-

View metadata, citation and similar papers at core.ac.uk brought to you byj: CORE

provided by AIR Universita degli studi di Milano

Linearity of Client /Server Systems

G.Degli Antoni, D.Cabianca, M.Vaccari, M.Benini, F.Casablanca
Unwersita degly Studr div Milano

April 24, 1995

Abstract

An important property of a client/server system is the independence of the in-
teraction between the server and a client from the interactions that the server might
have with other possible clients. In this paper we try to give a definition of such
a property, that we called linearity, by means of the Process Algebra formalism.
Through some examples of linear and non linear systems, we illustrate the expres-
siveness of our definition. Moreover, we present a sufficient condition for linearity
and discuss the preservation of linearity w.r.t. process-algebraic operators applied
to linear systems.

1 Introduction

The growth of computer networks and distributed computing has led to the develop-
ment of the client/server paradigm, which is widespread nowadays. A client/server
system is a composite system which allows distributed computing, analysis and
presentation [Si92]. The client is a process (program) that sends a message to a
server process (program) requesting that the latter performs a task (service). The
server process (program) fulfills a client’s demand by performing the requested task.
Henceforth the need of a conceptual framework and tools which address the prob-
lem of the reliability of such systems is strongly felt. For example, a very important
property of a client,/server system is that the interaction of the server with a client is
not, harmful to another client, i.e. does not produce any alteration in the interaction
of the latter client with the server. In analogy with physical systems, we call this
property linearity.

We believe that Process Algebra is a suitable framework in which studying
client/server systems and their properties, for its descriptive power, formal ele-
gance and variety of established results. Moreover, it has been successfully applied
to real-life systems for specifying communication protocols[Br&8], in VIL.SI design
[Mi85] and fault-tolerant systems [Pr87]. A regrettable feature is the proliferation
of a variety of alternative systems, which differ only in minor formal details. Among

https://core.ac.uk/display/187823279?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

them, we chose to use Hoare’s CSP, because it is more focused toward the use of
process-algebraic tools for defining and verifying specifications of concurrent and
distributed systems. Properties of concurrent systems have usually been classified
in liveness and safety properties. Linearity is a liveness property, which resembles,
for example, deadlock-freeness, but it can not be reduced to it or to other known
properties, because it depends inherently on the structure of the system.

Process Algebra specialists will recognize an analogy with the property of com-
positionality. Compositionality states that the semantics of a process is context-
independent and can be obtained by means of a function on the semantics of its
subprocesses. There is a clear, albeit indirect, connection between compositionality
and linearity. However, linearity is a weaker property which concentrates on the
services requested by the client and/or supplied by the server and hence on the
structure of the system.

In this paper we introduce a formal definition of client/server systems (section 2)
and of the property of linearity (section 3). Through some examples, we discuss
the expressiveness of this concept (section 4). A sufficient condition for linearity
is introduced (section 5). Finally we prove that some process-algebraic operators
preserve linearity, i.e. when applied to linear systems they produce new linear
systems (section 6).

2 Process-Algebraic View

In this section we will give a short introduction to CSP focused on definitions and
concepts useful for our work. More exhaustive information can be found in [Ho85].
The definition of client/server systems will follow.

2.1 A Process Algebra : CSP

Process algebras represent processes by means of a set of actions (events), opera-
tors and process variables. The operators act as process combinators to build new
processes from existing ones.

Some alternative models have been proposed, which differ in the operators and
in the semantic description adopted. The main CSP operators and syntactic re-
quirements are specified formally in the following definition.

Definition 2.1 let Act = {a,b,...} an infinite set of actions, and f: Act — Act
a relabeling function. Let AVar = {x,y, ...} a countable set of action variables. et
PVar = {X,Y,...} a countable set of process variables. Let A C Act. The set of
process expressions Proc is the smallest set which include all terms of the following
grammar:

Pi= a=Pl (a=sPlb=Q) lz:asPa) | PlQ | PlQ | POQ |
P | P\A | F(P) | X | pX:A.F(X)

In the final term the variable X is bound. The free variables fv(P) of a process P
are those which occur unbounded in an expression. If fv(P) = () we say that P is
closed. The set of closed CSP processes is denoted by Cproc.

