
Linearity of Client/Server SystemsG.Degli Antoni, D.Cabianca, M.Vaccari, M.Benini, F.CasablancaUniversit�a degli Studi di MilanoApril 24, 1995AbstractAn important property of a client/server system is the independence of the in-teraction between the server and a client from the interactions that the server mighthave with other possible clients. In this paper we try to give a de�nition of sucha property, that we called linearity, by means of the Process Algebra formalism.Through some examples of linear and non linear systems, we illustrate the expres-siveness of our de�nition. Moreover, we present a su�cient condition for linearityand discuss the preservation of linearity w.r.t. process-algebraic operators appliedto linear systems.1 IntroductionThe growth of computer networks and distributed computing has led to the develop-ment of the client/server paradigm, which is widespread nowadays. A client/serversystem is a composite system which allows distributed computing, analysis andpresentation [Si92]. The client is a process (program) that sends a message to aserver process (program) requesting that the latter performs a task (service). Theserver process (program) ful�lls a client's demand by performing the requested task.Henceforth the need of a conceptual framework and tools which address the prob-lem of the reliability of such systems is strongly felt. For example, a very importantproperty of a client/server system is that the interaction of the server with a client isnot harmful to another client, i.e. does not produce any alteration in the interactionof the latter client with the server. In analogy with physical systems, we call thisproperty linearity.We believe that Process Algebra is a suitable framework in which studyingclient/server systems and their properties, for its descriptive power, formal ele-gance and variety of established results. Moreover, it has been successfully appliedto real-life systems for specifying communication protocols[Br88], in VLSI design[Mi85] and fault-tolerant systems [Pr87]. A regrettable feature is the proliferationof a variety of alternative systems, which di�er only in minor formal details. Among1
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them, we chose to use Hoare's CSP, because it is more focused toward the use ofprocess-algebraic tools for de�ning and verifying speci�cations of concurrent anddistributed systems. Properties of concurrent systems have usually been classi�edin liveness and safety properties. Linearity is a liveness property, which resembles,for example, deadlock-freeness, but it can not be reduced to it or to other knownproperties, because it depends inherently on the structure of the system.Process Algebra specialists will recognize an analogy with the property of com-positionality. Compositionality states that the semantics of a process is context-independent and can be obtained by means of a function on the semantics of itssubprocesses. There is a clear, albeit indirect, connection between compositionalityand linearity. However, linearity is a weaker property which concentrates on theservices requested by the client and/or supplied by the server and hence on thestructure of the system.In this paper we introduce a formal de�nition of client/server systems (section 2)and of the property of linearity (section 3). Through some examples, we discussthe expressiveness of this concept (section 4). A su�cient condition for linearityis introduced (section 5). Finally we prove that some process-algebraic operatorspreserve linearity, i.e. when applied to linear systems they produce new linearsystems (section 6).2 Process-Algebraic ViewIn this section we will give a short introduction to CSP focused on de�nitions andconcepts useful for our work. More exhaustive information can be found in [Ho85].The de�nition of client/server systems will follow.2.1 A Process Algebra : CSPProcess algebras represent processes by means of a set of actions (events), opera-tors and process variables. The operators act as process combinators to build newprocesses from existing ones.Some alternative models have been proposed, which di�er in the operators andin the semantic description adopted. The main CSP operators and syntactic re-quirements are speci�ed formally in the following de�nition.De�nition 2.1 Let Act = fa; b; : : :g an in�nite set of actions, and f :Act! Acta relabeling function. Let AVar = fx; y; : : :g a countable set of action variables. LetPVar = fX; Y; : : :g a countable set of process variables. Let A � Act. The set ofprocess expressions Proc is the smallest set which include all terms of the followinggrammar:P ::= a!P | (a!P j b!Q) | x:A!P (x) | P kj Q | P kQ | P 2Q |P uQ | PnA | f(P ) | X | �X :A:F (X)2



