
Large-scale ATLAS simulated production on EGEE

X. Espinal
PIC (Port d informacio Cientifica)

Universitat Autonoma de Barcelona
Campus UAB, Edifici D 08193 Bellaterra, Barcelona (SPAIN)

espinal@pic.es

S. Campana, D. Barberis, L. Goosens and G. Poulard
CERN (European Laboratory for Particle Physics)
Rue de Geneve 23 CH 1211 Geneva, Switzerland

L. Perini, S. Resconi, D. Rebatto, G. Negri, A. de Salvo
INFN (Instituto Nazionale di Fisica Nucleare)

Via Celoria 16, 20133 Milano, Italy

R. Walker
TRIUMF (Tri - University Meson Facility)

4004 Wesbrook Mall Vancouver (BC), Canada

S. Padhi
University of Wisconsin-Madison

150 University Avenue, Madison, WI 53706 (United States)

J. Kennedy
Ludwig-Maximilians-Universitat (LMU)

Theresienstrasse 39, 80333 Munich, Germany

K. Bos
NIKHEF (The National Institute for Nuclear Physics and High Energy Physics)

Kruislaan 409 PO Box 41882, 1009 DB Amsterdam (The Netherlands)

Abstract

In preparation for first data at the LHC, a series of Data
Challenges, of increasing scale and complexity, have been
performed. Large quantities of simulated data have been
produced on three different Grids, integrated into the AT-
LAS production system. During 2006, the emphasis moved
towards providing stable continuous production, as is re-
quired in the immediate run-up to first data, and thereafter.
Here, we discuss the experience of the production done
on EGEE resources, using submission based on the gLite
WMS, CondorG and a system using Condor Glide-ins. The
overall walltime efficiency of around 90% is largely inde-
pendent of the submission method, and the dominant source
of wasted cpu comes from data handling issues. The ef-

ficiency of grid job submission is significantly worse than
this, and the glide-in method benefits greatly from factoris-
ing this out.

1. Introduction

The Large Hadron Collider (LHC) will begin to take
data in Early 2008 at the European Laboratory for Particle
Physics (CERN) in Geneva, Switzerland.

ATLAS (A Toroidal LHC ApparatuS) is one of the
four big experiments being prepared for the Large Hadron
Collider (LHC), a particle accelerator ring installed in
a 50-150 metre underground tunnel 27 kilometres in

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIR Universita degli studi di Milano

https://core.ac.uk/display/187828228?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


circumference astride the border between Switzerland and
France, ATLAS is designed to explore the fundamental
nature of matter and the basic forces that shape our universe.

Protons accelerated by the LHC in two counter-rotating
beams will be kept circulating for hours, guided by thou-
sands of powerful superconducting magnets operating at
300 degrees below room temperature, before colliding in
the heart of the ATLAS detector at almost the speed of
light (pp @

√
s=14Tev) . The resulting energy of colliding

protons will transform fleetingly into particle debris to be
examined for signs of extremely rare events, such as the
creation of the much-sought Higgs boson.

With a rate of 800 million collisions per second, the
LHC will be worlds largest and most powerful particle
accelerator when it commences operations in 2008, and AT-
LAS will be the largest collaborative effort ever attempted
in the physical sciences with 1,800 physicists (including
400 students) participating from more than 150 universities
and laboratories in 34 countries, all of whom eager to see
what new discoveries will be revealed.

With such a rate of collisions, even including the
reduced rate due to the online trigger processing farms, the
expected volume of data recorded for offline reconstruction
and analysis will of a few order of Petabytes (1015bytes).
This will be analyzed by physicists all over the world [1].

Simulated events are also a key feature for the LHC
experiments, commonly named Monte Carlo (MC) produc-
tion. These events are used to compare theory with the real
data.

MC production is performed all over the world, 10
T1s are associated with the EGEE grid infrastructure. Its
resources are used to generate huge amount of simulated
data, around 120 million events were produced within the
period between October 2006 and June 2007.

