
AsmetaSMV: a model checker for AsmetaL

models

Tutorial

Paolo Arcaini1 Angelo Gargantini2 Elvinia Riccobene3

1Università degli Studi di Milano, Dipartimento di Tecnologie dell'Informazione

- parcaini@gmail.com
2Università degli Studi di Bergamo, Dipartimento di Ingegneria

dell'Informazione e Modelli Matematici - angelo.gargantini@unibg.it
3Università degli Studi di Milano, Dipartimento di Tecnologie dell'Informazione

- elvinia.riccobene@unimi.it

CORE Metadata, citation and similar papers at core.ac.uk

Provided by AIR Universita degli studi di Milano

https://core.ac.uk/display/187822373?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2



Contents

1 ASMETA Framework 5
1.1 ASMETA toolset . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 AsmetaSMV . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 NuSMV 7
2.1 Model checking . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Kripke structure . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Computation Tree Logic (CTL) . . . . . . . . . . . . . 8

2.2 NuSMV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1.1 Variable type . . . . . . . . . . . . . . . . . . 10
2.2.1.2 Assign . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Nondeterminism . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 Invariant properties . . . . . . . . . . . . . . . . . . . . 12
2.2.4 CTL properties . . . . . . . . . . . . . . . . . . . . . . 13
2.2.5 Example: Lift . . . . . . . . . . . . . . . . . . . . . . . 13

3 Supported ASM elements 17
3.1 Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Dynamic functions . . . . . . . . . . . . . . . . . . . . 21
3.2.1.1 Controlled functions . . . . . . . . . . . . . . 21
3.2.1.2 Monitored functions . . . . . . . . . . . . . . 25
3.2.1.3 Static and derived functions . . . . . . . . . . 28

3.3 Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.1 Mapping process . . . . . . . . . . . . . . . . . . . . . 30
3.3.2 Update rule . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.3 Block rule . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.4 Conditional rule . . . . . . . . . . . . . . . . . . . . . . 33
3.3.5 Case rule . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.6 Forall rule . . . . . . . . . . . . . . . . . . . . . . . . . 35

3



4 CONTENTS

3.3.7 Choose rule . . . . . . . . . . . . . . . . . . . . . . . . 37

4 CTL properties 41
4.1 Mapping of AsmetaL axioms . . . . . . . . . . . . . . . . . . . 41
4.2 Declaration of CTL properties . . . . . . . . . . . . . . . . . . 43

4.2.1 Monitored locations in CTL properties . . . . . . . . . 45
4.2.2 Choose rule behaviour . . . . . . . . . . . . . . . . . . 47

5 User guide 49
5.1 Eclipse project . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1.1 Executable jar archive . . . . . . . . . . . . . . . . . . 50
5.1.2 Execution options . . . . . . . . . . . . . . . . . . . . . 50

5.1.2.1 Embedded execution of NuSMV �le . . . . . . 50
5.1.2.2 Simpli�cation of boolean conditions . . . . . . 51
5.1.2.3 Check on integer domains . . . . . . . . . . . 53

6 Examples 59
6.1 One way tra�c light control . . . . . . . . . . . . . . . . . . . 59

6.1.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.1.2 Ground model . . . . . . . . . . . . . . . . . . . . . . . 60
6.1.3 Re�ned model . . . . . . . . . . . . . . . . . . . . . . . 67

6.2 Sluice Gate Control . . . . . . . . . . . . . . . . . . . . . . . . 72
6.2.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.2.2 Ground model . . . . . . . . . . . . . . . . . . . . . . . 72
6.2.3 Re�ned model . . . . . . . . . . . . . . . . . . . . . . . 75

6.3 Mondex protocol . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.3.1 Model with error . . . . . . . . . . . . . . . . . . . . . 79
6.3.2 First solution . . . . . . . . . . . . . . . . . . . . . . . 90
6.3.3 Second solution . . . . . . . . . . . . . . . . . . . . . . 93

6.4 Taxi central . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.4.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.4.2 Taxi and client movements . . . . . . . . . . . . . . . . 102
6.4.3 Booking system model . . . . . . . . . . . . . . . . . . 112

Bibliography 126



Chapter 1

ASMETA Framework

AsmetaSMV is a based tool of the ASMETA toolset [1]; so, before de-
scribing AsmetaSMV, we brie�y introduce the ASMETA toolset.

1.1 ASMETA toolset

ASMETA toolset has been developed starting with the de�nition ofAsmM
[2, 3], a metamodel for ASMs. The ASMETA tool set (see Fig. 1.1) includes
(among other things) a textual concrete syntax, AsmetaL [4, 5], to write ASM
models (conforming to the AsmM) in a textual and human-comprehensible
form; a text-to-model compiler, AsmetaLc, to parse AsmetaL models and
check for their consistency w.r.t. the AsmM OCL constraints; a simulator,
AsmetaS [6], to execute ASM models; the Avalla language for scenario-based
validation of ASM models, with its supporting tool, the AsmetaV validator;
the ATGT tool [7, 8] that is an ASM-based test case generator based upon
the SPIN model checker; a graphical front-end called ASMEE (ASM Eclipse
Environment) which acts as IDE and it is an eclipse plug-in.

All the above artifacts/tools are classi�ed in: generated, based, and inte-
grated. Generated artifacts/tools are derivatives obtained (semi-)automatically
by applying appropriate MOF projections to the technical spaces Javaware,
XMLware, and grammarware. Based artifacts/tools are those developed ex-
ploiting the ASMETA environment and related derivatives; an example of
such a tool is the simulator AsmetaS). Integrated artifacts/tools are external
and existing tools that are connected to the ASMETA environment.
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6 CHAPTER 1. ASMETA FRAMEWORK

Figure 1.1: Toolset ASMETA

1.2 AsmetaSMV

AsmetaSMV is a based tool of the ASMETA toolset. Its aim is to enrich
the ASMETA toolset with the capabilities of the model checker NuSMV; it
translates a code written in AsmetaL into a NuSMV code.
The user can de�ne the temporal properties he wants to check directly into
the AsmetaL code; he could even don't know the NuSMV syntax, but just
the AsmetaL one. The only thing a user must know to perform model check-
ing over an AsmetaL code is, besides the AsmetaL language, the syntax of
the temporal operators.
In the following sections we suppose that the reader knows the ASM the-
ory [9], the AsmetaL language [10], the model checking theory [11] and the
NuSMV language [12] (however in section 2 we give a brief introduction
of NuSMV). The purpose of this text is to describe how to perform model
checking over an AsmetaL code. We will describe which ASM elements are
supported by the mapping and which are not; an ASM element is supported
by the mapping if the tool is able to translate it into a NuSMV code. An
ASM element, instead, could not be supported because of two reasons:

1. it's not possible to translate the element: the Integer domain, for ex-
ample, cannot be mapped because NuSMV supports only �nite types;

2. the mapping of the element would be too complicated: in future ver-
sions of the tool, many turbo rules could be mapped into NuSMV but,
by now, are not supported by the tool.



Chapter 2

NuSMV

In this chapter we analyze the technique of model checking (section 2.1)
and, in particular, of the model checker NuSMV (section 2.2). We describe
only the concepts that are useful for the reading of the text; for a complete
description of NuSMV you can see [12].

2.1 Model checking

Model checking is a formal veri�cation technique; it permits to create
abstract models of systems and verify that they satisfy properties de�ned
in a temporal logic. In many situations the use of a model checker can be
useful to the developers that, yet in the design phase, can discover possible
errors of the model; in big projects, in fact, to discover a design error after
the implementation phase can cause a loss of money and time.
A model checker works in three steps:

1. de�nition of a modelM using the Kripke structures (section 2.1.1), a
formalism similar to the �nite state machines;

2. de�nition of a temporal formula φ, that describes a property that we
want to verify (section 2.1.2);

3. the model checker veri�es thatM ` φ.

2.1.1 Kripke structure

A Kripke structure is de�ne by the 4-uple

M = (S,∆, S0, L)

where:
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• S is a �nite set of states;

• ∆ (or →) is a transition total relation, that is

∀s ∈ S ∃s′ ∈ S such that s→ s′

• S0 ⊆ S is the set of initial states;

• L : S → 2AP is a labelling function that links each state with a label;
the label lists the atomic propositions that are true in that state. AP
is a set of atomic propositions.

2.1.2 Computation Tree Logic (CTL)

Temporal logics are divided into:

• Linear time logics (LTL): they represent time as in�nite sequences of
instants; you can only declare properties that must be true over all
sequences;

• Branching Time Logics (BTL): they represent time as a tree, where
the root is the initial instant and its children the possible evolutions of
the system; you can declare properties concerning all the paths or just
some of them.

Temporal logics, moreover, can be classi�ed in continuous time logics and
discrete time logics.
In this text we will use Computation Tree Logic (CTL), a discrete time BTL.
CTL permits to express logic formulas concerning paths, that is sequences
of state transitions. Each CTL formula has a path quanti�er that says if the
formula must be true in all the paths (A, along All paths) or if must be true
in at least one path (E, Exists at least one path). Moreover can be used the
temporal operators:

• X p: the property p must be veri�ed in the next state;

• F p: the property p must be veri�ed in a future state;

• G p: the property p must be veri�ed in all the states;

• p U q : the property p must be true until the q property becomes true.
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It's AP{p, q, r, . . .} a set of atomic formulas; CTL formulas can be expressed
in the following way:

φ ::= > | ⊥ | p ∈ AP | ¬φ | φ ∧ φ | φ ∨ φ | φ→ φ | AXφ | EXφ | A[φUφ] |
E[φUφ] | AGφ | EGφ | AFφ | EFφ

where >, ⊥, ¬, ∧, ∨ and → are the connectives of propositional logic and
AX, EX, AG, EG, AU, EU, AF and EF are temporal connectives.
The unary operators have the highest priority; then there are the binary
operators ∨ and ∧ and, at last, the binary operators →, AU and EU.

