
1

A synopsis based approach for XML fast

approximate querying

Sara Comai, Stefania Marrara, and Letizia Tanca

Politecnico di Milano, Dipartimento di Elettronica e Informazione
Piazza L. Da Vinci 32, I-20133 Milano, Italy
{comai, marrara, tanca}@elet.polimi.it

Summary. XML was born to represent, exchange and publish information on the
Web, but now it has spread in many other applications. Due to this success, the W3C
has proposed a new query language, XQuery, specifically designed to query XML
data. XQuery allows to obtain exact answers to queries; however when applied to
large XML repositories or warehouses, such precise queries may require high response
times. Our research proposes a methodology for the semi-automatic derivation of
summarized documents (synopses) for massive, heterogeneous XML data-sets, with
the final aim of producing query transformation rules from queries on the original
data-sets to queries on the summarized data-set.

1.1 Introduction and Motivation

In the last few years, XML has spread in many application fields and today
it is used as a format to exchange data on the web, to ensure interoperabil-
ity among applications. Due to this success, the W3C has proposed a new
query language, XQuery [W3C04], specifically designed to query XML data.
XQuery is a well-defined but rather complex language [HPG04]. In this work
we propose a new approach to overcome the problem of the high computa-
tional costs required by aggregate queries over massive XML data collections.
In traditional relational warehouses [GPA+98] a similar problem is solved by
means of fast approximate queries, that use concise data statistics based on
histograms or on other statistical techniques. Their most common application
is for aggregate queries in modern decision support systems, where large vol-
umes of data need to be queried, and quick and interactive responses from
the DBMS are claimed, e.g., to analyze the data in the warehouse in order to
get trend information to evaluate marketing strategies. In such applications,
users are often more interested to obtain an approximate answer computed
in a short time rather than an exact one obtained in some minutes or, at the
worst, hours.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIR Universita degli studi di Milano

https://core.ac.uk/display/187828323?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In this work we show how to extend one of such approaches also to query
massive XML data sets, to obtain approximate answers in very short compu-
tation times.

The basic idea for approximate answers is to store pre-computed sum-
maries of the XML warehouse, also called synopses (concise data collections),
and to query them instead of the original database, thus saving time and
computational costs. For this reason we attempt at obtaining a synopsis with
a structure as similar as possible to the original one in order to combine con-
ciseness of the data set and easiness of the query formulation. In our scenario,
the user should pose a query to the system, which should use the synopsis
instead of the original data to answer the query. Consequently, the answer
should come within a much shorter time to the price of a loss in precision.
The research work’s purpose involves techniques for such transparent query
transformation, as well as evaluation methods for estimating the error pro-
duced by the evaluation of the query on the synopsis instead of the original
data.

The structure of the work is as follows. Section 1.2 introduces a general
overview of the full approach and an example of XML collection that will be
used during the exposition of the approach. Section 1.3 presents some basic
definitions. In Section 1.4 we describe the structure of the synopsis and define
how to automatically create the XQuery query to construct the synopsis of
a given structure. Section 1.5 describes how to transform a query in XQuery
on the original data set into the corresponding query on the synopsis. Section
1.6 contains considerations about the quality of the approach. Section 1.7
shows the results of some experiments generated by means of a prototype
tool, Section 1.8 presents some literature works about synopses, and, finally,
in Section 1.9 we outline our conclusions.

1.2 Overview of the approach

Fig.1.1 shows the basic steps of our approach: initially, a collection of XML
documents, sharing a unique DTD or schema, is collected in a smaller group
of XML documents, each document representing a summarization of the data
contained in the original collection by means of statistical techniques. This
new collection is called synopsis and the summarization is obtained by means
of a XQuery transformation TR from the original data. The XML synopsis
conforms to a new schema (e.g., DTD) generated from the original schema by
a step by step XQuery transformation.

When the user poses an aggregate query Q, over the original XML col-
lection, his/her query is transformed by a XQuery transformation QTR into
a query to the synopsis collection Q′. Finally, the answer (probably approxi-
mate) is computed and returned to the user.

In the general case, the collection of XML documents we suppose to deal
with is composed by several different groups, each of them sharing the same

2

QTR

XML
……..
……..
……...

TR

XQuery engine

XQuery
……..
……..

XML
……..
……..
……...

XML
……..
……..
……...

XQuery
……..
……..

XML
……..
……..
……...

XML

USER

XML
……..
……..
……...

Result

Synopsis

Q Q’

Document
collection

BATCH

RUN-TIME

Fig. 1.1. The XQuery approach for XML synopsis

DTD or the same XML Schema. In the sequel we will use the word schema
referring both to DTD and XML Schema. In our approach, each group of
documents is summarized using a statistical technique creating one synopsis.
The union of all the synopses generated from each group of documents com-
poses the entire synopsis of the XML document collection. We use only one
summarizing technique for the entire data collection (e.g., we use the equi-
width histograms), so that it is possible to use just one implementation of the
statistical aggregate functions to query the resulting synopsis. This choice mo-
tivates why in this work we prefer to deal with DTDs and not XML Schemas:
DTDs are a weaker formalism than XML schema but they give the necessary
knowledge about the structure of the XML document tree. Since we do not
use different statistical techniques inside the same synopsis, we do not really
need a deep knowledge of the data types used in the original data collection
and then we do not need the more complex XML Schema formalism. More-
over, there exist many collections of data, that could have benefit from our
methodology, that do not have a real schema and the DTD is created a poste-
riori. Naturally, the choice of the statistical technique is application dependent
and can be different for each collection we analyze, then, nobody denies that
in some applications XML Schemas could be more useful than DTDs; in this
work, we focus on histograms because they seem the most suited statistics
for the mixed content of a generic XML document, which typically stores
categorical elements (e.g., names or colors etc.) and numerical elements (e.g.,

3

ages or prices) together in the same document. Indeed, it is possible to use
wavelets to summarize only numerical data, while samples work well with
uniform distributions that are not common in XML.

1.2.1 Running example

During the exposition of the approach, we consider the following schema
(DTD) describing a car store: cars are characterized by color and selling de-
tails including model, customer’s city and price and optional features of the
sold car. Fig.1.2 shows a sample XML document conforming to such schema.