The behavior of a process P depends also on its alphabet (denoted aP), which is
the set of possible actions for the process, not necessarily coinciding with the set of
actions appearing in the expression denoting the process. For this reason a process
is fully specified only when, besides its expression, also its alphabet is given. Here
is the intended meaning of the CSP operators; for a more formal treatment, based
on an axiomatization of the operators, we refer to [Ho85]. Such axioms are very
useful to establish equivalences and to reason about processes.

e a— P(prefiz): a process which offers action a and after behaves as the pro-
cess P;

e a— P|b—Q(deterministic choice; generalized to (x: A— P(x))): a process
which offers @ and then commits to P, or offers & and then commits to Q;

e P || Q(interleaving): a process which behaves as the interleaved shuffle of
processes P and Q);

e PN Q(nondeterministic choice): a process which behaves as P or (), indepen-
dently by the consequences on the environment;

e POQ(general choice): a process which behaves as a deterministic choice if
different actions are offered by its operands and as a nondeterministic choice
if identical actions are offered;

e P\ A(concealment): a process which behaves like P, but treats the actions in
A as local “hidden” actions;

e P || Q(concurrency): a process which behaves as the interleave operator for ac-
tions not shared by their alphabets and as a synchronization (communication)
for shared actions (P and) have to offer the same shared action to proceed,
and deadlock otherwise).

e f(P)(change of symbol): a process which behaves like P, but which outputs
action f(a) instead of a, for any a € aP.

o 1 X:A.F(X)(recursion): a process which behave like F'(X'), substituting itself
to the process variable X when needed.

Some processes, which have a peculiar behavior, have been given names:

e RUN, is the process which can engage in any event of its alphabet A at all
times:

oRUN4 = A; RUN4 4 = 2: A —=RUNy;
e STOP, is the process which does not engage in any action:

aSTOP4 = A; STOP4 = 2:0— P(x);

e CHAQS , is the process which may behave as any process:

oCHAOS 4 = A; CHAOS, — uX: AX.

Hoare was led to study concurrent systems by the wish to extend the formal
methods he had devised for specifying and studying sequential computer programs.

In computer programming, by specification is usually understood a logical for-
mula that expresses the initial and final conditions on the variables of the program
[Fr92]. For concurrent systems it is not possible to apply directly this definition.
Here the specification of a system (its relevant and observable aspects) are the se-
quences of events (the fraces) that might happen [Ho85]. Hence a specification is a
predicate T1(¢r) defined on traces. Dually, a process’ semantics might be understood
also as the set of its possible traces. The satisfaction of a specification by a process
can be defined as follows.

Definition 2.2 Given a process P and a predicate T1(tr),

P sat T1(tr) dzef (Vtr: tr € Traces(P): T1(tr))

When the process is not deterministic, traces alone are not enough to specify
desired behaviors. Sometimes it is useful to know if, after producing a trace, the
process will stop or go on producing other actions. The set of actions which can
not be produced after a trace is called its refusal set. Sets of trace-refusals pairs
(failures), are an alternative description of a system, which leads to the following
definition of satisfaction.

Definition 2.3 Given a process P and a property 11(fa),

def

P sat 11(fa) =" (Yfa: fa € failures(P): 11(fa))

In the following we will need to consider traces or failures restricted to a given
set of actions (alphabet). Here is the notation we adopt.

Definition 2.4 Given P € Proc, tr € Traces(P), fa € failures(P), A C Act,

€ if tr =«
trlfA=< a-(x]A) iftr=a-2anda€ A
(x] A) iftr=a-2 and a & A

fal A={t] A refn A) where fa = (t, ref)

2.2 Server/Client Systems
In the following our universe will be the set Cproec of the closed CSP terms. A
client/server system is a process such that:

e it is composed by a finite number of parallel processes;

e these processes can be conceptually split in a server process and in a set of
client processes, mutually independent.

Definition 2.5 A (client/server) system is a pair 2 = (S, {Cy,...,C,}), where S
is the server process, and every (; is a client process. The following conditions must

hold:
o (Vi,j:1<ij<nAi#jaC;NnaC;=10)
o (Vi:1<i<mn:aC; CaS)
We will refer to the set of all systems as Systems.
We can define a small set of useful functions to make notation more concise:

Definition 2.6 Given a system Z = (S, {C,...,C,}), the following functions are
defined:

Server(Z) (]:Pf S

Clients(Z) {Cq,...,C}

Parts(Z) dzef {Server(Z)} U Clients(Z)
dzef (U P: P € Parts(Z): aP)

A process underlies every system; it is simply the parallel composition of all

3
T~

oz

parts of a system.