2.2 NuSMV

NuSMV [12] is a symbolic model checker derived from CMU SMV [11]; it
permits to verify properties written both in Computation Tree Logic (CTL)
and in Linear Temporal Logic (LTL).
The internal representation of the model uses the Binary Decision Diagrams
(BDDs), a particular type of graphs that permit to represent logic formulas
in a compact and e�cient way for the satis�ability analysis. A particular
category of BDDs is used, the Ordered Binary Decision Diagrams (OBDDs),
that permit to represent logic formulas in canonical form.
NuSMV is a transactional system in which the states are determined by the
values of variables; transactions between the states are determined by the
updates of the variables.
A NuSMV model is made of three principal sections:

• VAR: contains the declaration of variables;

• ASSIGN: contains the initialization (instruction init) and the update
mechanism (instruction next) of the variables;

• SPEC: contains the CTL properties that must be veri�ed by the model
checker.

Code 2.1 is a small example of NuSMV model we will refer to in the following
sections.

Code 2.1: NuSMV example
MODULE main

VAR

varBool: boolean;

varNum: 1..5;

varNumSet: {1, 3, 5};

varEnum: {AA , BB , CC};
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ASSIGN

init(varBool) := TRUE;

init(varNum) := 1;

init(varNumSet) := 1;

next(varBool) := !varBool;

next(varNum) := 2;

next(varNumSet) :=

case

varNumSet = 5: 1;

TRUE: varNumSet + 2;

esac;

next(varEnum) :=

case

varNumSet = 1: CC;

varNumSet = 3: BB;

varNumSet = 5: AA;

esac;

SPEC AG(varNumSet =1 <-> AX(varNumSet =3));

2.2.1 Variables

2.2.1.1 Variable type

Variables are declared in the VAR section with the speci�cation of their
types.
The type of a variable can be:

• boolean: it accepts as values the integers 0 and 1 or the equivalent
literals FALSE and TRUE; variable varBool is a boolean variable;

• Integer ; the variable can be de�ned:

� over a values interval a..b with a < b; such a variable is variable
varNum;

� over a set {ai, . . . , aj} of values not necessarily contiguous; a vari-
able of such type is variable varNumSet ;

• enumeration of symbolic constants; such a variable is variable varEnum.

2.2.1.2 Assign

The initialization and update instructions are executed in the ASSIGN
section.
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Initialization A variable var can be initialized to value v0 with the in-
struction

init(var) := v0;

A variable can be either not initialized; an example of that is the variable
varEnum of code 2.1. In such a situation, at the beginning NuSMV creates
as many states as the number of values of the variable type; in each state the
variable assumes a di�erent value.

Update The value of a variable var in the next state is determined with
the instruction

next(var) := . . . ;

The next value can be determined in a straight way, as variables varBool and
varNum, or in a conditional way through the case expression, as variables
varNumSet and varEnum. In a case expression conditions are evaluated
in sequence; the �rst true condition determines the resulting value; you can
set, as last branch of the case instruction, the default condition TRUE that
is selected if none of the previous conditions is sa�s�ed. In code 2.1 the
next instruction of varNumSet has the default value, the next instruction
of varEnum doesn't. However we can notice that the conditions of the next
value of variable varEnum are exhaustive and, so, there is no need of the
default value. In code 2.2, instead, the conditions of the next value of var
are not exhaustive.

Code 2.2: Not exhaustive conditions
MODULE main

VAR

var: 1..5;

ASSIGN

init(var) := 1;

next(var) :=

case

var = 1: 3;

var = 2: 5;

esac;

The execution of code 2.2 signal, with an error message, the absence of
exhaustiveness of the conditions:

[user@localhost code]$ NuSMV notExhaustive.smv

*** This is NuSMV 2.4.0 (compiled on Sat Oct 4 10:17:49 UTC 2008)

*** For more information on NuSMV see <http://nusmv.irst.itc.it>

*** or email to <nusmv-users@irst.itc.it>.

*** Please report bugs to <nusmv@irst.itc.it>.
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file notExhaustive.smv: line 10: case conditions are not exhaustive

NuSMV terminated by a signal

2.2.2 Nondeterminism

In NuSMV it' possible to model non deterministic behaviours; they can
be modeled in two ways:

• do not assign any value to a variable that, in such a way, can assume any
value; this is the case of the missing initialization of variable varEnum
in code 2.1;

• to assign to a variable a value randomly chosen from a set, through
the expression {val1, . . . , valn}; code 2.3 shows an example: in each
transaction, the variable var can be 3 or 4.

Code 2.3: Nondeterminism
MODULE main

VAR

var: 1..5;

ASSIGN

init(var) := {3, 4};

next(var) := {3, 4};

2.2.3 Invariant properties

It's possible to specify invariant conditions, that is properties that must
be true in each state; the syntax of an invariant condition is

INVAR boolExpr;

where boolExpr is a boolean expression. In code 2.4 we can see how it's
possible to reproduce the same semantic of code 2.3 through an invariant
property.

Code 2.4: Invariant property
MODULE main

VAR

var: 1..5;

INVAR (var=3 | var=4);

Even in this code, variable var can be only 3 or 4.
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2.2.4 CTL properties

CTL properties are declared, through the keyword SPEC, in the following
way

SPEC ctlForm;

where ctlForm is a CTL formula built in the way seen in section 2.1.2. In
code 2.1 it's declared a property that veri�es that, if in a state varNumSet
is 1, in the next state is 3.

2.2.5 Example: Lift

In order to show an example of use of NuSMV, in this section we describe
the NuSMV model for the lift problem; in the model we have declared some
properties we want to verify.

Problem A lift connects four �oors of a building, from the ground �oor
to the third �oor. At each �oor a button permits to request the lift. Inside
the lift it's possible to select the destination �oor. In the model, external
callings executed from �oor Si and internal callings (executed in the lift) to
stop at �oor Si are indiscernible: so we refer to a generic request from �oor
Si. The lift must be used in a very tall building (hospitals, skyscrapers, etc.);
the functioning cycle is the following:

• at the beginning the lift is at the ground �oor and starts its travel
towards the top;

• if during the ascent the lift receives a call from a �oor Su superior to
the current position, when it reaches Su stops (satis�es the request);

• when the lift arrives at the third �oor, switches its direction and starts
travelling towards the bottom;

• if during the descent the lift receives a call from a �oor Sd inferior to
the current position, when it reaches Sd stops (satis�es the request);

• when the lift arrives at the ground �oor, switches its direction and
starts travelling again towards the top.

We want that all the requests are satis�ed and that there aren't situations
in which the lift is in deadlock.
NuSMV code 2.5 contains the model of the problem.
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Code 2.5: Lift

MODULE main

VAR

cabin: 0..3;

dir: {up, down};

request0: boolean;

request1: boolean;

request2: boolean;

request3: boolean;

ASSIGN

init(cabin) := 0;

init(dir) := up;

init(request0) := FALSE;

init(request1) := FALSE;

init(request2) := FALSE;

init(request3) := FALSE;

next(cabin) :=

case

dir=up & cabin <3: cabin + 1; --ascent

dir=down & cabin >0: cabin - 1; --descent

TRUE: cabin;

esac;

next(dir) :=

case

dir=up & next(cabin)=3: down;

dir=down & next(cabin)=0: up;

TRUE: dir;

esac;

next(request0) :=

case

next(cabin)=0: FALSE; --the request is cleared

request0: TRUE; --the request is kept

TRUE: {FALSE , TRUE}; --can decide to make the request

esac;

next(request1) :=

case

next(cabin)=1: FALSE; --the request is cleared

request1: TRUE; --the request is kept

TRUE: {FALSE , TRUE}; --can decide to make the request

esac;

next(request2) :=

case

next(cabin)=2: FALSE; --the request is cleared

request2: TRUE; --the request is kept

TRUE: {FALSE , TRUE}; --can decide to make the request

esac;

next(request3) :=

case

next(cabin)=3: FALSE; --the request is cleared

request3: TRUE; --the request is kept

TRUE: {FALSE , TRUE}; --can decide to make the request

esac;

--deadlock absence

SPEC AG(EX(TRUE));

--safety properties

SPEC AG!(dir=up & cabin =3)

SPEC AG!(dir=down & cabin =0)

--liveness properties
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SPEC AG(request0 -> AF!request0);

SPEC AG(request1 -> AF!request1);

SPEC AG(request2 -> AF!request2);

SPEC AG(request3 -> AF!request3);

Variable cabin records the current �oor of the lift; variable dir records the
direction of the lift; variables request0, request1, request2 and request3 are
boolean variables that model the requests from the four �oors. We hypoth-
esize that each transaction corresponds to the passage from a �oor to the
next.
At the beginning the lift is at the ground �oor with direction towards the
top; there are no requests.
Let's see the update mechanism of variables (instructions next). Variable
cabin is incremented when the lift is going towards the top, decremented
when it's going towards the bottom. Variable dir is modi�ed at the ground
�oor, where it becomes up, and at the third �oor, where it becomes down.
The four request variables are modi�ed in the following way:

• if there is a request for a �oor and the lift is arrived at that �oor, the
request is cleared;

• if there is a request for a �oor and the lift is not yet arrived at that
�oor, the request is kept;

• if there is no request for a �oor, nondeterministically a request could
be executed for that �oor.