<? xml version = ”1.0” ?>
<!ELEMENT list (car+)>
<!ELEMENT car(selling, color)>
<!ELEMENT selling(details)>
<!ELEMENT details(model, city, price, optional*)>
<!ELEMENT model (PCDATA)>
<!ELEMENT color (PCDATA)>
<!ELEMENT city (PCDATA)>
<!ELEMENT price (PCDATA)>
<!ELEMENT optional (PCDATA)>

1.3 Representing summarized XML data

Following a common use, we represent a XML document as a tree T = (V,E),
where V is the node set comprising both nodes representing tags and nodes
representing text content and attributes. Attributes are not explicitly handled
in this work because, if a literal semantics [GMW99] for the representation
of XML documents is adopted, they can be treated as a particular case of
PCDATA elements. E ⊆ V × V represents elements and text containment
arcs. The target document collection can be composed by groups of docu-
ments having different schemata, and, in this case, the proposed approach is
applied separately to each group, while the final synopsis is the union of all
the synopses generated by the different groups.

We represent XML elements with their paths from the root of the docu-
ment they belong to using a XPath 1.0 [W3C99] notation, in order to distin-
guish elements with the same tag name but with different internal meaning
(e.g., a person’s home address is different from the address of the company
the person belongs to).

The entire methodology to create an XML synopsis can be described by
the following steps:

• Initially, the designer investigates the target data collection, in order to
identify the most common aggregate queries in the application. On the

4

<list>
 <car>
 <color> white </color>
 <selling>
 <details>
 <model> Fiat Brava </model>
 <city> Milano </city>
 <optional> ABS </optional>
 <optional> airbag </optional>
 <optional> electronic closure key </optional>
 </details>
 </selling>
 </car>
 <car>
 <color> white </color>
 <selling>
 <details>
 <model> Fiat Brava </model>
 <city> Roma </city>
 <optional> ABS </optional>
 </details>
 </selling>
 </car>

<car>
 <color> white </color>
 <selling>
 <details>
 <model> Opel Corsa </model>
 <city> Milano </city>
 <optional> airbag </optional>
 <optional> electronic closure key
</optional>
 </details>
 </selling>
 </car>
 <car>
 <color> white </color>
 <selling>
 <details>
 <model> Fiat Marea </model>
 <city> Milano </city>
 </details>
 </selling>
 </car>
</list>

Fig. 1.2. A sample XML document

basis of this set of queries, he/she identifies a collection of frequent queried
aggregations and the parameters of each histogram involved;

• Then the synopsis is automatically created by a XQuery engine on the
basis of the structure decided in the previous step;

• The data collection is ready for querying: each query is transformed and
redirected to the synopsis, obtaining an answer (possibly approximate) in
a much shorter time than querying the original data set.

At the beginning of the design of a synopsis, we identify the descriptor
of the synopsis as a collection of frequent queried aggregations. The most
natural set of synopses for an approximate query engine would include an
aggregate element for each leaf element in the document tree. We refer to
documents containing those aggregate elements as base synopses. We would
like to evaluate the relationship between two leaf elements in the tree by means
of some kind of combination of the base synopses of the target elements. This
approach is similar to the problem of evaluating a join between two relations
trying to combine the base synopses of the relations themselves. This problem
has been discussed in literature in [AGPR99]: in this work they prove that the
use of base samples to estimate the output of a join of two or more relations
can produce a poor quality approximation. The reasons that motivate this
claim are also valid in the histogram domain:

5

• non-uniform result distribution: in general, the join of two histograms
does not represent the real data distribution of the output of the join,
since each original data item can be collected into one or more histograms
depending on the dimensions chosen to build the statistics;

• inaccurate result compositions: the join of two histograms typically
composes bucket frequencies instead of the actual data. This can lead
to both inaccurate answers and very poor confidence bounds since they
compose the errors committed when we consider a frequency value instead
of the real data value.

These considerations motivate our choice to construct the set of synopses tak-
ing into account the most common aggregate queries and the most interesting
relationships among the elements of the document structure. In this scenario
each synopsis can answer a limited (but interesting to the user) set of queries
but the accuracy is guaranteed.

Definition 1 [Synopsis descriptor] The descriptor of a XML synopsis is
defined by a set of pairs Hs={(summ e, < crit g1, . . . , crit gn >)}, where

• summ e is the path expression of the element to be summarized, and
• < crit g1, . . . , crit gn > (i.e., grouping criteria) is a (possibly empty) se-

quence of path expressions of the elements whereof the element given by
summ e is grouped in the summarization process.

As histograms are constructed over elements and not over paths, in the
sequel we will use the name summ e just to indicate the leaf element of the
path named summ e and crit g for the leaf element of the path crit g.

As an instance, referring to the running example, suppose that the user
be interested in storing a summarized collection about the models of the cars
w.r.t. the color and the city where the cars were sold. In this case, Hs is
represented as follows:
Hs={(summ e, <crit g>)}={(list/car/selling/details/model,
<list/car/color,list/car/selling/details/city>)}.

Once the descriptor of the synopsis document has been defined, another
important decision is the set of parameters (e.g., number of buckets or bound-
ary values) of the histogram that will store the data of summ e.

Definition 2 [parameter document] The parameter document P is an
XML document containing the boundaries of the buckets of the histogram
to be obtained by the summarization described by a pair (summ e,<
crit g1, ..., crit gn >). The document can have the following structure:

• if summ e ends with a categorical element (e.g., the element <color>)
an interval content of a sample bucket of its histogram has the form <
interval >< bv > value < /bv >< /interval >, where bv stands for
boundary value;

6

Original data
Collection

(T
1
,..., T

n
) + H

s
 + P

Synopsis data
Collection
(T'1,..., T'k)

TR

Q

Q’

QTR

x

x'

err}

Fig. 1.3. Transformation diagram between the original data collection and the
corresponding synopsis, and between the aggregate queries, exact and approximate.
In the figure, x and x’ are the result of the original query and the result of the
approximate one respectively.