2 The Atlas production system

The design and construction of an experiment like
ATLAS requires a large amount of simulated data in order
to optimize the detector design, estimate physics perfor-
mance, and test the software and computing infrastructure.
These samples consists of a large number of simulated
events, representing collisions between protons. The full
simulation requires the following steps:

• Event generation: Hadronic final states using the
proton-proton collisions are generated using programs

relying on theoretical calculations, phenomenological
models and experimental inputs.

• Detector Simulation: Interaction of the generated
particles inside the ATLAS detector is simulated. Taking
into account the real geometry, distribution of material,
etc.(CPU time per event = 800 kSI2k.seconds, event size =
2 MB).

• Digitization: The detector response is derived from
the particle interactions and it is written in a format
compatible with the real output of the detector. In addition,
because of the high rate of collisions in the LHC, digitized
signals from several simulated events can be piled-up to
create samples with a realistic experimental background.
The digitized events (with or without pile-up) can now be
used to test the software suite that will be used on the real
LHC data. (CPU time per event= 25 kSI2k.seconds, Event
size = 2 MB)

• Reconstruction: particle trajectories and energies
from the detector are reconstructed. Usually final samples
to be used by the physicists.(CPU time per event =15
kSI2k.seconds, Event size = 1.2 MB)

This chain requires to run different programs with
different characteristics in terms of memory usage and
CPU consumption. Typically a simulation job run for about
24 hours, while a digitization or reconstruction jobs runs
for 3 or 4 hours.

The production system distinguishes between two
levels of abstraction. On the higher level, input datasets
are transformed into output datasets by applying a task
transformation. The process of doing this is called a task.
Datasets are usually quite large and consist of many logical
files. At a lower level of abstraction, input logical files
are transformed into output logical files by applying a job
transformation. This process is called a job [4].

The ATLAS production system provides a common
framework in which any grid flavor may be integrated,
is formed from several individual elements which when
plugged together provide the required functionality for
the submission, tracking, recovery and validation of jobs.
The individual elements of the production system are the
following (fig. 1):

• Common database for the production jobs (ProdDB).

• Data management system to data transfer and file
cataloging (DDM).



• Common Supervisor (Eowyn).

• Executors developed by middleware experts (Con-
dorG, Lexor and Cronus in EGEE).

Figure 1. ATLAS Production system schema

The core of the ATLAS production system is formed
by the coupling of the Executor with the Supervisor. The
Supervisor provides an interface to the job definition data
and metadata associated to the computing resources, and
retrieves job specific information (Needed software release,
data I/O, number of events, etc.) The Supervisor-Executor
system allows these jobs to be passed to one of the grid
flavors, and then jobs land at the batch system of one of the
ATLAS sites around the globe.
Supervisor continues to monitor the state of the submitted
job and finally retrieve detailed information about the job
once ended. All job info is sent to an ORACLE backend
Database which is used to monitor the production system.

2.1 Production elements:

• Job Transformations:
The job transformations are the scripts that set up the run-
time environment, allow possible compilation of patches to
the software in a release, run the Athena executable, parse
the log file for known warning and error messages, and tidy
everything up at the end. The transformations used up to
release 11 of the ATLAS software were implemented as
shell scripts, while since release 12 (end of 2006) they are
implemented as python script. They can include any data
file or patched shared library that may be missing from
the release or that may be needed for a particular job. The
transformations are production-oriented, but the KitValida-
tion testing suite, used to test the software distribution kits,
is also using them. This is done by encapsulating the Job
Transformations in a KVT (KitValidation Transformation)

test-oriented object. Building the transformations for
production jobs is at present a manual operation; the
transformations are then put into a Pacman cache and
loaded by Grid jobs at start-up. Work is in progress to
provide a generic transformation for all usages, including
non-production jobs. The transformations will also check
the integrity of the expected output file at the end of the job.
(This needs the knowledge of the number of output events
as counted inside the Athena job.)

