that for everyX ∈ C , X 6= S, the number of
X-nodes inT must satisfy conditions b1) and b2) of Theorem 4. This leads to consider the setsFX and
GX defined by the following equations:

FX = {a∈ Σ | X = C(a)} (9)

GX = {(a,b) ∈ Σ2 | a < b,aDb,X = C(a,b)} (10)

If FX 6= /0 or GX 6= /0 we verify whether there existskX ∈ N such thatkX = |x|a for all a ∈ FX, and
kX = |πa,b(x)|ab for all (a,b) ∈ GX. If both conditions are true, then any possibleT containskX nodes
labelled byX, otherwise such a tree does not exist.

However, if FX = GX = /0 the previous computation cannot apply. In this case, to determine the
number ofX-nodes inT we can use the following proposition, stating that we are allowed to introduce
as manyX-node as the number of vertices inT labelled by the father ofX in T(α).

Proposition 5 Given X∈ C such that X6= S and FX = GX = /0, let Y be the father of X in T(α) and
consider a word w∈ L(α). Then, there exists z∈ L(α)∩ [w] such that every Y-node in the syntactic tree
of z has just one son labelled by X (and hence the number of X-nodes equals the number of Y-nodes).

For the proof see Proposition 1 in [12].
Taking into account Propositions 1 and 5, we can summarize the previous discussion by the following

program that constructs the set of internal nodes ofT different fromS.

begin
B := /0

18

for X ∈ C\{S} do
begin

computeFX andGX

if FX = GX = /0 then addX to B
else if ∃k∈ N such thatk = |x|a for everya∈ FX

andk = |πa,b(x)|ab for every(a,b) ∈GX

then addk manyX-nodes inT
else rejectx and stop

end
for X ∈ B (in order of distance fromS) do

begin
Y := father ofX in T(α)
h := number ofY-nodes inT
addh manyX-nodes inT
for i = 1,2, . . . ,h do

make thei-th X-node son of thei-th Y-node inT
end

end

Note that the non-root internal nodes computed by the previous procedure are partitioned according
to their labels. In particular, for everyX ∈ C\{S} there arekX nodes inT labelled byX.

5.2 Construction of the edges: an example

Once the nodes ofT are computed, one can try to determine the father of each vertex (except for the root)
by using the operations over labelled compositions introduced in Section 4.2. We are not able here to
give a general procedure (as we did for the nodes) because the previous operations do not always yield a
unique result and this ambiguity may affect the final result. We only present here an example that shows
how to define an algorithm in specific cases when the structure of the hierarchical tree allows us to evoid
ambiguities in the applications of the operations on compositions.

The idea is to use properties b1), b2) and b3) of Theorem 4 to define an initial set of compositions
and then close such a set with respect to the operations of product, quotient, contraction, expansion and
matching. In some cases the structure of the expression allows us to complete the tree even if some
operations (contraction and expansion) admit multiple solutions.

Let α ∈ RUE be defined by the following diagram:

-����
q0

-����
d -����

c -����
b -����

g -����
f -����na?

� �
D?

� �
C?

' $
B

?
� �

G?

� �
F?

' $
A

Here the set of cycle is defined byC = {S,A,B,C,D,F,G} and the correspoding hierarchial tree is given
by

19

id ig
iD ic iG if� A � A

iC ib iF
!!!

aaa
iB ia!!!

aaa
iA
iS

Moreover, assume that the dependency pairs are(a,d), (b,c), (f ,g). Therefore the nodes of a possi-
ble syntactic tree are determined as in Section 5.1 by using the following relations:

A = C(a) = C(d,a) , B = C(b) = C(c,b) , C = C(c)
D = C(d) , F = C(f) = C(g, f) , G = C(g)

Thus, given an inputx ∈ Σ∗, for each cycleX ∈ C different fromS we can obtain the numberkX of
X-nodes in the syntactic treeT of a possiblew∈ [x]∩L(α). Note that in our case there is noX ∈ C such
thatFX = GX = /0.

Then the contruction of the edges ofT is described by the following computation that determines the
setCompof compositions defining the tree.

1) Comp:= /0
2) for all X ∈ C add toCompthe labelled compositionαS

X = (kX)
3) compute the labelled compositionαA

D generated byπda(x) overd
compute the labelled compositionαB

C generated byπbc(x) overc
compute the labelled compositionαF

G generated byπg f(x) overg
addαA

D, αB
C andαF

G to Comp
4) Check coherence ofComp
5) compute a contractionαA

C of αB
C overαA

D and a corresponding matchingαC
D

add bothαA
C andαC

D to Compand check coherence
6) compute the quotientαA

B = αA
C/αB

C and add it toComp
7) compute a matchingαB

F = αS
F �αS

B and add it toComp

If any of the previous step cannot be completed then the procedure stops and rejects the input. Other-
wise, at the end of the computation, the setCompcontains all the labelled compositionsαX

Y for every pair
father-son(X,Y) in T(α). Moreover, by constructionCompis coherent and hence its closure with respect
to the product yields the set of all labelled composition of the syntactic treeT of a wordw∈ [x]∩L(α).

We conclude observing that the procedure works in timeO(n2) wheren = |x|, since this is the time
required by step 5) while the other ones can be executed in linear time.

References

[1] A. Avellone, M. Goldwurm. Analysis of algorithms for the recongnition of rational and context-free
trace languages.RAIRO Theoretical Informatics and Applications32: 141-152, 1998.

[2] J. Berstel, J.-E. Pin. Local languages and the Berry-Sethi algorithm.Theoret. Comput. Sci.155:439-
446, 1996.

20

[3] A. Bertoni, M. Goldwurm, G. Mauri, N. Sabadini. Counting techniques for inclusion, equivalence
and membership problems, inThe book of traces, V. Diekert and G. Rozenberg Editors, World Scien-
tific, 131-163, 1995.

[4] A. Bertoni, G. Mauri, N. Sabadini. Equivalence and memberchip problems for regular trace lan-
guages. Proc. 9th ICALP, LNCS 140: 61-71, Springer-Verlag, 1982.

[5] A. Bertoni, G. Mauri, N. Sabadini. Unambiguous regular trace languages. Proc. Coll. on Algebra,
Combinatorics and Logic in Computer Science, Colloquia Mathematica Soc. J. Bolyai, 42: 113-123,
North-Holland, 1985.

[6] A. Bertoni, G. Mauri, N. Sabadini. Membership problems for regular and context-free trace lan-
guages.Information and Computation82 (2): 135-150, 1989.

[7] L. Breveglieri, S. Crespi Reghizzi, A. Savelli. Efficient word recognition of certain locally defined
trace languages. Proc. 5th Int. Conf. on Words, Montreal (Canada), September 2005.

[8] P. Flajolet. Mathematical methods in the analysis of algorithms and data structures, inTrends in
Theoretical Computer Science, E. Börger Editor, Computer Science Press, 225–304, 1988.

[9] W. LaLonde. Regular right part grammars and their parsers.Communications of the ACM20 (10):
731–741, 1977.

[10] W. Rytter. Some properties of trace languagesFund. Inform.7:117-127, 1984.

[11] J. Sakarovitch. On regular trace languages.Theoret. Comput. Sci.52: 59-75, 1987.

[12] A. Savelli, Two contributions to automata theory on parallelization and data compression, Doctoral
Thesis, Politecnico di Milano, Université de Marne-la-Vallée, June 2007.

21