Let's see some properties we want to verify.
First of all we want to verify that our model doesn't contains a deadlock, that
is a state in which the system is blocked. The deadlock absence is veri�ed
through the property

AG(EX(TRUE))

that says that, for each state (AG), there is always at least a next state (EX).
Let's now declare some safety properties, that is properties that must always
(or never) veri�ed. The two properties

AG!(dir=up & cabin=3)

AG!(dir=down & cabin=0)

check that it's not possible (AG!) that the lift is going towards the top if it's
at the third �oor or that is going towards the bottom if it's at the ground
�oor. Finally we declare some liveness properties, that is properties that
verify that some states are reached. The four properties
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AG(request0 -> AF!request0)

AG(request1 -> AF!request1)

AG(request2 -> AF!request2)

AG(request3 -> AF!request3)

check that, if there is a request from a �oor, the request sooner or later
(AF) will be satis�ed. The NuSMV code execution veri�es the properties
correctness:

[user@localhost code]$ NuSMV lift.smv

*** This is NuSMV 2.4.0 (compiled on Sat Oct 4 10:17:49 UTC 2008)

*** For more information on NuSMV see <http://nusmv.irst.itc.it>

*** or email to <nusmv-users@irst.itc.it>.

*** Please report bugs to <nusmv@irst.itc.it>.

-- specification AG (EX TRUE) is true

-- specification AG !(dir = up & cabin = 3) is true

-- specification AG !(dir = down & cabin = 0) is true

-- specification AG (request0 -> AF !request0) is true

-- specification AG (request1 -> AF !request1) is true

-- specification AG (request2 -> AF !request2) is true

-- specification AG (request3 -> AF !request3) is true
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Supported ASM elements

3.1 Domains

An AsmetaL code that must be mapped into NuSMV can contain only
domains that have a corresponding type in NuSMV.
The only supported domains are: Boolean, Enum domains, Concrete domains
whose type domains are Integer or Natural.
Code 3.1 contains six functions of arity zero whose codomains are six di�erent
domains.

Code 3.1: Domains: AsmetaL model
asm domains

import ./ StandardLibrary

signature:

enum domain EnumDom = {EL_A | EL_B | EL_C}

domain ConcrDomI1 subsetof Integer

domain ConcrDomI2 subsetof Integer

domain ConcrDomN1 subsetof Natural

domain ConcrDomN2 subsetof Natural

dynamic controlled fooB: Boolean

dynamic controlled fooE: EnumDom

dynamic controlled fooCI1: ConcrDomI1

dynamic controlled fooCI2: ConcrDomI2

dynamic controlled fooCN1: ConcrDomN1

dynamic controlled fooCN2: ConcrDomN2

definitions:

domain ConcrDomI1 = {1..5}

domain ConcrDomI2 = {1, 3, 7}

domain ConcrDomN1 = {2n..6n}

domain ConcrDomN2 = {3n, 1n, 8n, 12n}

Code 3.2 shows the result of the mapping.

Code 3.2: Domains: NuSMV model
MODULE main

17
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VAR

fooB: boolean;

fooCI1: 1..5;

fooCI2: {1, 3, 7};

fooCN1: 2..6;

fooCN2: {1, 12, 3, 8};

fooE: {EL_A , EL_B , EL_C};

We can see that for each function a NuSMV variable has been created: in
section 3.2 we'll describe exactly how it's executed the mapping of a func-
tion.
Now we are interested in the mapping of the domains. It's clear that the
mapping of the Boolean domain and of the enum domain (EnumDom) is
straightforward: in NuSMV there are both boolean and symbolic enum types.
Concrete domain of Integer (ConcrDomI1, ConcrDomI2 ) and Natural (Con-
crDomN1, ConcrDomN2 ), instead, become integer enums in NuSMV.

3.2 Functions

An ASM function, in order to be mapped into NuSMV, must be decom-
posed into its locations; each location is mapped into a NuSMV variable.
So, the cardinality of the domain of a function determines the number of
the corresponding variables in NuSMV. The codomain of a function, instead,
determines the type of the variable. Code 3.3 contains three functions of
arity 1.

Code 3.3: Function of arity 1: AsmetaL model
asm arity1

import ./ StandardLibrary

signature:

domain SubDom subsetof Integer

enum domain EnumDom = {AA | BB}

dynamic controlled fooB: Boolean -> EnumDom

dynamic controlled fooE: EnumDom -> SubDom

dynamic controlled fooS: SubDom -> Boolean

definitions:

domain SubDom = {1..2}

main rule r_Main =

skip

Code 3.4 is the result of the translation.

Code 3.4: Function of arity 1: NuSMV model
MODULE main

VAR

fooB_FALSE: {AA , BB};

fooB_TRUE: {AA, BB};
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fooE_AA: 1..2;

fooE_BB: 1..2;

fooS_1: boolean;

fooS_2: boolean;

As we can see, for each AsmetaL function two NuSMV variables have been
created; in fact, since all functions domains have two elements, each function
has two locations.
Variables name is built in the following way:

idFunc_elDom

where idFunc is the function name and elDom is an element of the function
domain. In the following table we show the mapping of the three functions:

AsmetaL function AsmetaL locations NuSMV variables

fooB($b in Boolean)
fooB(false)
fooB(true)

fooB_FALSE
fooB_TRUE

fooE($e in EnumDom)
fooE(AA)
fooE(BB)

fooE_AA
fooE_BB

fooS($s in SubDom)
fooS(1)
fooS(2)

fooS_1
fooS_2

Functions domains whose arity is greater than one must be Product do-
main, that is the cartesian product of a domains set.
The Product domain syntax is:

Prod(d1, d2, . . . , dn)

where d1, . . . , dn are the domains involved in the cartesian product.
Code 3.5 contains a function of arity two (foo2) and a function of arity three
(foo3).

Code 3.5: Function of arity 2 and 3: AsmetaL model
asm arity2and3

import ./ StandardLibrary

signature:

domain SubDom subsetof Integer

enum domain EnumDom = {AA | BB}

dynamic controlled foo2: Prod(Boolean , EnumDom) -> SubDom

dynamic controlled foo3: Prod(SubDom , EnumDom , SubDom) -> Boolean

definitions:

domain SubDom = {1..2}

main rule r_Main =

skip



20 CHAPTER 3. SUPPORTED ASM ELEMENTS

Code 3.6 is the result of the translation.

Code 3.6: Function of arity 2 and 3: NuSMV model
MODULE main

VAR

foo2_FALSE_AA: 1..2;

foo2_FALSE_BB: 1..2;

foo2_TRUE_AA: 1..2;

foo2_TRUE_BB: 1..2;

foo3_1_AA_1: boolean;

foo3_1_AA_2: boolean;

foo3_1_BB_1: boolean;

foo3_1_BB_2: boolean;

foo3_2_AA_1: boolean;

foo3_2_AA_2: boolean;

foo3_2_BB_1: boolean;

foo3_2_BB_2: boolean;

As we can see, the number of variables is equal to the product of the cardi-
nality of the domains involved in the Product domain.
Given a function func with domain Prod(D1, . . . , Dn), the variables name
is:

func_elDom1_ . . ._elDomn

where elDom1 ∈ D1, . . . , elDomn ∈ Dn.
In the following table the mapping of the two functions is shown:

AsmetaL function AsmetaL locations NuSMV variables

foo2($b in Boolean,
$e in EnumDom)

foo2(false, AA)
foo2(false, BB)
foo2(true, AA)
foo2(true, BB)

foo2_FALSE_AA
foo2_FALSE_BB
foo2_TRUE_AA
foo2_TRUE_BB

foo3($i in SubDom,
$e in EnumDom,
$j in SubDom)

foo3(1, AA, 1)
foo3(1, AA, 2)
foo3(1, BB, 1)
foo3(1, BB, 2)
foo3(2, AA, 1)
foo3(2, AA, 2)
foo3(2, BB, 1)
foo3(2, BB, 2)

foo3_1_AA_1
foo3_1_AA_2
foo3_1_BB_1
foo3_1_BB_2
foo3_2_AA_1
foo3_2_AA_2
foo3_2_BB_1
foo3_2_BB_2
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3.2.1 Dynamic functions

AsmetaSMV supports only controlled and monitored dynamic functions.
Before describing these functions, let's see a construction that is not sup-
ported by AsmetaSMV.
In AsmetaL it's possible that a location is determined using as an argument
of the function another function; code 3.7 shows an example.

Code 3.7: Dynamic function as argument of another function
asm functionAsArg

import ./ StandardLibrary

signature:

enum domain EnumDom = {AA | BB | CC}

dynamic monitored monArg: EnumDom

dynamic controlled contrArg: EnumDom

dynamic controlled foo: EnumDom -> Boolean

dynamic controlled foo2: EnumDom -> Boolean

definitions:

main rule r_Main =

par

contrArg := AA

//Not supported by AsmetaSMV

foo(monArg) := true

//Not supported by AsmetaSMV

foo2(contrArg) := true

endpar

default init s0:

function contrArg = BB

Such constructions are not supported by AsmetaSMV, because the tool is not
able to discover what NuSMV variable corresponds to the AsmetaL location.

3.2.1.1 Controlled functions

Controlled functions are the only functions whose value can be updated
in a transaction rule. The initialization and the update of a dynamic location
are mapped in the ASSIGN section through the init and next instructions.
Code 3.8 contains the function foo whose locations are initialized and up-
dated.

Code 3.8: Update: AsmetaL model
asm simpleUpdate

import ./ StandardLibrary

signature:

enum domain EnumDom = {AA | BB | CC}

dynamic controlled foo: Boolean -> EnumDom
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definitions:

main rule r_Main =

par

foo(true) := AA

foo(false) := CC

endpar

default init s0:

function foo($b in Boolean) = BB

Code 3.9 is the result of the translation.