• Production Database:
There is only a single logical production database. This
database holds tables with records for: job transformations;
job definitions; job executions and logical files. A job-
transformation record describes a particular combination of
executable and release. The description includes the sig-
nature of the transformation, listing each formal parameter
together with its type (restricting the possible values) and
its meta-type (indicating how the values should be passed
to the executable). Each job-definition record points to
its associated job transformation. Other fields allow one
to keep track of the current attempt at executing this job
(lastAttempt), which supervisor component is handling this
job (supervisor), what is the relative priority of this job
(priority), etc. The bulk of the job definition is, however,
stored as an XML tree in the field jobXML. It lists the
actual values to be assigned to the formal parameters of
the transformation and additional information about logical
input files and logical output files.
For each job definition there can be zero, one, or more
job-execution records, corresponding to each attempt at
executing the job. Each attempt has a unique number which
is appended to the names (both logical and physical) of all
files produced, ensuring interference-free operation even in
the case of lost and/or zombie jobs. The execution record
also records information like start- and end-time of the job,
resources consumed, where the outputs were stored, etc.
Last field (logicalFile), the production system stores all
metadata about logical files. Most of the information is
redundant with respect to the information stored in the
respective metadata catalogues of the Grids (size, guid,
md5sum, logicalCollection), but at the time the production
system was developed these metadata catalogues did not
support schema evolution and ATLAS did not know a priori
what metadata was needed. Consequently, it was decided
to deploy temporarily our own catalogue in addition to
filling and using the existing ones.
The production database used in 2004-2005 for Data
Challenge 2 and subsequent productions was implemented
as an Oracle database hosted at CERN. A MySQL version
of the production database is also available for small-scale
productions.



• Supervisor:

Jobs are retrieved by the Supervisor (Eowyn) from
the production database and submitted to the executors
and then the jobs are sent over the Grid. The Supervisor
maintain a database of the jobs and modify the production
database on every change of state. It also manages failed
jobs, releasing to be retried (in case failures happened), or
abort them in case of persistent failures. And manages the
post-processing by filling output files into DDM datasets.

• Executors:
There are three executors running in EGEE (Lexor, Con-
dorG and CRONUS), and two more for other grid flavors:
PANDA (OSG) and Dulcinea (NG). Executor creates the
wrapper files and submit the jobs to the Grid (taking into
account the free slots in the sites, etc.)
Executors are able to interpret the job related errors and
grid specific problems and retrieve the job after execution.
The three type of executors used in EGEE production are
presented in more detail in section 2.2.

• Computing Element (CE:
gatekeeper/job-manager that submit the jobs to the worker
nodes by means of a batch system. Two different types
are being used in the EGEE production (LCG-CE and
glite-WMS), section 2.3.

• Worker Nodes:
Processing farm members that matches the requirements of
the production jobs.

2.2 Executors in EGEE

• Lexor Lexor is not much more than a translator of
prodsys-to-wms requests. It converts the python objects
passed by the supervisor into the User Interface API
specific python objects, and vice versa. The main ideas
leading Lexor implementation were not to duplicate exist-
ing middleware functionalities, and to have a thin, stateless
layer (states are already stored in the production database
and in the grid middleware).
Some manipulation is anyway required, as the mapping
between middleware and prodsys objects is not always
that trivial. For example, Lexor needs to aggregate jobs in
order to take profit of the ”bulk submission” feature of the
WMS, thus introducing a jobs’ collection concept which
is extraneous to the production system. A similar bulk
operation for retrieving the status of the jobs is available in
the middleware, and will soon integrated in Lexor.
In its original implementation, Lexor also included the
runtime wrapper (i.e. the script around the actual transfor-

mation, responsible in particular of the whole data transfer
from and to the grid). This is now part of the Common
Executor - the code shared among the three LCG executors
- and evolved a lot since its first implementation. It was
rewritten in Python and better integrated with both the
transformation itself (which is now in Python too) and the
DDM layer.