In the �nal term the variable X is bound. The free variables fv(P ) of a process Pare those which occur unbounded in an expression. If fv(P ) = ; we say that P isclosed. The set of closed CSP processes is denoted by Cproc.The behavior of a process P depends also on its alphabet (denoted �P ), which isthe set of possible actions for the process, not necessarily coinciding with the set ofactions appearing in the expression denoting the process. For this reason a processis fully speci�ed only when, besides its expression, also its alphabet is given. Hereis the intended meaning of the CSP operators; for a more formal treatment, basedon an axiomatization of the operators, we refer to [Ho85]. Such axioms are veryuseful to establish equivalences and to reason about processes.� a!P (pre�x): a process which o�ers action a and after behaves as the pro-cess P ;� a!P j b!Q(deterministic choice; generalized to (x:A!P (x))): a processwhich o�ers a and then commits to P , or o�ers b and then commits to Q;� P kj Q(interleaving): a process which behaves as the interleaved shu�e ofprocesses P and Q;� P uQ(nondeterministic choice): a process which behaves as P or Q, indepen-dently by the consequences on the environment;� P 2Q(general choice): a process which behaves as a deterministic choice ifdi�erent actions are o�ered by its operands and as a nondeterministic choiceif identical actions are o�ered;� PnA(concealment): a process which behaves like P , but treats the actions inA as local \hidden" actions;� P kQ(concurrency): a process which behaves as the interleave operator for ac-tions not shared by their alphabets and as a synchronization (communication)for shared actions (P and Q have to o�er the same shared action to proceed,and deadlock otherwise).� f(P )(change of symbol): a process which behaves like P , but which outputsaction f(a) instead of a, for any a 2 �P .� �X :A:F (X)(recursion): a process which behave like F (X), substituting itselfto the process variable X when needed.Some processes, which have a peculiar behavior, have been given names:� RUNA is the process which can engage in any event of its alphabet A at alltimes: �RUNA = A; RUNA = x:A!RUNA;� STOPA is the process which does not engage in any action:�STOPA = A; STOPA = x: ;!P (x);3



� CHAOSA is the process which may behave as any process:�CHAOSA = A; CHAOSA = �X :A:X:Hoare was led to study concurrent systems by the wish to extend the formalmethods he had devised for specifying and studying sequential computer programs.In computer programming, by speci�cation is usually understood a logical for-mula that expresses the initial and �nal conditions on the variables of the program[Fr92]. For concurrent systems it is not possible to apply directly this de�nition.Here the speci�cation of a system (its relevant and observable aspects) are the se-quences of events (the traces) that might happen [Ho85]. Hence a speci�cation is apredicate �(tr) de�ned on traces. Dually, a process' semantics might be understoodalso as the set of its possible traces. The satisfaction of a speci�cation by a processcan be de�ned as follows.De�nition 2.2 Given a process P and a predicate �(tr),P sat �(tr) def= (8tr: tr 2 Traces(P ): �(tr))When the process is not deterministic, traces alone are not enough to specifydesired behaviors. Sometimes it is useful to know if, after producing a trace, theprocess will stop or go on producing other actions. The set of actions which cannot be produced after a trace is called its refusal set. Sets of trace-refusals pairs(failures), are an alternative description of a system, which leads to the followingde�nition of satisfaction.De�nition 2.3 Given a process P and a property �(fa),P sat �(fa) def= (8fa: fa 2 failures(P ): �(fa))In the following we will need to consider traces or failures restricted to a givenset of actions (alphabet). Here is the notation we adopt.De�nition 2.4 Given P 2 Proc, tr 2 Traces(P ), fa 2 failures(P ), A � Act,tr �A = 8><>: � if tr = �a � (x �A) if tr = a � x and a 2 A(x �A) if tr = a � x and a 62 Afa �A = ht �A; ref\Ai where fa = ht; refi4



2.2 Server/Client SystemsIn the following our universe will be the set Cproc of the closed CSP terms. Aclient/server system is a process such that:� it is composed by a �nite number of parallel processes;� these processes can be conceptually split in a server process and in a set ofclient processes, mutually independent.De�nition 2.5 A (client/server) system is a pair Z = hS; fC1; : : : ; Cngi, where Sis the server process, and every Ci is a client process. The following conditions musthold:� (8i; j: 1� i; j � n ^ i 6= j:�Ci \ �Cj = ;)� (8i: 1 � i � n:�Ci � �S)We will refer to the set of all systems as Systems.We can de�ne a small set of useful functions to make notation more concise:De�nition 2.6 Given a system Z = hS; fC1; : : : ; Cngi, the following functions arede�ned: Server(Z) def= SClients(Z) def= fC1; : : : ; CngParts(Z) def= fServer(Z)g [ Clients(Z)�Z def= (SP :P 2 Parts(Z):�P )A process underlies every system; it is simply the parallel composition of allparts of a system.De�nition 2.7 Given a system Z = hS; fC1; : : : ; Cngi, the associated process is:Proc(Z) def= (kP :P 2 Parts(Z):P )We note that the same process can be generated by more then one system. In thefollowing, to make notation clearer, we may write just Z in place of Proc(Z).2.2.1 Ordering of SystemsSystems can be ordered by means of a convenient relation.De�nition 2.8 Given Z;S 2 Systems,Z � S i� Server(Z) = Server(S) ^ Clients(Z) � Clients(S)It is easy to see that � is a partial ordering.Lemma 1 Given a system Z:fS j S � Zg = fS j (9C:C � Clients(Z):S = hServer(Z); Ci)gand the minimum of such a set is the process hServer(Z); ;i.5