Code 3.9: Update: NuSMV model
MODULE main

VAR

foo_FALSE: {AA, BB, CC};

foo_TRUE: {AA, BB, CC};

ASSIGN

init(foo_FALSE) := BB;

init(foo_TRUE) := BB;

next(foo_FALSE) := CC;

next(foo_TRUE) := AA;

In an ASM model the update of a location could be guarded by a boolean
condition; in NuSMV the next value of a variable can be guarded by the case
expression. In code 3.10 the update of location foo to value AA is guarded
by the condition mon.

Code 3.10: Guarded update: AsmetaL model
asm condUpdate

import ./ StandardLibrary

signature:

enum domain EnumDom = {AA | BB | CC}

dynamic controlled foo: EnumDom

dynamic monitored mon: Boolean

definitions:

main rule r_Main =

if(mon) then

foo := AA

endif

default init s0:

function foo = BB

Code 3.11 is the result of the translation.

Code 3.11: Guarded update: NuSMV model
MODULE main

VAR

foo: {AA, BB, CC};

mon: boolean;

ASSIGN

init(foo) := BB;
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next(foo) :=

case

next(mon): AA;

TRUE: foo;

esac;

In NuSMV the variable foo is updated to value AA if the next value of mon
is true1.
The case expression contains also, at the end, a default condition (TRUE):
if none of the previous conditions is satis�ed, the value of the variable is set
at the current value (the variable maintains its value).

Global update set During an ASM run, in each transition, the system
builds the update set, that is the set of updates (couples location-value) that
can be �red. AsmetaSMV, in order to translate the AsmetaL code into a
NuSMV code, calculates all the update sets that can be generated during
the run of an ASM. These update sets are merged into a global update set ;
the "global" update set lists, for each location, all the values to which the
location can be updated. Each value is associated with the boolean condition
that must be satis�ed in order to execute the update. Let's see the update
sets and the "global" update set of AsmetaL code 3.12.

Code 3.12: Example update: AsmetaL model
asm update

import ./ StandardLibrary

signature:

enum domain EnumDom = {AA | BB | CC}

dynamic monitored mon: Boolean

dynamic controlled foo: EnumDom

dynamic controlled foo1: EnumDom

definitions:

main rule r_Main =

if(mon) then

par

foo := AA

foo1 := CC

endpar

else

par

foo := BB

foo1 := AA

endpar

endif

There are two update sets that can be �red during the run of the ASM . If
the value of monitored function mon is true the update set is:

1It's important to notice that we must check the next value of mon; this fact will be
more clear in section 3.2.1.2
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Location Value
foo AA
foo1 CC

If the value of mon is false, instead, the update set is:

Location Value
foo BB
foo1 AA

The "global" update set, that is the merge of the two update sets, is:

Location Condition Value
foo mon AA

!mon BB
foo1 mon CC

!mon AA

Code 3.13 is the translation of AsmetaL code 3.12.

Code 3.13: Example update: NuSMV model
MODULE main

VAR

foo: {AA, BB, CC};

foo1: {AA, BB, CC};

mon: boolean;

ASSIGN

next(foo) :=

case

next(mon): AA;

!(next(mon)): BB;

TRUE: foo;

esac;

next(foo1) :=

case

next(mon): CC;

!(next(mon)): AA;

TRUE: foo1;

esac;

As we have seen previously, the "global" update set is reported in the AS-
SIGN section; for each variable (location in AsmetaL), the next value is
determined with the case expression where each value is associated with its
condition.
It's important to underline that NuSMV doesn't resolve the problem of in-
consistent updates; if the AsmetaL model contains an inconsistent update,
also the NuSMV model will contain it. Code 3.14 contains an inconsistent
update.
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Code 3.14: Inconsistent update example: AsmetaL model
asm notConsistent

import ./ StandardLibrary

signature:

enum domain EnumDom = {AA | BB | CC}

dynamic monitored mon: Boolean

dynamic monitored mon2: Boolean

dynamic controlled foo: EnumDom

definitions:

main rule r_Main =

par

if(mon != mon2) then

foo := AA

endif

if(mon2 != mon) then

foo := BB

endif

endpar

If, during a run of the model, the two monitored locations mon and mon2
have two di�erent values, the simulator stops the execution and signals the
inconsistent update. Code 3.15 is the result of the translation.

Code 3.15: Inconsistent update example: NuSMV model
MODULE main

VAR

foo: {AA, BB, CC};

mon: boolean;

mon2: boolean;

ASSIGN

next(foo) :=

case

(next(mon2) != next(mon)): BB;

(next(mon) != next(mon2)): AA;

TRUE: foo;

esac;

NuSMV, instead, during the execution of the model doesn't signal any error;
if monitored variables mon and mon2 are di�erent in the next state, variable
foo assumes the value BB, that is the value associated with the �rst satis�ed
condition. So, before using AsmetaSMV, we must be sure that the AsmetaL
model doesn't contains any inconsistent updates.

3.2.1.2 Monitored functions

Monitored functions are functions whose value is set by the environment.
In NuSMV, monitored variables are declared but they are neither initialized
nor updated.
When NuSMV meets a monitored variable it creates a state for each value of
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the variable; code 3.16 contains the monitored variable mon that can assume
four di�erent values.

Code 3.16: Monitored variable in NuSMV
MODULE main

VAR

mon: 1..4;

Let's execute NuSMV with the option "-r" that prints the number of reach-
able states:

[user@localhost tosmv]$ NuSMV -r numStatiMon.smv

*** This is NuSMV 2.4.0 (compiled on Sat Oct 4 10:17:49 UTC 2008)

*** For more information on NuSMV see <http://nusmv.irst.itc.it>

*** or email to <nusmv-users@irst.itc.it>.

*** Please report bugs to <nusmv@irst.itc.it>.

system diameter: 1

reachable states: 4 (2^2) out of 4 (2^2)

We can see that there are four reachable states that correspond to the four
values that the variable mon can assume.
It's important to describe how the monitored variables are used in a NuSMV
model. When a monitored variable is used in the ASSIGN section (this
means that, in AsmetaL, the corresponding monitored location it's used in a
transition rule) its value is obtained through the next expression. Let's see
an example (code 3.17).

Code 3.17: Monitored function - AsmetaL
asm mon

import ./ StandardLibrary

import ./ CTLLibrary

signature:

dynamic monitored mon: Boolean

dynamic controlled foo: Boolean

definitions:

//axiom for simulation

axiom over foo: foo = mon

// property to translate into NuSMV

//axiom over foo: ag(foo = mon)

main rule r_Main =

foo := mon

default init s0:

function foo = mon

Thanks to the axiom, during the simulation of the AsmetaL model, we can
check that the controlled function foo is always (in each state) equal to the
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monitored function mon. In fact, we must remember that the values of
monitored locations are set at the beginning of the transaction, that is before
the execution of the transition rules (in this case an update rule); this means
that transition rules deal with the monitored locations values of the current
state and not of the previous one.
A CTL property, equivalent to the axiom, has been written to check that
NuSMV model keeps the same behaviour of the AsmetaL model.
We could think that the correct translation into NuSMV should be that
shown in code 3.18.

Code 3.18: Monitored function - Wrong NuSMV code
MODULE main

VAR

foo: boolean;

mon: boolean;

ASSIGN

init(foo) := mon;

next(foo) := mon;

SPEC AG(foo = mon);

But in code 3.18 the variable foo assumes, in the next state, the value of the
variable mon in the current state: that is not the desired behaviour.
If we run NuSMV, in fact, we �nd a counterexample to the speci�cation.

[user@localhost code]$ NuSMV monWrong.smv

*** This is NuSMV 2.4.1 (compiled on Sat Jun 13 10:57:42 UTC 2009)

*** For more information on NuSMV see <http://nusmv.irst.itc.it>

*** or email to <nusmv-users@irst.itc.it>.

*** Please report bugs to <nusmv@irst.itc.it>.

-- specification AG foo = mon is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

foo = 1

mon = 1

-> Input: 1.2 <-

-> State: 1.2 <-

mon = 0

NuSMV shows a state where mon is not equal to foo.
Code 3.19 shows the correct translation of AsmetaL code 3.17.

Code 3.19: Monitored function - Correct NuSMV code
MODULE main

VAR

foo: boolean;

mon: boolean;

ASSIGN
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init(foo) := mon;

next(foo) := next(mon);

SPEC AG(foo = mon);

Now, if we run NuSMV, we can see that the speci�cation is satis�ed.

[user@localhost code]$ NuSMV mon.smv

*** This is NuSMV 2.4.3 (compiled on Tue May 22 14:08:54 UTC 2007)

*** For more information on NuSMV see <http://nusmv.irst.itc.it>

*** or email to <nusmv-users@irst.itc.it>.

*** Please report bugs to <nusmv@irst.itc.it>.

*** This version of NuSMV is linked to the MiniSat SAT solver.

*** See http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat

*** Copyright (c) 2003-2005, Niklas Een, Niklas Sorensson

-- specification AG foo = mon is true

3.2.1.3 Static and derived functions

Static and derived functions cannot be updated neither by an update rule
nor by the environment; their value is set in the de�nitions section and never
changes during the execution of the machine. Static functions do not depend
on the state machine, derived functions, instead, do. AsmetaSMV doesn't
distinguish between static and derived functions: their mapping is the same.
In NuSMV static and derived functions are expressed through the DEFINE
statement. Code 3.20 contains a static and a derived function.

Code 3.20: Static and derived functions: AsmetaL model
asm staticDerived

import ./ StandardLibrary

signature:

domain MyDomain subsetof Integer

dynamic monitored mon1: Boolean

dynamic monitored mon2: Boolean

static stat: MyDomain

derived der: Boolean

definitions:

domain MyDomain = {1..4}

function stat = 2

function der = mon1 and mon2

main rule r_Main =

skip

Code 3.21 is the result of the translation.