• CondorG CondorG is standard Grid middleware for
remote job submission to CEs, and indeed it forms part of
the LCG RB. In this case the RB chooses the destination
CE, and CondorG submits to the named site. However,
when given information about the resources, CondorG can
also do the resource brokerage. This information is taken
from the BDII and converted into the Condor ClassAd
format. The fundamental difference, compared with the
original Lexor executor, is that the resource brokerage and
the submission are done by separate components. The
Negotiator and one or more Schedulers run on different
machines, and scalability is achieved by increasing the
number of Schedulers only. Furthermore, the scheduler
is sufficiently lightweight to run much closer to the UI,
perhaps on the same machine. The interaction with the
local Scheduler is therefore much faster. Similarly the
status and getOutput requests are instantaneous as the
response is like that of a local batch system.
There are, however, two perceived deficiencies with this
approach. First, if the UI machine hosts the Scheduler
then it cannot be turned off, which is inconvenient if the
UI machine is, for example, a laptop. A second concern
was the lack of central logging and book-keeping (L&B)
when using CondorG. We should stress ”central” because
there is in fact a local record of the stages in the job’s
life, and a mechanism exists to extract this to a MySQL
database. The LCG central L&B has been identified as a
potential cause of the poor performance, so not having this
architecture is an advantage of CondorG. This does not
prevent the L&B information being migrated to a central
place, asynchronous to job submission. Lexor was used as
the basis for the Lexor-CG executor because its modular
design allowed the easy exchange of the LCG submission
with the CondorG submission. Everything else, including
the run scripts, stage-in, stage-out, validation, etc. remained
the same and was re-used. During production operation,
improvements to Lexor were also applied to Lexor-CG.

•CRONUS Production jobs goes to a scheduler that
interacts with the Cronus-Central Manager (CCM). From
then the Codor-G glide-ins are submitted to the CE’s and
finally ending in to the WN’s, once activated they preserve
the Master-Worker relationships, with the worker pulling
the production jobs sequentially until the expiry of their
lifetimes. The communication between the WN and the



CCM is performed via ClassAds and if the glide-in find that
the WN requirement are correct, jobs are submitted. This
comunication with the CCM allows to have a full control
and monitoring of the jobs running across the grid (fig. 2).

Figure 2. Cronus glide-in job submission
method

2.3 Grid middleware dependencies

Th executors contact the CE’s in order to deliver the
jobs, two types has been used: the LCG-CE and the
glite-WMS.

•LCG−CE The Computing Element (CE) contains two
logical parts: The gatekeeper/job-manager and the worker
nodes. Jobs are distributed to the worker nodes by means
of a batch system, such as the Portable Batch System
(PBS). Technically, the gatekeeper/job-manager and the
batch system server run on one machine, usually called
the CE node, to which a number of separate worker nodes
(WN) is connected, preferably in a private subnet. The
CE provides its local computing resources, such as batch
queues, number of processors, and access rights, by way a
Monitoring and Directory Service (MDS) which is based
on LDAP. This is the so-called Grid Resource information
Service (GRIS). On request those data are replied to a
central Information Service (IS), such as the Berkely
Database Information Index (BDII), or the more recent
Grid Information Index (GIIS). The BDII is contacted by a
resource broker to match resources, namely an appropriate
CE, to a submitted job.
The globus-gatekeeper receives the job from the RB’s Job
Submission Server (JSS) and calls the globus-job-manager
to submit job to the PBS queue.

•glite − WMS The Workload Management System
(WMS) comprises a set of grid middleware components

responsible for the distribution and management of tasks
across grid resources, in such a way that applications are
conveniently, efficiently and effectively executed.
The core component of the Workload Management System
is the Workload Manager (WM), whose purpose is to
accept and satisfy requests for job management coming
from its clients. For a computation job there are two main
types of request: submission and cancellation.
In particular the meaning of the submission request is to
pass the responsibility of the job to the WM. The WM will
then pass the job to an appropriate Computing Element for
execution, taking into account the requirements and the
preferences expressed in the job description. The decision
of which resource should be used is the outcome of a
matchmaking process between submission requests and
available resources.