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3 Linear Server/Client SystemsThe typical client/server interaction is started by the client, which asks the serverfor a service. In this sense, the server is subordinated to the client.It is important that, from the point of view of a client, the server's interactionswith other clients be completely opaque; the server's behavior is reliable if the clientis sure to obtain, sooner or later, the desired answer. If the server of a system isreliable for all its clients, we say that the system is linear.The interaction between server and client is expressed by a sequence of events(a trace) that belongs either to the server's behavior, either to the client's; all thepossible interactions are expressed by a set of shared traces.A process is �nite if no recursion operator appears in its de�nition, and a �nitesystem is one denoting a �nite process. To specify the concept of \service provided"we need only maximal traces, if the process is �nite. From an algebraic point ofview, this is obvious because all the traces of a �nite process have �nite length, andthe set of traces of a process is closed under the pre�x operator. If the process isnot �nite, the concept of maximal traces is not well de�ned, so we have to look at\stepwise" behavior of the system.De�nition 3.1 (Done�n) Given Z 2 Systems �niteDone�n(Z) def= (ref = �Z ) (8c: c 2 Clients(Z): tr ��c 2 MaxTraces(c)))We notice that a maximal trace of a client corresponds to a trace of a CSP failuresuch that the alphabet of that client is contained in the refusal set.De�nition 3.2 (Doneinf) Given Z 2 SystemsDoneinf(Z) def= (8c: c 2 Clients(Z): htr; refi ��c 2 failures(c))The free variables tr and ref will be bounded by the de�nition of satis�ability(Defs. 2.2,2.3). The following lemma guarantees the consistency of our de�nitions.Lemma 2 Given Z 2 Systems �nite,Doneinf(Z), Done�n(Z).Done�n and Doneinf predicates fully agree with the de�nition of CSP speci�cationgiven in Sect.2. Now it is time to take full advantage of our de�nition of client/serversystem to give a speci�cation which exploits the possibility of decomposing thesystem.De�nition 3.3 (Linearity ) Given Z 2 Systems,Linear(Z) def= (8c: c 2 Clients(Z):Zc sat Done(Zc))) (Z) sat Done(Z)where (Z)c = hServer(Z); fcgi and Done(Z) can be �nite or not.7
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weFigure 2: Connection-diagram of the wheel-cart system.4 Some ExamplesIn this section we will study some systems by means of the concept of linearity.These example will also test the expressiveness of our de�nition.4.1 The Wheel-cartOur �rst example is a system given by two passengers on the sides of a wheel-cartrunning on a railway, each of them trying to move toward his direction acting on alever. This is a client/server system, where the server is given by the wheel-cart andthe clients are the two passengers. The system will be: P = hS; fC0; C1gi, where Sis the wheel-cart, whose possible actions are moving eastward or westward:�S = fea; weg S = (we!S) u (ea!S)The passengers try to force movement in single direction:�C0 = fweg C0 = we!C0�C1 = feag C1 = ea!C1It is very easy to prove that this system is linear using the following lemma.Lemma 3 Given a system S = hS; fC1; :::; Cngi,(8i: :S k Ci = Proc(S))) Linear(S)We could calculate the values of S k C0, S k C1 and S k C0 k C1. Proofs arevery similar so, let's see only the �rst one:8



Proof of S k C0 = S:S k C0= fde�nition of S and C0g((we!S) u (ea!S)) k (we!C0)= fk distributes over ug((we!S) k (we!C0))u ((ea!S) k (we!C0))= flaws on kg(we!(S k C0)) u (ea!