Code 3.21: Static and derived functions: NuSMV model
MODULE main
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VAR

mon1: boolean;

mon2: boolean;

DEFINE

stat:= 2;

der:= (mon1 & mon2);

Static function stat and derived function der have been mapped into two
de�nitions in the NuSMV code.
To obtain a correct NuSMV code, the static and derived functions must be
fully speci�ed (i.e. speci�ed in all the states of the machine). Let's see
AsmetaL code 3.22.

Code 3.22: Not exhaustive derived function: AsmetaL model
asm derivedNotExhaustive

import ./ StandardLibrary

signature:

domain MyDomain subsetof Integer

dynamic controlled foo : MyDomain

dynamic monitored mon1: Boolean

dynamic monitored mon2: Boolean

derived der: Boolean

definitions:

domain MyDomain = {1..4}

function der =

if(mon1) then

if(mon2) then

true

else

false

endif

endif

main rule r_Main =

if(der) then

foo := 1

endif

Derived function der is not de�ned when mon1 is false; in that case, during
the valuation of der, simulator throws an exception and stop the simulation.
Code 3.23 is the translation of code 3.22.

Code 3.23: Not exhaustive derived function: NuSMV model
MODULE main

VAR

foo: 1..4;

mon1: boolean;

mon2: boolean;

DEFINE

der:=

case

(mon1) & (!( mon2)): FALSE;

(mon1) & (mon2): TRUE;
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esac;

ASSIGN

next(foo) :=

case

der & 1 in 1..4: 1;

TRUE: foo;

esac;

The execution of NuSMV code gives the following error:

[user@localhost tosmv]$ NuSMV derivedNotExhaustive.smv

*** This is NuSMV 2.4.0 (compiled on Sat Oct 4 10:17:49 UTC 2008)

*** For more information on NuSMV see <http://nusmv.irst.itc.it>

*** or email to <nusmv-users@irst.itc.it>.

*** Please report bugs to <nusmv@irst.itc.it>.

file derivedNotExhaustive.smv: line 17:

type error: value = FAILURE("case conditions are not exhaustive", line 11)

Expected a boolean expression

NuSMV terminated by a signal

NuSMV signals that the conditions of de�nition der are not exhaustive.

3.3 Rules

In this section we'll describe which rules are supported by AsmetaSMV.

3.3.1 Mapping process

Let's now brie�y describe how it works the translation of the rules:

• the tool starts the translation in the main rule and continues executing
a depth visit of the rules it encounters;

• the tool pushes the boolean conditions it encounters (e.g. if, switch,
. . .) on the global stack Conds ; it removes the condition from stack
Conds when it leaves the scope of the condition;

• when the tool encounters a location update, memorizes it in the "global"
update set (section 3.2.1.1) with the right condition: the condition that
must be satis�ed, in order to perform the update, is the logical product
of the conditions of stack Conds.

Let's see how it works the built of stack Conds and of the "global" update
set over AsmetaL code 3.24.
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Code 3.24: "Stack of conditions" example
asm stackConds

import ./ StandardLibrary

signature:

enum domain EnumDom = {AA | BB | CC}

dynamic monitored mon: Boolean

dynamic monitored mon2: Boolean

dynamic controlled foo: EnumDom

dynamic controlled foo1: EnumDom

definitions:

main rule r_Main =

par

foo1 := AA

if(mon) then

if(mon2) then

foo := BB

else

foo := AA

endif

endif

endpar

In the following table we show the contents of the stack and of the "global"
update set during the visit of the AsmetaL model; the order of the rules in
the table re�ects the order of visit.

Rule Stack "Global" update set

foo1 := AA
TRUE

Location Condition Value
foo1 TRUE AA

foo := BB

mon2
mon
TRUE

Location Condition Value
foo TRUE and mon and mon2 BB
foo1 TRUE AA

foo := AA

!mon2
mon
TRUE

Location Condition Value
foo TRUE and mon and !mon2 AA

TRUE and mon and mon2 BB
foo1 TRUE AA

When the tool encounters the update of location foo1, the stack contains
only the default condition TRUE; the update is recorded in the update set



32 CHAPTER 3. SUPPORTED ASM ELEMENTS

with the condition TRUE.
When it encounters the �rst update of location foo, the stack contains two
more conditions, mon and mon2, belonging to the two nested if rules that
precede the update. The update of foo to value BB is recorded with the
condition TRUE and mon and mon2.
When the tool encounters the second update of foo, the stack contains con-
ditions TRUE, mon and !mon2 (because it's in the else branch of the second
if); the update of foo to value AA is recorded with condition TRUE and
mon and !mon2.
We can notice that, when the tool visits the second update of foo, on the
stack there is no more the condition mon: when the tool leaves the then
branch, the condition has been removed from the stack. So a condition re-
mains on the stack only during the visit of the rules that are in its visibility
scope.
We have described in detail this little example to introduce the concepts that
guide the mapping of all the rules.

Supported rules Supported rules are: update rule, macrocall rule, block
rule, conditional rule, case rule, let rule, forall rule, choose rule. In the next
section we describe the translation of all of them, except for the macrocall
rule and the let rule: their mapping is trivial.

3.3.2 Update rule

The update rule syntax is:

l := t

where l is a location and t a term.
All the updates of an AsmetaL model are collected in the "global" update
set that is reported in the ASSIGN section of the NuSMV model.

3.3.3 Block rule

The block rule syntax is:

par
R1

R2

. . .
Rn

endpar
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where R1, R2, . . . , Rn are transition rules. In a block rule all the rules
R1, R2, . . . , Rn are executed in parallel.
AsmetaSMV translates each rule individually. The contents of the stack
Conds, at the beginning of each rule, is always the same.

3.3.4 Conditional rule

The conditional rule syntax is:

if cond then
Rthen

else
Relse

endif

where cond is a boolean condition and Rthen and Relse are transition rules.
It's executed Rthen if cond is true, Relse otherwise.
The translation process into NuSMV is:

• cond is put on stack Conds and rule Rthen is visited; in such a way all
the updates contained in Rthen are executed only if cond is true;

• cond is removed from stack Conds.

• If else branch is not null:

� condition notCond (with notCond :=!cond) is put on stack Conds
and rule Relse is visited; in such a way all the updates contained
in Relse are executed only if cond is false;

� notCond is removed from stack Conds.

AsmetaL code 3.25 contains an example of conditional rule.

Code 3.25: Conditional rule example: AsmetaL model
asm conditionalRule

import ./ StandardLibrary

signature:

enum domain EnumDom = {AA | BB | CC}

dynamic controlled guard: EnumDom

dynamic controlled foo: EnumDom

definitions:

main rule r_Main =

if(guard = CC) then

foo := AA

else
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foo := BB

endif

default init s0:

function guard = CC

Code 3.26 is the translation into NuSMV of AsmetaL code 3.25.

Code 3.26: Conditional rule example: NuSMV model
MODULE main

VAR

foo: {AA, BB, CC};

guard: {AA , BB , CC};

ASSIGN

init(guard) := CC;

next(foo) :=

case

!(guard = CC): BB;

guard = CC: AA;

TRUE: foo;

esac;

next(guard) := guard;

We can see that, correctly, variable foo is updated to value AA only if
guard = CC is true (then branch); otherwise the variable is updated to
BB (else branch).

3.3.5 Case rule

The case rule syntax is:

switch t
case t1 : R1

. . .
case tn : Rn

[otherwiseRother]
endswitch

where t, t1, . . . , tn are terms and R1, . . . , Rn, Rother are transition rules. The
case rule is equal to the switch statement of Java.
For each branch, the translation process into NuSMV is:

• condition t = ti is put on stack Conds ;

• rule Ri is visited;

• condition t = ti is removed from stack Conds.

If default branch is not null:
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• condition t! = t1 & . . . & t! = tn is added to stack Conds and
rule Rother is visited;

• the previous condition is removed from stack Conds.

AsmetaL code 3.27 contains an example of case rule.

Code 3.27: Case rule example: AsmetaL model
asm caseRule

import ./ StandardLibrary

signature:

enum domain EnumDom = {AA | BB | CC | DD}

dynamic controlled sw: EnumDom

dynamic controlled foo: EnumDom

definitions:

main rule r_Main =

switch(sw)

case AA:

foo := CC

case BB:

foo := BB

otherwise

foo := AA

endswitch

default init s0:

function sw = CC

Code 3.28 is the translation into NuSMV of AsmetaL code 3.27.

Code 3.28: Case rule example: NuSMV model
MODULE main

VAR

foo: {AA, BB, CC, DD};

sw: {AA , BB , CC , DD};

ASSIGN

init(sw) := CC;

next(foo) :=

case

(sw != AA) & (sw != BB): AA;

sw = BB: BB;

sw = AA: CC;

TRUE: foo;

esac;

next(sw) := sw;

The two case branches have been transformed into two equalities (sw = AA
and sw = BB). Otherwise branch has been transformed into the and of two
disequalities (sw! = AA& sw! = BB).