3 Experience and scope

One of the targets of the production system is to prove
the operability of high level distributed computing, since
computing demands of the LHC has no precedents. Simu-
lated production was planned with a continuous ramp-up in
the number of simulated events.
For that reason, since November 2006, the ATLAS simu-
lated production in EGEE is supervised by the EGEE pro-
duction team, a group of people following a shift system
to perform the job and data babysitting for all the produc-
tion jobs running on EGEE. This period covers the Service
Challenge 4, where was successfully a ramp-up challenge
for the simulated production (fig. 3).
The target was to finish 20 M events during November and
December 2006, and 40M events during the next quarter
(January, February and March 2007). This ramp up ended
earlier as the disk resources of almost all the Tier-1 centers
were quickly filled. Clearly the production infrastructure
was proved and the milestone accomplished:

Period # events Comb.job eff. Comb. WCT eff.
4Q2006 20M 42 % 76 %
1Q2007 63M 59 % 82 %
2Q2007 38M 57 % 90 %

Table 1. Simulated production in EGEE, quar-
ter report. Number of events is extrapolated
assuming a mean value of 50 events simu-
lated per job. The combined efficiencies for
job and Wall Clock Time (WCT) are the mean
value for the three executors actually running
on EGEE (Lexor, CondorG and CRONUS).



Executor Fin. Jobs Job eff. WCT eff. Weight
Lexor 816029 53 % 85 % 34%
CondorG 1039646 51 % 86 % 43%
CRONUS 577680 61 % 86 % 23%

Table 2. Job and WCT efficiencies for
the three executors: Lexor, CondorG and
CRONUS. The numbers are the average since
Novembre 2006 (”begin” of 4Q2006) until
June 2007 (end of 2Q2007). Last column
(weight) show the percentage of produced
events by each one of the executors.

Figure 3. Finished jobs distribution from Oc-
tober 2006 to January 2007 (three grids). Two
main zones are clearly seen: ramp-up period
(green) and steady state production (red).
Finished jobs peaked at 55000 jobs finished
in a day.

Job and WCT efficiency has been almost continuously
improving (figs. 4, 5), keeping in mind that simulated
production is a vivid body as new releases/patches appears
regularly provoking temporal periods of inefficiency (vali-
dation periods). Since the starting of the joint operations in
November 2006 more than 2.5M jobs finished, yielding an
amount of 125M simulated events (fig. 6)

3.1 Workload management and Data
management

EGEE production operations team look after the jobs
running in the grid. Basically there are two main parts
to control: Workload and Data management (I/O), hence
this two different duties are taken by two different persons
during the shift period.

Figure 4. Job efficiency

Figure 5. WCT efficiency

Figure 6. Finished jobs

Workload management is referred to the intrinsic job
related problems, a huge variety can yield errors when
starting the jobs. Software problems at the site: filesystem,
local grid configuration, etc. (usually these errors are not
easily found and need special investigation at the sites



batch system). Grid-related problems: proxy failures, etc.
Or ATLAS specific software errors: Transformation, task
definition,etc.

Data management is related to the stage-in and stage-out
failures. This usually have two different sources, one that is
related to the site: SE outages, LFC time-outs, BDii errors,
etc. And a different one that is a problem of the global
Data Management: missing files in the grid needed by the
jobs, corrupted files that yield error after the size/checksum
exploration,etc.

Errors can be joined in three main groups that are the
dominant ones: Executor related errors, Data handling
errors and Software related errors (tab. 3

Error group Job WCT Ineff*WCT
Data I/O 35 % 65 % 11%
Software 9 % 32 % 5.4%
Executor 41 % 3 % 0.5%

Table 3. In the second column is shown the
percentage of job errors (over the total jobs
failed), in the third column Wall Clock Time
(WCT) loss is counted for each of the cases
(over the total WCT loss produced by the job
failures). The last column is the most rele-
vant, showing the real CPU loss by each one
of the processes, this has been counted mul-
tiplying the WCT ”mean inefficiency” during
the studied period (Ineff=17%) with the error
weight.

Executor errors: Quickly spotted as the job consumed
almost no CPU. This is clearly seen in (tab. 3) where the
percentage of job error related to the group Executor is
41% but the impact in the lost WCT is very litttle (3%).
This errors are mainly related to site-specific problems and
are particularly difficult to debug as for a large fraction
of failures no output is produced. This requires to log
into a site and chase the problem at the WN level. Some
examples of this type of errors at WMS/CE level are: proxy
expired, hit retry count or job cancelled by the batch system.