Definition 2.7 Given a system Z = (S,{C4,...,C,}), the associated process is:

Proc(Z) (]:Pf(HP P € Parts(Z): P)

We note that the same process can be generated by more then one system. In the
following, to make notation clearer, we may write just Z in place of Proc(Z2).

2.2.1 Ordering of Systems
Systems can be ordered by means of a convenient relation.
Definition 2.8 Given Z,S € Systems,
Z < 8 iff Server(Z) = Server(S) A Clients(Z) C Clients(S)
It is easy to see that < is a partial ordering.
Lemma 1 Given a system Z:
(S8 <2} = {S| (AC:C C Clients(2): 8 = (Server(2),C))}

and the minimum of such a set is the process (Server(Z),0).

o

slcocLeacs

o

i@

ZCO

o

ZCl

@) o HH®)

® || @ -

)

—

9

b

(e

o

)

—

® | | @ «

b

e

ZCZ

®@—

b

e

Cc3

@+ » [

Figure 1: Fxamples of connection diagrams with cuts

2.3 A Graph View

Seeing a system as a graph is often more expressive than seeing it as a mathematical
formula. Tn [Ho85] each system is represented by a connection-diagram. Given a
client/server system, a definition of a corresponding graph is straightforward. For
the sake of simplicity, the information on the client/server structure is kept.

Definition 2.9 (connection-diagram) Given a system Z,

de
graphg,c(Z) :f (Parts(Z), W)

s.t. W = {(Server(Z),C,I)| C € Clients(Z) Al € (aC N a(Server(Z)))}. The set of
all these graphs will be denoted with Graphgc.-

According to the ordering of systems, and in particular with lemma 1, we can
define the graphical operation of “cutting” an edge, as the generation of a subsystem.

Definition 2.10 /et G = ({S}UCI, ¢) € Graphg,c, the function: cutg is defined
as follows:

cutg(cy { {SYUGHY)

undefined

<S7 Gl> j <S7 Cl> N ¢ = {<S7 Cv]> € ¢

otherwise.

C e Gl

From now on, we will make a liberal use of graphs without bothering to work
out all the formal details.

Example 2.1 Some subsystems of Z = (S,{Co, C1,C,C3}) are represented by
means of connection-diagrams in Fig. 1.

3 Linear Server/Client Systems

The typical client/server interaction is started by the client, which asks the server
for a service. In this sense, the server is subordinated to the client.

It is important that, from the point of view of a client, the server’s interactions
with other clients be completely opaque; the server’s behavior is reliable if the client
is sure to obtain, sooner or later, the desired answer. If the server of a system is
reliable for all its clients, we say that the system is linear.

The interaction between server and client is expressed by a sequence of events
(a trace) that belongs either to the server’s behavior, either to the client’s; all the
possible interactions are expressed by a set of shared traces.

A process is finite if no recursion operator appears in its definition, and a finite
system is one denoting a finite process. To specify the concept of “service provided”
we need only maximal traces, if the process is finite. From an algebraic point of
view, this is obvious because all the traces of a finite process have finite length, and
the set of traces of a process is closed under the prefix operator. If the process is
not finite, the concept of maximal traces is not well defined, so we have to look at
“stepwise” behavior of the system.

Definition 3.1 (Dones,) Given Z € Systems finite

Donesin(2) d:ef(ref: aZ = (VYe:e € Clients(Z2): tr] ac € MaxTraces(c)))

We notice that a maximal trace of a client corresponds to a trace of a CSP failure
such that the alphabet of that client is contained in the refusal set.

Definition 3.2 (Donejys) Given Z € Systems

def

Donejns (2) = (Ve: e € Clients(2): (tr, ref) | ac € failures(c))

The free variables tr and ref will be bounded by the definition of satisfiability
(Defs. 2.2,2.3). The following lemma guarantees the consistency of our definitions.

Lemma 2 Given Z € Systems finite,Donejs(2) < Donesin(Z).