3.3.6 Forall rule

The forall rule syntax is:
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forall v1 inD1, . . . , vn inDn withGv1,...,vn do
Rv1,...,vn

where v1, . . . , vn are variables and D1, . . . , Dn their domains. Gv1,...,vn is a
boolean condition over v1, . . . , vn. Rv1,...,vn is a rule that contains occurrences
of v1, . . . , vn.
The purpose of the forall rule is to execute the rule Rv1,...,vn with all the values
of variables v1, . . . , vn that satisfy the condition Gv1,...,vn . The number nR of
branches to evaluate is equal to the product of the cardinalities of domains
D1, . . . , Dn:

nR =
n∏

i=1

|Di|

The translation process into NuSMV, for each values tuple dj1
1 , . . . , d

jn
n with

dj1
1 ∈ D1, . . . , d

jn
n ∈ Dn, executes the following operations:

• variables v1, . . . , vn assume values dj1
1 , . . . , d

jn
n ;

• G
d

j1
1 , ..., djn

n
and R

d
j1
1 , ..., djn

n
are the condition and the rule where the vari-

ables have been replaced with the current values dj1
1 , . . . , d

jn
n ;

• condition G
d

j1
1 , ..., djn

n
is put on stack Conds ;

• rule R
d

j1
1 , ..., djn

n
is visited;

• condition G
d

j1
1 , ..., djn

n
is removed from stack Conds.

AsmetaL code 3.29 contains an example of forall rule.

Code 3.29: Forall rule example: AsmetaL model
asm forallRule

import ./ StandardLibrary

signature:

domain ConcrDom subsetof Integer

dynamic controlled foo: ConcrDom -> ConcrDom

definitions:

domain ConcrDom = {1..4}

main rule r_Main =

forall $x in ConcrDom with $x < 3 do

foo($x) := 1

default init s0:

function foo($x in ConcrDom) = $x

Code 3.30 is the translation into NuSMV of AsmetaL code 3.29.
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Code 3.30: Forall rule example: NuSMV model
MODULE main

VAR

foo_1: 1..4;

foo_2: 1..4;

foo_3: 1..4;

foo_4: 1..4;

ASSIGN

init(foo_1) := 1;

init(foo_2) := 2;

init(foo_3) := 3;

init(foo_4) := 4;

next(foo_1) :=

case

(1 < 3) & 1 in 1..4: 1;

TRUE: foo_1;

esac;

next(foo_2) :=

case

(2 < 3) & 1 in 1..4: 1;

TRUE: foo_2;

esac;

next(foo_3) :=

case

(3 < 3) & 1 in 1..4: 1;

TRUE: foo_3;

esac;

next(foo_4) :=

case

(4 < 3) & 1 in 1..4: 1;

TRUE: foo_4;

esac;

We can see that the forall rule has been decomposed into four instructions
that corresponds to the four values of variable $x.

3.3.7 Choose rule

The choose rule syntax is:

choose v1 inD1, . . . , vn inDn withGv1,...,vn do
Rv1,...,vn

[ifnoneRifnone]

where v1, . . . , vn are variables and D1, . . . , Dn their domains. Gv1,...,vn is a
boolean condition over v1, . . . , vn. Rv1,...,vn is a rule that contains occurrences
of v1, . . . , vn.
The purpose of the choose rule is to execute one time the rule Rv1,...,vn with
some variables v1, . . . , vn that satisfy Gv1,...,vn . The number nR of branches
to evaluate is equal to the product of the cardinalities of domains D1, . . . , Dn:

nR =
n∏

i=1

|Di|
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Optional branch ifnone contains the rule Rifnone that must be executed if
there aren't values for variables v1, . . . , vn that satisfy Gv1,...,vn .
In the mapping process, each choose rule is identi�ed by the identi�er chId.
In NuSMV, for each variable vi, a variable var_vi_chId is created; the type
of such variable is obtained with the mapping of domain Di.
The translation process into NuSMV, for each values tuple dj1

1 , . . . , d
jn
n with

dj1
1 ∈ D1, . . . , d

jn
n ∈ Dn, executes the following operations:

• variables v1, . . . , vn assume values dj1
1 , . . . , d

jn
n ;

• G
d

j1
1 , ..., djn

n
and R

d
j1
1 , ..., djn

n
are the condition and the rule where the vari-

ables have been replaced with the current values dj1
1 , . . . , d

jn
n ;

• for each variable vi, it's put on stack Conds the condition

var_vi_chId = dji

i

• condition G
d

j1
1 , ..., djn

n
is put on stack Conds ;

• rule R
d

j1
1 , ..., djn

n
is visited;

• conditions on variables and G
d

j1
1 , ..., djn

n
are removed from stack Conds.

• If ifnone branch is not null:

� it's put on stack Conds the condition

ifNoneCond =
∧

d
j1
1 ∈D1

...
djn

n ∈Dn

!G
d

j1
1 , ..., djn

n

where the number of terms of the logical product is nR.

� rule Rifnone is visited;

� the previous condition is removed from stack Conds.

To be sure that, in each state, variables var_vi_chId (i = 1, . . . , n) assume
a condition that satisfy Gv1,...,vn , we de�ne the following invariant in the
INVAR section:

∨
d

j1
1 ∈D1

...
djn

n ∈Dn

((
var_v1_idCh = dj1

1 & . . . & var_vn_idCh = djn
n

)
&G

d
j1
1 , ..., djn

n

)
|

ifNoneCond
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AsmetaL code 3.31 contains an example of choose rule.

Code 3.31: Choose rule example: AsmetaL model
asm chooseRule

import ./ StandardLibrary

signature:

domain MyDomain subsetof Integer

dynamic controlled foo: MyDomain

definitions:

domain MyDomain = {1..4}

main rule r_Main =

choose $x in MyDomain with $x < 2 do

foo := $x + 2

ifnone

foo := 4

Code 3.32 is the translation into NuSMV of AsmetaL code 3.31.

Code 3.32: Choose rule example: NuSMV model
MODULE main

VAR

foo: 1..4;

var_$x_0: 1..4;

ASSIGN

next(foo) :=

case

(var_$x_0 = 1) & (1 < 2) & (1 + 2) in 1..4: (1 + 2);

(var_$x_0 = 2) & (2 < 2) & (2 + 2) in 1..4: (2 + 2);

(var_$x_0 = 3) & (3 < 2) & (3 + 2) in 1..4: (3 + 2);

(var_$x_0 = 4) & (4 < 2) & (4 + 2) in 1..4: (4 + 2);

!(1 < 2) & !(2 < 2) & !(3 < 2) &

!(4 < 2) & 4 in 1..4: 4;

TRUE: foo;

esac;

INVAR (( var_$x_0 = 1) & (1 < 2)) | (( var_$x_0 = 2) & (2 < 2)) |

(( var_$x_0 = 3) & (3 < 2)) | (( var_$x_0 = 4) & (4 < 2)) |

(!(1 < 2) & !(2 < 2) & !(3 < 2) & !(4 < 2));

We can see that the choose rule has been decomposed into:

• four update instructions that correspond to the four values of variable
$x; each instruction is guarded by the condition of the choose rule
where the variable $x has been replaced with its values;

• an update instruction that corresponds to the ifnone branch;

• an INVAR declaration.
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Chapter 4

CTL properties

In this chapter we describe how to declare CTL properties in an AsmetaL
model. In section 4.1 we see how to rewrite AsmetaL axiom so that they can
be evaluated in NuSMV. In section 4.2, instead, we see how to declare a CTL
property of whatever type.

4.1 Mapping of AsmetaL axioms

In AsmetaL, an axiom is a property that must be veri�ed in each state
of the machine; to be sure that the axiom is always true we should simulate
the model as many times as the number of states.
An AsmetaL axiom, in order to be translated into NuSMV, must be written
in a slightly di�erent way; the axiom

axiom over id1, . . . , idn : axid1,...,idn (4.1)

must be rewritten in the following way

axiom over id1, . . . , idn : ag(axid1,...,idn) (4.2)

where ag is an AsmetaL function, equivalent to the temporal operator AG
of NuSMV. ag function means that the property axid1,...,idn must be veri�ed
in all the states: that is just the purpose of an AsmetaL axiom.
An AsmetaL model containing properties like 4.2 cannot be simulated with
AsmetaS: in fact the simulator cannot understand the meaning of ag function.
If you want to simulate the model, before translating it in NuSMV, you should
comment property 4.2 and reintroduce axiom 4.1.
In the AsmetaL code 4.1 an axiom veri�es that location fooA is di�erent from
fooB in each state; in order to map the axiom in NuSMV we have declared
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a CTL property in which the axiom is the argument of the ag function (the
axiom has been commented).

Code 4.1: Axioms mapping: AsmetaL model
asm ag

import ./ StandardLibrary

import ./ CTLlibrary

signature:

dynamic controlled fooA: Boolean

dynamic controlled fooB: Boolean

definitions:

//axiom for simulation with AsmetaS

//axiom over fooA , fooB: fooA != fooB

// property for NuSMV

axiom over fooA , fooB: ag(fooA != fooB)

main rule r_Main =

par

fooA := not(fooA)

fooB := not(fooB)

endpar

default init s0:

function fooA = true

function fooB = false

Code 4.2 is the NuSMV code obtained from the mapping of AsmetaL code
4.1.

Code 4.2: Axioms mapping: NuSMV model
MODULE main

VAR

fooA: boolean;

fooB: boolean;

ASSIGN

init(fooA) := TRUE;

init(fooB) := FALSE;

next(fooA) := !(fooA);

next(fooB) := !(fooB);

SPEC AG(fooA != fooB);

Let's check the correctness of the property through the execution of the
NuSMV code.