• if summ e ends with a numerical element, the interval can have the form
< interval >< bvmin > value < /bvmin >< bvmax > value < /bvmax ><
/interval >)

For example, if summ e ends with the element <color> (a categorical
element) of the running example, an interval content of a sample bucket of
its histogram has the form < interval >< bv > blue < /bv >< /interval >,
while if summ e ends with a numerical value, the interval can have the form <
interval >< bvmin > 0 < /bvmin >< bvmax > 99 < /bvmax >< /interval >.

The correspondences between the original data collection and the corre-
sponding synopsis collection, between the original query and the query on
the synopsis, and their results are shown by the diagram of Fig. 1.3. In the
figure, the original query Q applied to the data collection produces an exact
result x; moreover a transformation rule QTR computes the query Q′ that,
applied to the synopsis created by the transformation rule TR, produces a
new result x′, which may be different from x. This difference is expressed by
the approximation error err, which will be described in the sequel.

Given Hs and P , the XQuery transformations involved are expressed as
follows:

Definition 3 [TR] Given a set {T1, . . . , Tn} of XML documents (where
{T1, . . . , Tn} share the same schema), we call TR : ({T1, . . . , Tn},Hs, P)
→ {T ′

1, . . . , T
′

k
}, k ≤ n (often it will be k ≪ h) the transformation able to

construct the XML synopsis(DATAsyn). {T
′

1, ..., T
′

k
} is a (small) set of XML

documents conforming to one new schema, which we call synopsis schema.

Definition 4 [SchemaTransf] Let {S1, ..., Sn} be the set of schemata of
the target XML data-set. We call SchemaTransf : ({S1, ..., Sn},Hs) →
{S′

1, . . . , S
′

k
} the transformation on the schemata of the initial set of docu-

ments to construct the corresponding synopsis schemata, {S′

1, . . . , S
′

k
}.

Definition 5 [QTR] Let {Q} be a set of aggregate queries on the original
data set and {Q′} be the set of corresponding synopsis queries. Then, QTR :

7

{Q} → {Q′} is the transformation that returns, for each original query Q ∈
{Q}, a new query Q′ ∈ {Q′}.

If we consider the aggregate queries, let x ∈ R be the exact numerical
answer of an aggregate query Q and let x′ ∈ R be the corresponding estimated
answer on the synopsis. Then, the approximation error of Q can be measured
in absolute, relative or combined terms [MVW98] as follows:

• Absolute error of a query:
errabs = |x − x′|.

• Relative error of a query:

errrel = err
abs

x
=

|x−x
′|

x
, for x > 0.

• Combined error of a query:
errcomb = min{α∗errabs, β∗errrel}, where α and β are positive constants,
used to tune the relative importance of the two errors one w.r.t. the other.
If x = 0, then errcomb = α ∗ errabs.

For a more detailed explanation about error approximation measures see
[MVW98]. In Section 1.6 we apply these definitions to our methodology and
study the degree of approximation obtained querying our synopses instead of
the original data.

1.4 Structure of the synopsis

In this section we describe the methodology for the design and construction
of a synopsis for a given set of XML documents. To simplify the synopsis
construction we suppose that for each element e ∈ Hs a single XML synopsis
document be obtained.

Since we consider documents containing both categorical and numerical
data, in this work we summarize the XML data collection by means of equi-
width histograms. Equi-width histograms group contiguous ranges of the ele-
ment values into B buckets with the criterion that the sum of the spreads of
the values in one bucket is approximately equal to 1/B-times the sum of the
spreads of all values. In order to construct the equi-width histograms of the
synopsis the designer must fix the boundary values of each bucket, deciding
the content of the parameter document P . To describe P we use the following
definition:

Definition 6 [Active Domain] We call active domain D of an element e the
set of distinct element values of the domain of e that actually appear in the
target XML document collection.

The synopsis histogram is constructed according to the following rules:

• Given e ∈ Hs, the histogram collects the data represented by summ e;
• if summ e is a leaf node, each boundary value represents

8

– a value of the active domain of summ e leaf element if this is a cate-
gorical element (e.g., color or city),

– an interval in the active domain of summ e leaf element if it holds a
numerical value.

• If summ e is a non-leaf element, and A1, . . . , An are the active domains
of the descendant leaf elements of summ e, then the summ e histogram
holds the Cartesian product
BV = A1 × . . . × An;

• the frequency value freq represents the number of summ e values that
satisfies the grouping conditions expressed by < crit g1, . . . , crit gn > and
belongs to the bucket defined by the boundary value.

• if we consider histograms of numerical data, the buckets must not overlap
in order to avoid that the same item of the document collection be counted
twice in the histogram.

As an example, referring to the schema of the running example in Sect.1.2.1
consider the synopsis where summ e is list/car/color, i.e., a categorical leaf
element. In this case, let us suppose that the boundary values be blue, red,
black and grey, hence the parameter document P is shown in Figure 1.4:

blue red black

hist

bucket

interval

bv

bucket bucket bucket

interval interval interval

bv bv bv

grey

Fig. 1.4. The parameter document for a categorical element histogram

If summ e is list/car/selling/details/price, i.e., a numerical leaf element,
the boundary values can range from $5000 of the cheapest car to $65000 of
the most expensive one sold in the store. Therefore, a possible parameter
document P of the histogram of this element is shown in Figure 1.5:

Using the equi-width histograms, the parameter document of a numerical
element can be automatically constructed providing as parameters the total
range of the possible values of the elements (e.g., 5000 to 65000) and the
number of buckets to construct (e.g., 6).

If summ e is list/car/selling/details, i.e., a non-leaf element, the values to
be considered in the histogram are obtained as combinations of the leaf descen-
dant values list/car/selling/details/model, list/car/selling/details/city,
list/car/selling/details/price, and list/car/selling/details/optional. For

9

hist

bucket

interval

bucket bucket bucket

interval

5000

bvmin
bv

max

14999

15000

bvmin
bv

max

24999

interval

55000

bvmin
bv

max

65000

...

Fig. 1.5. The parameter document for a numerical element histogram

example, one possible value for detail is the tuple (FiatBrava,Rome,
$12000, ABS). Let us now consider three possible situations:

• all the leaf descendant of summ e have cardinality (1:1) w.r.t. summ e.
In this case a possible parameter document P is shown in Figure 1.6:

hist

bucket
bucket

Fiat
Brava

interval

bv

Rome

interval

bv
ABS

interval

bv15000

bvmin
bv

max

24999

model

city price

optional

...