Dones,, and Donej,s predicates fully agree with the definition of CSP specification
given in Sect.2. Now it is time to take full advantage of our definition of client /server
system to give a specification which exploits the possibility of decomposing the
system.

Definition 3.3 (Linearity) Given Z € Systems,

def

Linear(Z) (Ve: e € Clients(Z2): Z2° sat Done(Z°)) = (2) sat Done(2)

where (Z)° = (Server(Z2), {c}) and Done(Z) can be finite or not.

T

s
el

L\@\ L)

Figure 2: Connection-diagram of the wheel-cart system.

4 Some Examples

In this section we will study some systems by means of the concept of linearity.
These example will also test the expressiveness of our definition.

4.1 The Wheel-cart

Our first example is a system given by two passengers on the sides of a wheel-cart
running on a railway, each of them trying to move toward his direction acting on a
lever. This is a client/server system, where the server is given by the wheel-cart and
the clients are the two passengers. The system will be: P = (S, {Cy, C1}), where S
is the wheel-cart, whose possible actions are moving eastward or westward:

aS = {ea,we} S = (we—S) N (ea—S)

The passengers try to force movement in single direction:

aCy = {we} Cyp=we—Ch
aCy ={ea} Cy=ea—C,

It is very easy to prove that this system is linear using the following lemma.

Lemma 3 Given a system S = (S, {C4,...,C,}),
(Vi:: S || C; = Proe(S)) = Linear(S)

We could calculate the values of S || C, S || Cy and S || Cy || Cy. Proofs are

very similar so, let’s see only the first one:

Proof of S || Cy = S:
S| Co
= {definition of S and Co}
((we = 8) 1 (ea— 8)) || (we —)
— {|| distributes over M}
((we—S) || (we —Co)) 1 ((ea—5) || (we—C))
— {laws on ||}
(we = (5 || Co)) 1 (ea—(S || Co))
= {definition of S}
S

The value of all these processes is S, s0, by lemma, 3, our system is linear.

4.1.1 The finite wheel-cart

Let P, ., = (S, {C§,C7}) be a variant of the previous system. The two systems
have the same server, but the clients, which were infinite in P, are finite in P,

aCy = {we} Cf =we—...=we—=STOP,
—_—

n times

aC7" ={ea} C7'=ea—...—ea—STOP
m times

Here the clients are finite, so we can use Def. 3.1. Obviously, this system will
behave exactly as P, as long the two clients can engage in an action. But, let’s
suppose C{y finish all its actions; its task is satisfied, according to our definition
of Dones,. Now the server has to perform only ea actions, in order to perform
CT"’s task and to avoid deadlock. But this is impossible since the meaning of M,
and, as a consequence, =(P,, ,, sat Done(P,, ,.)) and —Linear(P,).

Zn,m, ,m,

4.1.2 The finite and deterministic wheel-cart

Let’s develop another variant of the wheel-cart system: Q = (S4.,{Cg,C7"}),
where
@Sy = {ea, we} Sier = (we = Sger) O(ea — Syer)

By definition of deterministic choice, the actions of the server are determined ac-
cording to the actions offered by clients. Then, when one of the two clients has
completed his requests, only the actions of the other client are offered, the server is
forced to produce these events, and this argument implies Linear(Q).
Znm
The comparison between systems P, and Q show clearly the relation in-
. —n,m =n,m .

tercurring between linearity and choice: with a nondeterministic server, we cannot
guarantee linearity, while with a deterministic server, we get it.

1.go-to-0

0.go-to-1 2.go-to-1
@ call-by-0 calbyz
0.go-to-2 2.go-to-0
S

Figure 3: Connection-diagram of the elevator system, for n = 3.

4.2 The Elevator

Here we will show that the “footman” technique, devised by C. S. Scholten to solve
the “dining philosophers” problem [Di65], can be used to make a linear system from
a non-linear one.

let’s take a system where the server is an elevator, while queues of users on each
floor are the clients. T.et’s suppose there are n floors.