[user@localhost code]$ NuSMV ag.smv

*** This is NuSMV 2.4.1 (compiled on Sat Jun 13 10:57:42 UTC 2009)

*** For more information on NuSMV see <http://nusmv.irst.itc.it>

*** or email to <nusmv-users@irst.itc.it>.

*** Please report bugs to <nusmv@irst.itc.it>.

-- specification AG fooA != fooB is true
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4.2 Declaration of CTL properties

Let's now describe in details how to declare CTL properties in an As-
metaL model.
In AsmetaL, the syntax of an axiom is:

axiom over id1, . . . , idn : axid1,...,idn

where id1, . . . , idn are names of domains, functions or rules; axid1,...,idn is a
boolean expression containing occurrences of id1, . . . , idn.
In NuSMV, CTL properties are declared through the keyword SPEC:

SPEC pCTL

where pCTL is a CTL formula.
We have decided to let the user declare CTL properties in the axiom section
of the AsmetaL model.
The syntax of a CTL property in AsmetaL is:

axiom over id1, . . . , idn : pid1,...,idn

CTL

where id1, . . . , idn, as in a normal axiom, are names of domains, functions or
rules; pid1,...,idn

CTL , instead, is a CTL formula containing occurrences of id1, . . . , idn.
In order to write CTL formulas in AsmetaL, we have created the library CTL-
library.asm where, for each CTL operator, an equivalent function is declared.
The following table shows all the CTL functions.

NuSMV CTL operator AsmetaL CTL function
EG p static eg: Boolean → Boolean
EX p static ex: Boolean → Boolean
EF p static ef: Boolean → Boolean
AG p static ag: Boolean → Boolean
AX p static ax: Boolean → Boolean
AF p static af: Boolean → Boolean
E[p U q] static e: Prod(Boolean, Boolean) → Boolean
A[p U q] static a: Prod(Boolean, Boolean) → Boolean

In order to use CTL functions in our AsmetaL model, the CTL library CTL-
library.asm must be imported.
AsmetaL code 4.3 contains three CTL properties; the �rst two properties are
true, the third, instead, is false.
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Code 4.3: CTL properties: AsmetaL model
asm ctlExample

import ./ StandardLibrary

import ./ CTLlibrary

signature:

dynamic controlled fooA: Boolean

dynamic controlled fooB: Boolean

dynamic monitored mon: Boolean

definitions:

axiom over fooA: ag(fooA iff ax(not(fooA))) //true

axiom over fooA: ag(not(fooA) iff ax(fooA)) //true

//false. Gives counterexample.

axiom over fooA , fooB: not(ef(fooA != fooB))

main rule r_Main =

par

fooA := not(fooA)

if(mon) then

fooB := not(fooB)

endif

endpar

default init s0:

function fooA = true

function fooB = true

Code 4.4 is the translation into NuSMV of code 4.3.

Code 4.4: CTL properties: NuSMV model
MODULE main

VAR

fooA: boolean;

fooB: boolean;

mon: boolean;

ASSIGN

init(fooA) := TRUE;

init(fooB) := TRUE;

next(fooA) := !(fooA);

next(fooB) :=

case

next(mon): !(fooB);

TRUE: fooB;

esac;

SPEC AG(fooA <-> AX(!( fooA)));

SPEC AG(!( fooA) <-> AX(fooA));

SPEC !(EF(fooA != fooB));

Let's execute NuSMV code to verify the properties.

[user@localhost tosmv]$ NuSMV ctlExample.smv

*** This is NuSMV 2.4.0 (compiled on Sat Oct 4 10:17:49 UTC 2008)

*** For more information on NuSMV see <http://nusmv.irst.itc.it>

*** or email to <nusmv-users@irst.itc.it>.

*** Please report bugs to <nusmv@irst.itc.it>.
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-- specification AG (fooA <-> AX !fooA) is true

-- specification AG (!fooA <-> AX fooA) is true

-- specification !(EF fooA != fooB) is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

fooA = 1

fooB = 1

mon = 0

-> Input: 1.2 <-

-> State: 1.2 <-

fooA = 0

We can see that the �rst two properties are true: variable fooA, in fact,
changes its value at each step. The last property, instead, is false and NuSMV
shows a counterexample: it exists a state where variables fooA and fooB are
di�erent (State: 1.2).

4.2.1 Monitored locations in CTL properties

When we write a CTL property concerning a monitored location, we
should remember that the values of monitored locations are set at the begin-
ning of the transaction, that is before the execution of the transition rules.
This means that transition rules deal with the monitored locations values of
the current state and not of the previous one. When a transition rule deals
with a controlled location, instead, it reads the location value of the previous
state.
AsmetaL code 4.5 shows an example that, thanks to three CTL properties,
can explain more clearly the concepts previously described.

Code 4.5: Monitored locations in CTL properties: AsmetaL model
asm monitoredExample

import ./ StandardLibrary

import ./ CTLlibrary

signature:

dynamic controlled foo: Boolean

dynamic controlled fooA: Boolean

dynamic controlled fooB: Boolean

dynamic monitored mon: Boolean

definitions:

axiom over foo , mon: ag(foo = mon) //true

axiom over fooA , fooB: ag(fooA = fooB) // false

axiom over fooA , fooB: (fooA = fooB) iff ax(ag(fooA != fooB)) //true

main rule r_Main =

par
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fooB := not(fooB)

foo := mon

fooA := fooB

endpar

default init s0:

function foo = mon

function fooA = true

function fooB = true

Code 4.6 contains the NuSMV translation of AsmetaL code 4.5.

Code 4.6: Monitored locations in CTL properties: NuSMV model

MODULE main

VAR

foo: boolean;

fooA: boolean;

fooB: boolean;

mon: boolean;

ASSIGN

init(foo) := mon;

init(fooA) := TRUE;

init(fooB) := TRUE;

next(foo) := next(mon);

next(fooA) := fooB;

next(fooB) := !(fooB);

SPEC AG(foo = mon);

SPEC AG(fooA = fooB);

SPEC fooA = fooB <-> AX(AG(fooA != fooB));

The property
axiom over foo, mon: ag(foo = mon)
is veri�ed. In fact the controlled location foo, in each state, is updated to
the value of monitored location mon. The value of monitored location mon
is set before the execution of the update.
The property
axiom over fooA, fooB: ag(fooA = fooB)
is not veri�ed. The controlled location fooA, in each state, is updated to
the value of controlled location fooB : it's important to notice that it's used
the value of the previous state (and not of the current state like with the
monitored location).
The property
axiom over fooA, fooB: (fooA = fooB) i� ax(ag(fooA != fooB))
is veri�ed. In fact, locations fooA and fooB are equal only in the initial state
and then are always di�erent.
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4.2.2 Choose rule behaviour

Now we want to warn the user about the behaviour of the choose rule
in the NuSMV model1. In fact, the translation of a choose rule could result
obscure to an occasional user.
The problem is the following:

• the choose rule variables become variables in NuSMV;

• the values of these variables are bounded by boolean conditions; these
conditions could contains some other variables (locations in AsmetaL);
so the choose variables values could depend on the values of some other
variables;

• since the choose variables values are set with the INVAR instruction
(invariant), they are updated at the end of the previous state and not
at the beginning of the current one.

All these things create a strange (but correct) behaviour of the choose rules
in NuSMV.
Let's see an example to better explain the problem.
AsmetaL code 4.7 contains a choose rule and a property that is certainly
false.

Code 4.7: Choose behaviour: AsmetaL model
asm choose

import ./ StandardLibrary

import ./ CTLlibrary

signature:

domain MyDomain subsetof Integer

dynamic controlled foo: MyDomain

definitions:

domain MyDomain = {1..4}

//false. We want the counterexample.

axiom over foo: ag(foo !=2)

main rule r_Main =

choose $x in MyDomain with $x > foo do

foo := $x

default init s0:

function foo = 1

Code 4.8 is the result of the translation of AsmetaL code 4.7.

1We describe it in this section because now we can use the NuSMV execution as a
support of our explanation.
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Code 4.8: Choose behaviour: NuSMV model
MODULE main

VAR

foo: 1..4;

var_$x_0: 1..4;

ASSIGN

init(foo) := 1;

next(foo) :=

case

(( var_$x_0 = 3) & (3 > foo)) & 3 in 1..4: 3;

(( var_$x_0 = 1) & (1 > foo)) & 1 in 1..4: 1;

(( var_$x_0 = 4) & (4 > foo)) & 4 in 1..4: 4;

(( var_$x_0 = 2) & (2 > foo)) & 2 in 1..4: 2;

TRUE: foo;

esac;

INVAR (( var_$x_0 = 1) & (1 > foo)) | (( var_$x_0 = 2) & (2 > foo)) | ((

var_$x_0 = 3) & (3 > foo)) |

(( var_$x_0 = 4) & (4 > foo)) | ((!(1 > foo)) & (!(2 > foo)) & (!(3 >

foo)) & (!(4 > foo)));

SPEC AG(foo != 2);

Since the property is false, NuSMV gives us a counterexample. The coun-
terexample shows the print of the path that takes to a state in which the
property is false. In this way we can see how changes the value of variable
var_$x_0 in the NuSMV model. Variable var_$x_0 is the NuSMV variable
that models the AsmetaL variable $x of the choose rule.

[user@localhost tosmv]$ NuSMV choose.smv

*** This is NuSMV 2.4.0 (compiled on Sat Oct 4 10:17:49 UTC 2008)

*** For more information on NuSMV see <http://nusmv.irst.itc.it>

*** or email to <nusmv-users@irst.itc.it>.

*** Please report bugs to <nusmv@irst.itc.it>.

-- specification AG foo != 2 is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

foo = 1

var_$x_0 = 2

-> Input: 1.2 <-

-> State: 1.2 <-

foo = 2

var_$x_0 = 3

The property is false because it exists a state (State: 1.2) in which the
variable foo is equal to 2. We could think that, in this state, the variable
var_$x_0 should be equal to 2. The counterexample trace, instead, shows
us that the variable var_$x_0 is equal to 2 in the previous state (State: 1.1).
In fact, the update of variable foo to 2 is guarded by the value of the choose
variable in the previous state.
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User guide

AsmetaSMV tool, as all ASMETA tools, can be downloaded by project
site [1] through a SVN client. Once downloaded, the project tosmv must be
imported in Eclipse [13].
By the project site, it can also be downloaded the executable jar archive
AsmetaSMV.jar that permits to use the tool through the command line,
without Eclipse.