Fig. 1.6. The parameter document for an element having leaf descendants with
cardinality 1:1

Note that the path nodes between summ e and the leaf descendant val-
ues considered as boundary value of the histogram appear in each bucket
structure between the node < bucket > and the node < interval >.

• if one or more leaf descendant of summ e are optional elements (cardinality
(0:1)), we overcome the problem by adding to the active domain of the
optional element/s the value ND (i.e., Not Determined) in order to store
the elements that do not contain the optional element in the document.
As an example, let us suppose that summ e is list/car/selling/details
and city is optional with active domain A = {Rome,Milan, V erona}.

10

The new active domain of city used for constructing the histogram is A =
{Rome,Milan, V erona,ND}, therefore a possible parameter document
will contain also the buckets dealing with the absence of a city value in
some documents of the original collection (see, as instance, Figure 1.7).

Fiat
Brava

interval

bv

hist

bucket
bucket

ND

interval

bv
ABS

interval

bv

5000

bvmin
bv

max

14999

model

city price

optional

interval

...

Fig. 1.7. The parameter document for an element having leaf descendants with
cardinality 0:1

• if one or more leaf descendant of summ e can appear more than once
in summ e sub-tree (cardinality (0:n)) then we note an explosion in the
number of the buckets composing the histogram. Indeed, we should con-
sider any possible combination of the children elements values of summ e
taking into account the possibility that the same element can appear more
than once in the same document. Therefore this case is deprecated, and we
strongly suggest not to choose as summ e an element containing children
elements with cardinality n. A possible solution is to choose as summa-
rized element one of the children of the element we would like to summarize
with cardinality 1:1 w.r.t. summ e. As instance, consider the P document
fragment in Fig. 1.8 constructed supposing that the same car model can
be sold in Rome or in Milan or in both towns:

Obviously, if we consider a more complex case where the number of possible
cities can be n >> 2, then the number of buckets in each histogram (one for
each model) increases more than exponentially.

1.4.1 XQuery rules for synopsis computation

We now define the transformation TR to construct the standard synopsis from
the original data collection. There are two main cases:

• construction of the histogram of a leaf element (leaf summ e);
• construction of the histogram of a non leaf element (non leaf summ e);

11

hist

bucket
bucket

model

city

bucket

Fiat
Brava

interval

bv

Rome

interval

bv Fiat
Brava

interval

bv

Rome

interval

bv

model

city

Milan

interval

bv

city
model

Fiat
Brava

interval

bv

Milan

interval

bv

city

Fig. 1.8. The parameter document for an element having leaf descendants with
cardinality 0:N

Case of leaf summarized element

The histogram of each e = (summ e,< crit g1, . . . , crit gn >), where summ e
is a leaf element, can be computed using the XQuery code Qhist, where
www.doc.com is a URI containing the set of documents to summarize, while
www.parameters.com specifies the parameter document P of the element to
summarize. The code Q(hist) is the following:

1.<hist>
2. LET $V := document(”www.doc.com”)/summ e
3. FOR $b IN document(”www.parameters.com”)/interval
4. RETURN
5. <bucket>
6. <interval>
7. FOR $bv in $b//bvmin

8. < bvmin > $b//bvmin[text()] < /bvmin >
9. < bvmax > $b//bvmax[text()] < /bvmax >
10. FOR $bv2 in $b//bv
11. <bv> bv2[text()] </bv>
12. </interval>
13. <freq> count(IF /interval//bvmin

14. THEN $V[text()>$b//bvmin/text() AND
15. text()<$b//bvmax/text()]
16. ELSE $V[text()=$b//bv/text()])
17. </freq>
18. </bucket>
19. </hist>

The construction of the histogram is based on two FOR clauses (lines 7
and 10), selecting for each bucket the appropriate boundary values (numerical
or categorical); then, function count in line 13 computes the frequency of the
bucket represented by the chosen boundary value(s).

12

Case of non-leaf summarized element

If summ e is a non-leaf element the Cartesian product of its descendant leaf
elements must be computed; indeed the tuple of values contained into its
descendant leaf elements represents the content value of summ e: Qhist be-
comes more complex. Indeed, in this case we do not have a fixed XQuery
query as in the previous case but we need a function able to construct the
query case by case. In the following we show the pseudo code of this function,
named create hist. Inputs of the function are the element to be summarized
summ e, the grouping criterion sequence <crit g>, the list of leaf children of
summ e, the target document collection doc and the histogram parameter
document P . The function returns the query string for the construction of
the histogram of summ e.

string create_hist(summ_e, <crit_g>, leaf_children(summ_e),

doc, P)

{

string q, t;

element el;

q.insert("<hist> LET $V:=document(",doc,"/",summ_e);

q.insert(endline);

q.insert("FOR $b IN document(", P,")/interval", endline,

"RETURN <bucket><interval>",endline);

while(leaf_children(summ_e) is not empty)

{ el = first element of leaf_children(summ_e);

if (el is a numerical element)

{q.insert("<el>", endline);

q.insert("FOR $bv IN $b//",el,"/bv_min", endline,

"<bv_min>$b//",el,"/bv_min[text()]</bv_min>",endline,

"<bv_max"$b//",el,"/bv_max[text()]</bv_max>",endline);

t.insert("text()>$b//",el,"/bv_min[text()]AND

text()<$b//",el,"/bv_max[text()]");

remove el from leaf_children(summ_e);

if(leaf_children(summ_e) is not empty)

t.insert("AND");

}else if(el is a categorical element)

{q.insert("<" el ">", endline);

q.insert("FOR $bv2 IN $b//",el,"/bv", endline,

"<bv>",bv2,"[text()]</bv>",endline);

t.insert("text()=$b//",el,"/bv[text()]");

remove el from leaf_children(summ_e);

if(leaf_children(summ_e) is not empty)

t.insert("AND");

}

q.insert("</",el,">",endline);

}

q.insert("</interval>",endline);

q.insert("<freq> count($V[",t,"])</freq>",endline);

13

q.insert("</bucket>",endline,"</hist>");