We begin presenting the model of an user: he/she wants to go to floor k, and is
waiting the elevator on floor 7. Such an user can be represented by the process Cf:

aCF = {call_by_i, i.go_to_k}
C* = call_by_i— i.go_to_k— Fl;

and the queue at floor 7 is represented by FI;:

aFl, ={call_by_it U {igoto k|0 <k <nAk#i}
Fl = (0k:0 < kb < n Ak # i CF)

The action call_by_i means a call for the elevator from floor 2, and the event i.go_to_k
means the travel of an user from floor 7 to k.
The elevator doesn’t remember nor it schedules calls, so it can be described by:

asS = (Ji:0 <i < n:akFl)
S=(00:0<i<nealllbyi— (0j:0< j < nAi#jrigotoj—9))

Its meaning is simple: when it receives a call from floor 7, it goes to that floor, and
then it moves itself to floor j, and there it stays, waiting for another call.

Putting all together, our system will be £, = (S, {FL |0 <1i < n}).

It is obviously true that (Ve:e € Clients(L,,): L sat Done(L()), but, in general
(i.e. for any n), L, sat Done(L,,) does not hold.

10

F’
1 call-by-1
- 1.go-to-0
Lacqire 1.go-to-2
lrelease s
0O.acquire 2.acquire
O.release 2.release
Fo
! FI’
Fl) \/ (2
S
call-by-0 call-by-2
0.go-to-2 s 2.go-to-0
0.go-to-1 2.go-to-1

Figure 4: Connection-diagram of the linearized elevator system, for n = 3

let’s suppose that two users call the elevator from two different floors at the
same time. A possible result will be:

call_by_0— call_by_1 —((O..) || (O...)

the elevator will process the first event, but it will deadlock on the second, because
it expects a i.go_to_k action, so we deduce that the system cannot be linear.

The “footman” technique suggests a solution to overcome non-linearity.

We have a problem with the clients because the elevator can serve only one user
at a time, and we have a problem during the service of an user because it cannot
accept any request from other users. To enforce such behavior we will extend the
server with a “button” which commits the elevator to a single user; at the same
time we will forbid to all clients but one to access the elevator (only one user can
“push the button”); on completion of the service the elevator will be released and
a new client may use the elevator.

For this purpose, alphabets of our processes have to be extended and their
behavior needs to be slightly variated.

The “button” is defined as follows:

(]/F():DUE F():(TD—>FH)
QF]ZDUF] F]Z(TF]%F())

where: D = (|J:0 < i < n:{i.acquire}) and F = ([J:0 < i < n: {i.release}).

11

The new system will be:
L= (§ R0 << n})

where:

asS’ = aSUaky S'=95 Fy
aFl: = o Fl; U {i.acquire, i.release}
FI' = i.acquire —(07: 0 < j < n: call_by_i — i.go_to_j— i.release— FI%)

Now it is straightforward to notice that no client interferes with another client’s
service; if one or more queues are available, the elevator commits nondeterministi-
cally to one of them. Tt is simple to prove that £’ sat Done(£’) and so is obvious

that Linear(L').

5 A Sufficient Condition for Linearity

In this paragraph we introduce an alternative definition of linearity which is given
directly on the failure semantics of the process. It is possible to prove that this
definition implies the former one and hence can be seen as a sufficient condition for
linearity on the semantics for finite systems.

The concept of linearity is based on the intuition that the interaction between the
server and a client should be independent from the presence of other clients. From
a semantical point of view, this means that the semantics of any pair server/client,
should be equivalent to the semantics of the whole system restricted to the alphabet
of the client.

Definition 5.1 Given P € Systems,

de
Linearp,i(P) :Pf (Ve: ¢ € Clients(P): failures(P) | e = failures(P) [ave)
Theorem 5.1 [f Z € Systems is finite, then Linearg,(Z) = Linear(Z2).

Here the property is expressed for the failure semantics, but the discussion has
shown that it is actually parametric to the semantics.

6 Process-algebraic Operators and Linearity

When a property is defined in the context of Process Algebra, it is useful to de-
termine if the property is preserved by a process-algebraic operator. If the answer
is positive, the system built applying the operator to subsystems which have the
property, will also join the property. Here the main CSP operators will be examined
and the behavior w.r.t. linearity will be discussed.

12

e Prefiz. If I is a linear system, for any action a, @ — I. will be linear if and only
if the system has only one client, because prefix distributes over the parallel
operator. However, if the system has more than one client, the principle of
independence of clients is violated and a — I is not even a client /server system.