(S k C0))= fde�nition of SgSThe value of all these processes is S, so, by lemma 3, our system is linear.4.1.1 The �nite wheel-cartLet Pn;m = hS; fCn0 ; Cm1 gi be a variant of the previous system. The two systemshave the same server, but the clients, which were in�nite in P, are �nite in Pn;m:�Cn0 = fweg Cn0 = we! : : :!we| {z }n times ! STOPfweg�Cm1 = feag Cm1 = ea! : : :! ea| {z }m times ! STOPfeagHere the clients are �nite, so we can use Def. 3.1. Obviously, this system willbehave exactly as P , as long the two clients can engage in an action. But, let'ssuppose Cn0 �nish all its actions; its task is satis�ed, according to our de�nitionof Done�n. Now the server has to perform only ea actions, in order to performCm1 's task and to avoid deadlock. But this is impossible since the meaning of u,and, as a consequence, :(Pn;m sat Done(Pn;m)) and :Linear(Pn;m).4.1.2 The �nite and deterministic wheel-cartLet's develop another variant of the wheel-cart system: Qn;m = hSdet; fCn0 ; Cm1 gi,where �Sdet = fea; weg Sdet = (we!Sdet)2(ea!Sdet)By de�nition of deterministic choice, the actions of the server are determined ac-cording to the actions o�ered by clients. Then, when one of the two clients hascompleted his requests, only the actions of the other client are o�ered, the server isforced to produce these events, and this argument implies Linear(Qn;m).The comparison between systems Pn;m and Qn;m show clearly the relation in-tercurring between linearity and choice: with a nondeterministic server, we cannotguarantee linearity, while with a deterministic server, we get it.9
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The new system will be:L0 = hS 0; fFl0i j 0 � i < ngiwhere: �S0 = �S [ �F0 S0 = S k F0�Fl 0i = �Fli [ fi.acquire; i.releasegFl 0i = i.acquire!(@j: 0 � j < n: call by i! i.go to j! i.release!Fl 0i)Now it is straightforward to notice that no client interferes with another client'sservice; if one or more queues are available, the elevator commits nondeterministi-cally to one of them. It is simple to prove that L0 sat Done(L0) and so is obviousthat Linear(L0).5 A Su�cient Condition for LinearityIn this paragraph we introduce an alternative de�nition of linearity which is givendirectly on the failure semantics of the process. It is possible to prove that thisde�nition implies the former one and hence can be seen as a su�cient condition forlinearity on the semantics for �nite systems.The concept of linearity is based on the intuition that the interaction between theserver and a client should be independent from the presence of other clients. Froma semantical point of view, this means that the semantics of any pair server/clientshould be equivalent to the semantics of the whole system restricted to the alphabetof the client.De�nition 5.1 Given P 2 Systems;LinearFail(P) def= (8c: c 2 Clients(P): failures(Pc) ��c = failures(P) ��c)Theorem 5.1 If Z 2 Systems is �nite, then LinearFail(Z)) Linear(Z).Here the property is expressed for the failure semantics, but the discussion hasshown that it is actually parametric to the semantics.6 Process-algebraic Operators and LinearityWhen a property is de�ned in the context of Process Algebra, it is useful to de-termine if the property is preserved by a process-algebraic operator. If the answeris positive, the system built applying the operator to subsystems which have theproperty, will also join the property. Here the main CSP operators will be examinedand the behavior w.r.t. linearity will be discussed.12



� Pre�x. If L is a linear system, for any action a, a!L will be linear if and onlyif the system has only one client, because pre�x distributes over the paralleloperator. However, if the system has more than one client, the principle ofindependence of clients is violated and a!L is not even a client/server system.Lemma 4 If Linear(L), for a 2 Act, a!L is linear i� Clients(L) = fCg.� Nondeterministic/deterministic choice. If L1 and L2 are linear, L1 uL2 andL12L2 are not linear because it is not always possible to decompose thesystem in server and clients.� Parallelism. If L1 and L2 are linear systems, L1 kL2 is a client/server system,because, for the laws of k, we will have:S11 kC11 k : : :kC1N1 kS21 kC21 k : : :kC2N2 = S11 kS21 kC11 k : : :kC2N2for which:{ Server(L1 kL2) = S11 kS21{ Clients(L1 kL2) = fC11 ; : : : ; C1N1; C21 ; : : :C2N2g.However, not all the systems so obtained are linear and we have to state asupplementary condition for linearity. Here is the simplest one.Lemma 5 If L1 and L2 are linear, L1 kL2 is linear if �(L1) \ �(L2) = ;.� Relabeling. If L is a linear system and f is a injective relabeling function, thenf(L) is a client/server system because:f(S kC1 k : : :kCN) = f(S) kf(C1) k : : :k f(CN)Lemma 6 If L is a linear system and f is an injective relabeling function,f(L) is linear.� Concealment. If L is a linear system and FA a set of forbidden actions, thesystem L nFA is always linear, unless some client degenerates to the CHAOSprocess; in that case all the system will degenerate to CHAOS.7 ConclusionWe would like to close with a brief discussion on the issue of \structured speci�-cations". Our treatment of linearity has shown the need of a speci�cation patternwhere both the structure and the behavior of a system are described. Process-algebra specialists might be sceptical on the use of a kind of information (the struc-tural one) which can not be \observed" through the system's behavior, but whichhas to be known a priori. Our reply is twofold. We are interested in real-life sys-tems; especially in the case of system design, it is not too farfetched to suppose13
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