}

The function create hist uses two strings, q and t: q stores the query,
while t stores the boundary values of each bucket in order to compute the
frequency of the bucket itself. For each bucket, the while cycle creates the
structure of the bucket and stores the values of the boundary values given
in P in the string t, which is used at the end of the function to compute
the frequency. For example, the query constructed to create the histogram
of the element list/car/selling/details (with children model, city, price and
optional) is:

<hist> LET $V:=document("www.doc.com")/list/car/

selling/details

FOR $b IN document("www.parameters.com")/interval

RETURN <bucket><interval>

FOR $bv2 IN $b//model/bv

<model>

<bv> $bv2[text()]</bv>

</model>

FOR $bv2 IN $b//city/bv

<city>

<bv> $bv2[text()]</bv>

</city>

FOR $bv IN $b//price/bv_min

<price>

<bv_min>$b//price/bv_min[text()]</bv_min>

<bv_max>$b//price/bv_max[text()]</bv_max>

</price>

FOR $bv2 IN $b//optional/bv

<optional>

<bv> $bv2[text()]</bv>

</optional>

</interval>

<freq> count($V[text()=$b//model/bv[text()]AND

text()=$b//city/bv[text()]AND

text()>$b//price/bv_min[text()]AND

text()<$b//price/bv_max[text()] AND

text()=$b//optional/bv[text()])

</freq>

</bucket> </hist>

Construction of the synopsis document structure

To define the transformation for computing the whole synopsis, we first need
a preliminary definition:

14

summ_e

crit_g1

crit_g2

A2

A1

...

Fig. 1.9. LCA example structure

Definition 7 [Lowest Common Ancestor] ∀i ∈ {1..n}, the lowest common
ancestor (LCA) Ai is the deepest node that is ancestor both of summ e and
of the elements in < crit gi, . . . , crit gn >,where

• if i ∈ [1, ..., n − 1] then < crit gi, . . . , crit gn >⊆< crit g1, . . . , crit gn >
else

• < crit gi, . . . , crit gn >=< crit gn > if i = n.

Fig. 1.9 shows an example of tree of a synopsis and the LCAs of summ e
and < crit g1, crit g2 >. In this figure we can see that A1 is the LCA of
summ e and crit g1, while A2 is the LCA of summ e and < crit g1, crit g2 >.

Note that, by construction, each common ancestor Ai is the root element
of the smallest subgraph that contains the histogram derived from one value
of the active domain of crit gi. Since we have n histograms to be stored, it
follows that we need exactly n subgraphs and consequently A will be repeated
n times in the synopsis document; thus the following theorem holds:

Theorem 1 Given the elements summ e and crit g, the corresponding LCA
A is repeated inside the synopsis document n times, where n = |D| and D is
the active domain of crit g.

The synopsis histogram is constructed from the original data collection
starting from the set of paths defining the histogram itself (summ e,
< crit g1, . . . , crit gn >) and the tuple of parameters ∈ P . The construction
of the synopsis is based on a set of rules that define the transformation TR and
have been detailed in [Mar05]. In this work we show an example of XQuery
code obtained to collect the models (representing summ e) w.r.t. color and
city (representing < crit g1, crit g2 >) from the running example of Section
1.2.1.

1. <list>

2. FOR $g1 IN LIST/CAR/COLOR

3. <car> * first common ancestor of

15

color and model*\

4. <color> $g1 </color> * first crit_g*\

5. <selling>

* element that connects A1 and A2*\

6. FOR $g2 IN

LIST/CAR/SELLING/DETAILS/CITY

the LET is inside the most nested FOR\

7. LET $V:=www.doc.doc/LIST/CAR/MODEL

8. [../CAR/COLOR=$g1 and

../CAR/Y/X/CITY=$g2] *binding of the

crit_g criteria*\

9. RETURN

10. <details> * A2 *\

11. <model> - histogram - </model>

12. <city> $g2 </city> * last

crit_g *\

13. </details>

14. </selling>

15. </car>

16. </list>

An example of the rules that define TR is the following:

TR-Rule 1 The query body is composed by n nested FOR clauses
(n = |{crit g}|), following the same order of the elements as in <
crit g1, . . . , crit gn >.

Each FOR clause generates a branch in the synopsis tree ready to store
the histogram of the summarized element path summ e w.r.t. the condition
expressed by crit g. The structure is recursive, because each branch born from
the conditions
crit gi ∈< crit g1, . . . , crit gn >, i = 1, . . . , n, is divided into n new branches,
one for each active domain value of crit gi+1 ∈< crit g1, . . . , crit gn >. In this
way each sub-branch can store the histograms of the data which respect both
crit gi and crit gi+1 etc. In the example code this rule creates the FOR clauses
in the lines 2 and 6 of the query. A sample synopsis document constructed for
a document collection respecting the structure of the DTD in Section 1.2.1 is
shown in Figure 1.10. The structure of the synopsis chosen for this example
Hs is a collection of the models of the cars w.r.t. the color and the city where
the cars were sold. Therefore, Hs is represented as follows:
Hs={(summ e, <crit g>)}={(list/car/selling/details/model,
<list/car/color,list/car/selling/details/city>)}.

The other rules describe what appear in the clauses of the query, how many
FOR cycles the query needs depending on the structure of the document tree,
which branches of the document tree have to appear in the synopsis structure,
and in which point of the synopsis tree the histograms are stored (see the
details in [Mar05]).