Lemma 4 If Linear(), for a € Act, a— L is linear iff Clients(I) = {C'}.

e Nondeterministic/deterministic choice. 1f Ly and Ly are linear, Iy Ly and
I 0Ly are not linear because it is not always possible to decompose the
system in server and clients.

e Parallelism. 1f Ly and Lq are linear systems, Iy |

5 is a client /server system,
because, for the laws of ||, we will have:

SUICHL - 1 1S ICR L[|, = STISP Il €,
for which:
— Server(Ly || I2) = S || 57
— Clients(Ly || L2) = {(711,...,(7]1\,1,(712,...(7]2\,2}.

However, not all the systems so obtained are linear and we have to state a
supplementary condition for linearity. Here is the simplest one.

Lemma 5 If Iy and Ly are linear, Ly |

Lo is linear if a(l1) Na(Ly) = 0.

e Relabeling. Tf I is a linear system and f is a injective relabeling function, then
f(L) is a client/server system because:

f(s

...

Cn) = S LA - - IHA(CN)

Lemma 6 If . is a linear system and [is an injective relabeling function,
f(L) is linear.

o Concealment. 1f I, is a linear system and FA a set of forbidden actions, the
system [\ FA is always linear, unless some client degenerates to the CHAQS
process; in that case all the system will degenerate to CHAQS.

7 Conclusion

We would like to close with a brief discussion on the issue of “structured specifi-
cations”. Qur treatment of linearity has shown the need of a specification pattern
where both the structure and the behavior of a system are described. Process-
algebra specialists might be sceptical on the use of a kind of information (the struc-
tural one) which can not be “observed” through the system’s behavior, but which
has to be known a priori. Our reply is twofold. We are interested in real-life sys-
tems; especially in the case of system design, it is not too farfetched to suppose

13

that the structure of the system is known. Moreover, recent approaches in process-
algebra try to capture “observationally” not only the actions of a process, but also
its structure ([FM91, BCH92]). From our point of view these proposals are at the
moment, too much concerned with the algebraic aspects of the theory and are not
enough expressive. In a future we believe however that these theories will be the
natural framework in which works as ours could be inserted and developed.

Acknowledgement. This work is a result of the cooperation between Universita
degli Studi di Milano, SGS-Thomson, and Consorzio Milano Ricerche.

References

[BK&5] J. A. Bergstra and J. W. Klop. Process Algebra for communication with
Abstraction Journal of Theoretical Computer Science, vol.77, Elsevier,

1985

[BCH92] G. Boudol, I. Castellani, M. Hennessy, A. Kiehn. Observing localities
(Extended Abstract) In: A. Tarlecki(ed.) Mathematical Foundations of
Computer Science, LNCS 520, Springer-Verlag

Br&8 E. Brinksma. Information Processing Systems - Open Systems Intercon-
; g oY p)

nection - LOTOS - A Formal Description Technique based upon the Tem-

poral Ordering of Observational Behaviour Draft International Standard

1SO8807, 1988

[Di65] E. W. Dijkstra. Cooperating Sequential Processes Technical Report
EWD-123, Technological University, Eindhoven, 1965

[FM91] G. L. Ferrari,U. Montanari. The observational Algebra of Spatial Pomsets
In: J. C. Baeten,J. F. Groote (eds.)CONCUR’91. LNCS 527,Springer-
Verlag

[Fr92] N. Francez. Program Verification Addison-Wesley, 1992
[Ho85] C. A. R. Hoare. Communicating Sequential Processes Prentice-Hall, 1985

[Mig&5] G. J. Milne. Clircal and the Representation of Communication, Concur-

rency and Time ACM Transactions on Programming lLanguages and
Systems, Vol.7 pp270-298, 1985

[Mi&9] R. Milner. Communication and Concurrency Prentice-Hall, 1989

[O1d91] E. R. Olderog, Nets, terms and formulas Cambridge University Press,
1991.

[Pr87] K. V. S. Prasad. Combinators and Bisimulation Proofs for Restartable
Systems PhDD) Thesis, Computer Science Department, University of Ed-
inburgh, 1987

[Si92] A. Sinha. Client-Server Computing Communications of ACM, Vol.35
No.7;77-98, 1992.

14