Data handling errors: are the most worrying ones,
and can be separated in two main groups: Stage-in and
Stage-out failures. Both consumes CPU and block the WN
while is trying to get or send data. Stage-in process consist
of querying the Local File Catalogues of the Tier-1 centers,
then the most proximal one is chosen, and the files are
copied back to the WN using underlying lcg-utils (lcg-cp)

directly form the source Storage Element (SE). This may
cause some problems in case the LFC are not responding
or the SE is not reachable, as the command for staging-in
keeps trying until times-out (Stage-in failures lcg-cp: 27%
, errors in size/md5sum: 4%, No replicas found: 1% ).

Stage-out process is the more critical one as the file
cannot be copied back after the successful finishing of the
jobs, wasting all the CPU consumed. Fallback solutions
has been implemented since some time, at first step the job
try to stores the file at the local SE, in case of failure the job
try another SE from the same cloud 1. If those two failed
CERN (Tier-0) is taken as a final stage and the job try to
store the file there. Even with this three layer of fallback,
errors in the stage-out (lcg-cr) weights 32.5% of the total
loss in the WCT.

Software errors: this are commonly due to a problem
in the task definition or in the transformation, provoking
the job to abort unexpectedly, the impact on the WCT
has been around the 20% within the considered period,
this is because the transformation is executed some time
after the job start. Also site software related problems
has been counted in this field: error in lfc-mkdir (7.6%)
or downloading Pacman Job Transform (2.3%), software
missing at the site (1.5%).

In (fig. 7) is shown the percentage of the job failures
since 1st. November 2006 until 30th June 2007:

Figure 7. Job error pie, since 1st November
2006 until 30th June 2007

In (fig. 8) is shown the percentage of the WCT failures
since 1st. November 2006 until 30th June 2007:

1Atlas is organized in clouds. For a cloud is understood the Tier-1 and
its associated Tier-2s



Figure 8. WCT error pie, since 1st November
2006 until 30th June 2007

3.2 Resources

Resources for ATLAS simulated production are spread
around more than 50 sites (10 Tier-1s and approximately 40
Tier-2s), yielding a total power of 26000 kSI2k.month and
more than 100TB of disk. The merged walltime days from
all sites has been increasing, reaching an average of around
3500 days/day in the last months in (fig. 9) is shown the
finished vs. failed walltime and in (fig. 10) the finished
walltime is shown for the three different Grid flavors.

Figure 9. Walltime per day during 1st Novem-
ber 2006 until 30th June 2007, darker bars
show the failed CPU time.

4 Summary and Conclusions

The EGEE production system clearly showed to cope
with the requirements from ATLAS experiment. The CPU
Walltime has been improved obtaining an efficiency of
90% during the past three months. There is still room to
improve in the data managing, specially with the control of

Figure 10. Finished Walltime per day during
1st November 2006 until 30th June 2007, the
three Grid flavors are shown together with
the CRONUS instance.

stage-out failures, which are the most worrying ones.
As the simulated production is expected to grow in the
following months, while facing the start of the LHC, some
automation for the job babysitting is envisaged.
Also EGEE production system is expecting new advances
in middleware as the new SRM (Storage Resource Man-
ager), FTS (File Transfer Service), etc. This would yield
a more robust infrastructure and a higher performance
system.

References

[1] G. Poulard Experience on large scale production on
the grid, CHEP 2006.

[2] J. Kennedy et al. The ATLAS production system

[3] A. De Salvo (INFN Roma), G. Negri (CNAF
Bologna), D. Rebatto, L. Vaccarossa (INFN Milano)
LEXOR, the LCG-2 Executor for the ATLAS DC2
Production System CHEP 2004.

[4] Computing TDR: http://atlas-proj-computing-
tdr.web.cern.ch/atlas-proj-computing-
tdr/Html/Computing-TDR-50.htm

[5] http://grid.desy.de/testbed/EDG/CE.html

[6] S. Padhi, Production using CRONUS, ATLAS SW
March 2007, presentation &confId=5060

[7] All statistics has been taken from the ATLAS moni-
toring web:
http://atlas.web.cern.ch/Atlas/GROUPS/SOFTWARE/OO/php/
DbAdmin/Ora/php-4.3.4/proddb/monitor/Home.php