16

<list>
 <car>
 <color> white </color>
 <selling>
 <details>
 <model>
 <hist>
 <bucket>
 <freq> 10 </freq>
 <bv> Fiat Brava </bv>
 </bucket>
 <bucket>
 <freq> 15 </freq>
 <bv> Fiat Punto</bv>
 </bucket>
 <bucket>
 <freq> 8 </freq>
 <bv> Fiat Marea </bv>
 </bucket>
 </hist>
 </model>
 <city> Milan </city>
 </details>

 <details>
 <model>
 <hist>
 <bucket>
 <freq> 12 </freq>
 <bv> Fiat Brava </bv>
 </bucket>
<!-- other buckets are omitted for brevity -->
 </hist>
 </model>
 <city> Rome </city>
 </details>
</selling>
</car>
<car>
 <color> blue </color>
 <selling>
<!-- other histograms are omitted
for brevity -->
 </selling>
 </car>
</list>

Fig. 1.10. A sample XML synopsis document

1.5 Querying the XML Synopsis

XML Synopses have been proposed basically to answer aggregate queries in
a fast and effective way and the language chosen to query XML data is the
new standard proposal XQuery. Expressing aggregate queries in the relational
data query language SQL is done by means of the GROUP-BY clause, but
XQuery does not have such a powerful operator and aggregates are computed
by (usually very complex) nested FOR clauses. The approach for the au-
tomatic translation of XQuery to the synopses considers users without any
knowledge of the synopsis collection structure. In this case the translation de-
rives directly from the original, complex and multi-nested query and cannot
be optimized very well. Obviously, nobody denies to a more expert user to
query directly the synopsis, writing the best query for the synopsis structure.

In the XQuery language, the aggregate functions available are COUNT,
SUM, AVG, MAX and MIN. We develop our analysis considering the same
set of functions and the presence of different kinds of data that, connected
by a hierarchical structure, define different kinds of grouping. In the synopsis
querying approach, we define new functions created to compute the aggre-
gates over the histograms instead of the original data: these functions are
count hist, sum hist, avg hist, max hist and min hist. The structure of
the query on the synopsis basically follows the structure of the original query;
here are some general observations:

• in the construction of the synopsis, we have eliminated some elements from
the document; therefore, we can find an answer only to queries involving
elements that exist in the synopsis graph, otherwise we are forced to query
the original data collection;

17

• since the construction of the synopsis does not change the path structure
of the crit g elements and stores all the values of their active domain,
queries asking for values stored as grouping elements can find a precise
answer (not approximate);

• queries involving histograms of categories (e.g., names or colors) always
find a precise answer because each boundary value represents an exact
value of the element active domain and the frequency of the buckets rep-
resents the exact count of this value in the target collection;

• the answer to a query involving histograms of numeric data (e.g., ages) is
usually approximate, because the boundary values of the histograms are
not exact values but intervals of values of the element active domain.

As an example, consider the synopsis shown in Fig. 1.10. In the synopsis,
the crit g element is the element list/car/color, which appears in the synopsis
file with all its active domain values. In this case a query asking for the colors
of the sold cars will find all the possible values of the element as if it were
performed on the original data collection. Instead, consider the parameter
document P constructed for the element price in Sect. 1.4: if we look for the
number of cars that cost less than $12000, the answer on the synopsis will
be approximate because it should use one of the buckets of the histogram of
prices partially.

The rules that define the transformation QTR have been detailed in
[Mar05]. As an example, consider the following rule:

QTR-Rule 1 If the aggregate function in the original query is applied to a
leaf element summ e, the synopsis query uses the corresponding function on
histograms (e.g., count hist, avg hist).

An example of the application of this rule is the following query, which
asks for the number of Fiat Brava sold in Milan:

<total>

for $det in doc("cars.xml")/list/car/selling/details

where $det/city = "Milan"

return count($det/model = "Fiat Brava"))

</total>

This query is transformed into:

<total>

for $det in doc("syn-cars.xml")/list/car/selling/details

where $det/city = "Milan"

return count_hist($det/model/hist/bucket/bv = "Fiat Brava"))

QTR_Rule

</total>

The other rules describe what appears in the clauses of the query, which
function has to be used in case of categorical or numerical aggregate element,

18

and what happens in case of reverse steps in the query (see the details in
[Mar05]).

1.6 Approximation analysis

In this section we further detail the considerations at the beginning of Sect.
1.5 about the approximation obtained in the synopsis querying process. Aim
of this section is to analyze the approach in order to evaluate the degree of
approximation during the querying phase.

We analyze our synopsis approach according to the following dimensions:

• Coverage: in this section we detail some general observations about the set
of queries that can be answered using the synopses constructed with our
methodology.

• Answer quality: the accuracy and confidence of its (approximate) answers
to queries in {Q}.

Two further dimensions, the Footprint and the Query Time of the resulting
synopsis, will be presented by examples in Section 1.7 during the analysis of
the results obtained with the prototype tool.

1.6.1 Coverage and answer quality.

The structure of the query on the synopsis basically follows the structure of the
original query, hence when querying the synopsis some general observations
hold:

1. In the construction of the synopsis, we have eliminated some elements from
the document; therefore, we can find an answer only to queries involving
elements that exist in the synopsis graph, otherwise we are forced to query
the original data collection.

2. Since the construction of the synopsis does not change the path structure
of the crit g elements and stores all the values of their active domain,
queries asking for the existence of values stored as grouping elements can
find a precise answer (not approximate); of course this statement does
not hold if we are looking for aggregates (e.g., the number of...) involving
crit g elements.

3. Queries involving histograms of categories (e.g., names or colors) always
find a precise answer because each boundary value represents an exact
value of the element active domain and the frequency of the buckets rep-
resents the exact count of this value in the target collection.

4. The answer to a query involving histograms of numeric data (e.g., ages)
is usually approximate, because the boundary values of the histograms
are not exact values but intervals of values of the active domain of the
element.

19

A histogram should reduce the data by describing the data distributions.
For the sake of easiness, in this analysis we concentrate on leaf elements, but
the considerations for non-leaf elements are similar but involve multidimen-
sional histograms.

If histograms are available, we can use the synopsis to accelerate aggre-
gate queries, using some ad-hoc formulas to build the aggregate functions
count hist, sum hist, avg hist, max hist, and min hist. For a detailed
review of these formulas see [Mar05]. Moreover, in [Mar05] we consider the
problem of refreshing the synopsis histograms when the target XML docu-
ment collection is updated. Unfortunately, the W3C has not yet proposed an
XQuery syntax for updates, although such extension is strongly needed. Only
in the last few years the scientific community has started to formally deal with
the problem of updates in XQuery and some preliminary works are [WR] or
can be found in [Gal]. For this reason, we can only make some general consid-
erations about the update of the synopsis but a deep study of this problem
will be afforded as soon as XQuery will have a well defined update syntax.

1.7 Experimental results

A prototype tool (see [Mar05]) has been used to test the idea on a huge set
of XML data in order to experimentally measure the approximation error
and the benefits of using synopses in terms of computational costs and times.
The prototype consists of two independent parts: SynGenerator, a tool for
creating the synopsis and its DTD and ApproXquery, a tool for querying the
synopsis. Both tools have been developed in Java. The first experiments allow
us to make some preliminary observations: in our toy benchmark constructed
by using the example DTD in Section 1.2.1 each car document file occupies
about 500 bytes. If we construct the synopsis shown in Section 1.3, we see
that it can occupy (in the worst case in which there is not more than one car
model for each color and each town) about 750 bytes. Note that once a certain
model-color-town group has been inserted in the synopsis, the dimensions of
the synopsis itself do not change as the number of cars belonging to this group
augments. If we consider a store able to sell 10 cars of a given color and model
in a certain town, we have that the original document collection will occupy
5000 bytes while the synopsis still occupies 750 bytes, i.e., 15% of the original
size. Obviously, the percentage space occupation decreases as the number
of cars belonging to a certain group augments. Olap applications work with
quantities of data enormously bigger with respect to our toy examples; hence it
is easy to infer that synopsis collections can occupy an infinitesimal part of the
original collection space, allowing a very good performance growth. In Figure
1.11 we show our car synopsis collection footprint and some comparative query
execution times obtained by running some range queries presented in [Mar05]:
the first column of the table shows the execution times of each original query
on the target collection, the second column shows the execution times of the

20

Query execution times

Query
Query on the

original collection
Query that creates

the synopsis
Query on the

synopsis

Q1

Q2

Q3

Q4

40.51 sec 29.33 sec 0.43 sec

51.10 sec 1 min 26 sec 0.65 sec

1 min 13 sec 49.58 sec 0.59 sec

1 min 02 sec 1 min 17 sec 0.61 sec

Footprint

5 MB /
17 KB

(for all synopses)

(Intel Pentium 3, 1GHz, with 256 MB RAM)

Fig. 1.11. Comparative table of queries results

query to construct the synopsis, and the third column shows the execution
times necessary to perform the transformed query on the synopsis. Even if
the structures of the original and of the synopsis queries are very similar
(they have been transformed automatically by the transformation QTR), the
query execution times differ considerably. This is basically motivated by the
dimensions of the data collections that have to be queried: indeed the synopsis
has a footprint of 17 KB while the original collection occupies 5 MB.

1.8 Related work

In this section we present an overview of the main techniques used in literature
to construct data synopses.

1.8.1 Synopsis data structures for relational data warehouses

A good starting point, for an overview on synopsis data structures for rela-
tional data warehouse, is [BDF+97], which describes the state of the art in
data reduction techniques, for reducing massive data sets down to a ”big pic-
ture” and for providing quick approximate answers to queries. The list of data
structures that could be considered synopsis data structure is extensive. For
example, Krishnan et al [KVI96] proposed and studied the use of a compact
suffix tree-based structure for estimating the selectivity of an alphanumeric
predicate with wildcards. Manber [man94] considered the use of concise ”sig-
natures” to find similarities among files. Broder et al [BCFM98] studied the

21

use of (approximate) min-wise independent families of permutations for sig-
natures in a related context, namely, detecting and filtering near-duplicate
documents. Other works include the use of multi-fractals and wavelets for
synopsis data structures [FMS96, MVW98] and join samples for queries on
the join of multiple sets [GPA+98].

For the purpose of this work we concentrate our review only on synopsis
data structures used for fast approximate query answering.

In this setting, a good survey is [GM99], which describes a context for
algorithmic work relevant to massive data and a framework for evaluating
such work. Moreover the paper overviews the literature about synopses till
1999 and highlights results on some important problem domains from the
database literature: frequency moments, hot list queries, and histograms and
quantiles.

In the last 30 years, there have been a huge amount of works about syn-
opses data structures applied in approximate answering approaches, whose
main contributions are: 1) histograms [GMP97, GK01, PIHS96], that parti-
tion attribute values domain into a set of buckets; 2) samples [Olk93], which
are based on the idea that a small random sample S of the data often well-
represents the entire data; 3) Wavelets [VWI98], which are a mathematical
tool for hierarchical decomposition of functions/ signals. Multi-dimensional
data synopses are used to approximate the joint data distribution of multiple
attributes [AGPR99]. They are used for the selectivity estimation for queries
with multiple attributes and for approximating OLAP data cubes and general
relations.

XML differs from relational data in several aspects:

• documents present a hierarchical structure, where the position of each
element carries useful information;

• being semi-structured data, some items can be repeated or missing without
a predefined document structure;

• there can be mixed content, numerical and categorical, stored in the same
document.

The synopsis approach we have proposed in this work is constructed with
the aim to save the information stored in the hierarchical structure of the
XML document during the summarization process, to take into account the
problems and the advantages given by the semi-structured nature of XML,
and uses histograms, among all the proposed techniques in literature, because
this technique seems the most suited to be used with the mixed content of
XML.

1.8.2 XML data synopses

A first approach in the extension of synopsis approaches to XML is given by
different techniques [FHR+02, CJF+01, PG02, AN03] that have recently been
proposed for building statistics for XML data with the aim to estimate the

22

selectivity of path expressions; some example are: StatiX, an XML Schema-
aware statistics framework that exploits the structure derived by regular ex-
pressions in the XML Schema in order to develop an efficient and accurate
XML query result estimator; Chen et al. build statistics used to estimate the
selectivity of tree pattern queries (also called twig queries), or branching path
expressions; XSchetch, a synopsis-graph model addressing the optimization
of XML queries posed over large volumes of XML data where the authors
construct synopsis structures for enabling the estimation of the path and
branching distribution in the data graph to be used for the optimization of
the original query. [AN03] presents a technique for building on-line XML sta-
tistics by observing the XPath queries issued to data source and their result
sizes. This technique stores the path expressions and the information about
their selectivity for use in estimating the selectivity of future XPath queries.
Instead, the approach we propose uses synopsis techniques to execute aggre-
gate queries saving computational costs, paying, when necessary, a little loss
in precision. To our knowledge, ours is the first work where synopses are used
to find approximate answers to aggregate XML queries. The most recent, and
to our knowledge unique, work for XML approximate query answers, at the
time of this work, is [PGI04]: they study approximate query answers for XML
queries focusing only on twig queries with branching path expressions, i.e.,
they consider the structural part of the problem and, w.r.t our work, ignore
the value content of the document. Their approach is based on a structural
XML synopsis, termed TREESKETCH, that captures, in limited space, the
key properties of the underlying path distribution and enables approximate
answers for one class of XML queries. Another difference between our work and
the XML synopsis literature is that our synopses are constructed to answer a
set of very frequent queries, using a methodology guided by the application.

1.9 Conclusions

In this work we have described the construction of a synopsis from an XML
document collection and outlined the most important characteristics of the
synopsis querying process. In this paper we suppose to store one synopsis
graph (summ e and corresponding < crit g1, . . . , crit gn >) in each synopsis
XML document, and use equi-width histograms as general purpose technique
for summarizing XML data. In the next future we plan to focus on specific
applications of the methodology in order to study other, more performative,
statistical techniques. For instance, for collections of documents containing
numerical data only, we could use the wavelets. Moreover we plan to extend
our approach with a complete study of the problem of updating our syn-
opses using XQuery, as soon as this language will have a standardized update
syntax.

23

References

[AGPR99] Swarup Acharya, Phillip B. Gibbons, Viswanath Poosala, and Sridhar
Ramaswamy. Join synopses for approximate query answering. pages
275–286, 1999.

[AN03] A. Aboulnaga and J. F. Naughton. Building xml statistics for the hidden
web. In Proc. CIKM’03 Conference, New Orleans,Louisiana,USA, 2003.

[BCFM98] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher. Min-
wise independent permutations. In Proc. 30th ACM Symp. on the Theory
of Computing, pages 327–336, 1998.

[BDF+97] D. Barbarà, W. DuMouchel, C. Faloutsos, P. J. Haas, J. M. Hellerstein,
Y. Ioannidis, H. V. Jagadish, T. Johnson, R. Ng, V. Poosala, K. A. Ross,
and K. C. Sevcik. The new jersey data reduction report. In Bulletin of
Technical Committee on Data Engineering, pages 20(4): 3–45, 1997.

[CJF+01] Z. Chen, H. V. Jagadish, F.Korn, N. Koudas, S. Muthukrishnan, R. T.
Ng, and D. Srivastava. Counting twig matches in a tree. In ICDE, pages
595–604, 2001.

[FHR+02] J. Freie, J. R. Haritsa, M. Ramanath, P. Roy, and J. Simeon. Statix:
Making xml count. In ACM SIGMOD, Madison, Wisconsin, June 4-6,
2002.

[FMS96] C. Faloutsos, Y. Matias, and A. Silberschatz. Modeling skewed distribu-
tions using multifractals and the ’80-20’ law. In Proc. 22rd International
Conf. on Very Large Data Bases, pages 299–310, 1996.

[Gal] The galax project. http://www.galaxquery.org/.
[GK01] M. Greenwald and S. Khanna. Space-efficient online computation of

quantile summaries. In ACM Sigmod, 2001.
[GM99] P. B. Gibbons and Y. Matias. Synopsis data structures for massive data

sets. DIMACS: Series in Discrete Mathematics and Theoretical Com-
puter Science: Special Issue on External Memory Algorithms and Visu-
alization, vol. A, 1999.

[GMP97] P. B. Gibbons, Y. Matias, and V. Poosala. Fast incremental maintenance
of approximate histograms. In Proc. of Very Large Data Bases, 1997.

[GMW99] R. Goldman, J. McHugh, and J. Widom. From semistructured data to
xml: Migrating the lore data model and query language. In Proc. WebDb,
pages 25–30, 1999.

[GPA+98] P. B. Gibbons, V. Poosala, S. Acharya, Y. Bartal, Y. Matias, S. Muthukr-
ishnan, S. Ramaswamy, and T. Suel. Aqua: System and techniques for
approximate query answering. In Technical Report, Murray Hill, New
Jersey, 1998.

[HPG04] Jan Hidders, Jan Paredaens, and Dirk Van Gucht. A light but formal
introduction to XQuery. In Second International XML Database Sympo-
sium, 2004.

[KVI96] P. Kishnan, J. S. Vitter, and B. Iyer. Estimating alphanumeric selectivity
in the presence of wildcards. In Proc. ACM SIGMOD International Conf.
on Management of Data., pages 282–293, 1996.

[man94] U. manber. Finding similar files in a large file system. In Proc. Usenix
Winter 1994 Technical Conf., pages 1–10, 1994.

[Mar05] S. Marrara. Aggregate queries in XQuery. 2005. PhD Thesis, Politecnico
di Milano, XVII PhD School Edition.

24

[MVW98] Y. Matias, J. S. Vitter, and M. Wang. Wavelet-based histograms for
selectivity estimation. In Proc. of ACM SIGMOD Conference, pages
448–459, 1998.

[Olk93] F. Olken. Random sampling from databases., 1993. PhD Thesis, U.C.
Berkeley.

[PG02] N. Polyzotis and M. Garofalakis. Statistical synopses for graph-
structured xml databases. In Proc. ACM SIGMOD Conference, Madi-
son,Wisconsin,USA, 2002.

[PGI04] N. Polyzotis, M. Garofalakis, and Y. Ioannidis. Approximate xml query
answers. In SIGMOD, 2004.

[PIHS96] V. Poosala, Y. Ioannidis, P. Haas, and E. Shekita. Improved histograms
for selectivity estimation of range predicates. In Proc. ACM SIGMOD,
1996.

[VWI98] J. S. Vitter, M. Wang, and B. Iyer. Data cube approximation and his-
tograms via wavelets. In Proc. the 7th Int. Conf. on Information and
Knowledge Management., 1998.

[W3C99] W3C. Xml path language (XPath) version 1.0, 1999.
http://www.w3.org/TR/xpath.

[W3C04] W3C. Xml query (XQuery) version 1.0, 2004.
http://www.w3.org/XML/Query.

[WR] Ling Wang and Elke A. Rundensteiner. Updating xquery views.

25