5.1 Eclipse project

In this section we describe how to use the tool in Eclipse.
First of all we must import the project tosmv and the projects it needs,
parser, interpreter and libs (�gure 5.1).

Once imported, the projects must be compiled through the command
Project/Build All1. Now the tool can be executed in the following way:

• visualize the contextual menu overAsmetaSMV.java �le of tosmv project
and select Run As/Run con�gurations... (�gure 5.2(a));

• in the new window select Java Application;

• in section Arguments insert the �le name and, eventually, the options
described in section 5.1.2 (�gura 5.2(b));

• select command Run.

1In Eclipse there is also the option Build Automatically that compiles automatically all
the projects of the workspace.
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If the mapping process ends correctly, in the directory that contains the
input AsmetaL �le (example.asm) there is the output NuSMV �le with the
same name of the AsmetaL �le and extension ".smv" (example.smv). If you
want, the tool can execute the NuSMV �le and show the output on the
standard output (section 5.1.2).

5.1.1 Executable jar archive

To use the tool through the command line, we must open a terminal and
move to the directory of the project; then we must execute the tool in the
following way:

java -jar AsmetaSMV.jar [-en] [-ns] [-nc] file.asm

where "-en" "-ns" and "-nc" are the execution options, described in section
5.1.2.

5.1.2 Execution options

The tool has three execution options:

• -en: the tool, after the translation, executes the NuSMV �le and shows
the result on the standard output (section 5.1.2.1);

• -ns: the tool doesn't simplify the boolean conditions (section 5.1.2.2);

• -nc: the tool doesn't insert the check on the domain of integer variables
(section 5.1.2.3).

5.1.2.1 Embedded execution of NuSMV �le

The execution option "-en" permits to run the NuSMV �le just after
the translation process. In this way, NuSMV execution is embedded in the
execution of a Java program and so, in general, it will be slower than the
execution of the same model in the standard way (execution of NuSMV in a
terminal).
So, we suggest to use "-en" option when NuSMV model is not too big2.
The embedded execution of NuSMV has an advantage. Let's see the execu-
tion of a NuSMV model (we don't care what model) in the standard way:

2We remember that the complexity of a NuSMV model depends by the number of
variables; so, in our scenario, it depends by the number of locations of the AsmetaL
model.



5.1. ECLIPSE PROJECT 51

[user@localhost tosmv]$ NuSMV example.smv

** This is NuSMV 2.4.0 (compiled on Sat Oct 4 10:17:49 UTC 2008)

** For more information on NuSMV see <http://nusmv.irst.itc.it>

** or email to <nusmv-users@irst.itc.it>.

** Please report bugs to <nusmv@irst.itc.it>.

-- specification AG foo_AA is true

-- specification AG foo2_TRUE_BB is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

foo2_TRUE_BB = 0

foo_AA = 1

foo_BB = 1

Let's see now the execution of the same NuSMV model, but in the embedded
way:

Execution of NuSMV code: ..

-------------------------------------

> NuSMV -dynamic -coi examples\example.smv

-------------------------------------

** This is NuSMV 2.4.0 (compiled on Sat Oct 4 10:17:49 UTC 2008)

** For more information on NuSMV see <http://nusmv.irst.itc.it>

** or email to <nusmv-users@irst.itc.it>.

** Please report bugs to <nusmv@irst.itc.it>.

-- specification AG foo(AA) is true

-- specification AG foo2(true,BB) is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

foo2(true,BB) = 0

foo(AA) = 1

foo(BB) = 1

We see that, in the normal way, the variables names have the format pre-
viously described. In the embedded way, instead, the variables names are
replaced by the corresponding AsmetaL locations names: for the user should
be easier to read the result of the execution.

5.1.2.2 Simpli�cation of boolean conditions

In order to reduce the complexity of NuSMV code, AsmetaSMV simplify,
where possible, the boolean conditions memorized in the update set. Condi-
tion 1 < 3, for example, is recognized as always true and so it's replaced with
the literal TRUE. A literal TRUE belonging to a logical product, instead,
is removed because it's not determinant in the evaluation.
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Asmetal code 5.1 contains some conditions that take part in the built of the
updateSet.

Code 5.1: Boolean conditions: AsmetaL model
asm esSempl

import ./ StandardLibrary

signature:

domain MyDomain subsetof Integer

dynamic controlled foo: MyDomain

dynamic monitored mon: Boolean

definitions:

domain MyDomain = {1..4}

main rule r_Main =

if(1 < 2) then

if(mon) then

foo := 2

else

foo := 3

endif

else

foo := 1

endif

Code 5.2 is the translation in NuSMV of Asmetal code 5.1: no simpli�cation
has been made.

Code 5.2: Boolean conditions: NuSMV model without simpli�cation
MODULE main

VAR

foo: 1..4;

mon: boolean;

ASSIGN

next(foo) :=

case

(1 < 2) & next(mon) & 2 in 1..4: 2;

!(1 < 2) & 1 in 1..4: 1;

(1 < 2) & !next(mon) & 3 in 1..4: 3;

TRUE: foo;

esac;

We can see that conditions (1 < 2) and !(1 < 2) haven't been simpli�ed.
In code 5.3, instead, the boolean conditions have been simpli�ed.

Code 5.3: Boolean conditions: NuSMV model with simpli�cation
MODULE main

VAR

foo: 1..4;

mon: boolean;

ASSIGN

next(foo) :=

case

next(mon) & 2 in 1..4: 2;

!next(mon) & 3 in 1..4: 3;

TRUE: foo;
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esac;

In the following table, we show the conditions associated to the foo update
in code 5.2 and in code 5.3.

Code 5.2 Code 5.3 Description
(1 < 2) & next(mon) next(mon) Condition (1 < 2) has been removed

because it's not determinant in the
evaluation of the logical product.

(1 < 2) & !next(mon) !next(mon) Condition (1 < 2) has been removed
because it's not determinant in the
evaluation of the logical product.

!(1 < 2) - Condition !(1 < 2) is always false; so,
the update of foo to value 1 has been
removed.

The tool, by default, executes the simpli�cation; the execution option "-
ns" permits not to execute the simpli�cations. Sometimes, in fact, it can
be necessary to read the obtained NuSMV code. By experience, we can say
that it's easier to read a NuSMV code without simpli�cations rather than one
with simpli�cations; the �rst one, in fact, re�ects better the structure of the
original AsmetaL model; the latter one, instead, thanks to the simpli�cations
could be much more di�erent.

5.1.2.3 Check on integer domains

The syntax on an update rule is:

l := t

where l is a location and t a term.
The mapping of updates of integer locations introduces a problem. Let's see
the AsmetaL code 5.4.

Code 5.4: Update rule 1: AsmetaL model
asm updateRule

import ./ StandardLibrary

signature:

domain MyDomain subsetof Integer

dynamic controlled foo: MyDomain

definitions:

domain MyDomain = {1..4}

main rule r_Main =
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foo := foo + 1

default init s0:

function foo = 1

We could think that the correct translation in NuSMV should be that shown
in code 5.5.

Code 5.5: Update rule 1: wrong NuSMV model
MODULE main

VAR

foo: 1..4;

ASSIGN

init(foo) := 1;

next(foo) := foo + 1;

The execution of code 5.5 gives the following error:

[user@localhost tosmv]$ NuSMV wrongUpdateRule.smv

*** This is NuSMV 2.4.0 (compiled on Sat Oct 4 10:17:49 UTC 2008)

*** For more information on NuSMV see <http://nusmv.irst.itc.it>

*** or email to <nusmv-users@irst.itc.it>.

*** Please report bugs to <nusmv@irst.itc.it>.

file wrongUpdateRule.smv: line 6: cannot assign value 5 to variable foo

NuSMV terminated by a signal

NuSMV signals that it's not possible to update variable foo to value 5. In
fact, since there is no control, the variable is incremented until it reaches a
value that not belongs to its type.
It's important to underline that also codes like code 5.6, where it's impossible
that a location assumes values not belonging to the domain, have the same
problem.

Code 5.6: Update rule 2: AsmetaL model
asm concrDomCheck

import ./ StandardLibrary

signature:

domain MyDomain subsetof Integer

dynamic controlled cond: Boolean

dynamic controlled foo: MyDomain

definitions:

domain MyDomain = {1..4}

main rule r_Main =

par

cond := not(cond)

if(cond) then

foo := foo + 1

else
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foo := foo - 1

endif

endpar

default init s0:

function foo = 1

function cond = true

In code 5.6 location foo can assume only values 1 or 2; so the simulator
doesn't return any error during the execution. We expect that the correct
mapping should be that shown in code 5.7.

Code 5.7: Update rule 2: wrong NuSMV model
MODULE main

VAR

cond: boolean;

foo: 1..4;

ASSIGN

init(cond) := TRUE;

init(foo) := 1;

next(cond) := !(cond);

next(foo) :=

case

!(cond): (foo - 1);

cond: (foo + 1);

TRUE: foo;

esac;

In code 5.7 variable foo can assume only values 1 or 2; nonetheless even the
execution of code 5.7 gives an error.

[user@localhost tosmv]$ NuSMV concrDomCheckErr.smv

*** This is NuSMV 2.4.0 (compiled on Sat Oct 4 10:17:49 UTC 2008)

*** For more information on NuSMV see <http://nusmv.irst.itc.it>

*** or email to <nusmv-users@irst.itc.it>.

*** Please report bugs to <nusmv@irst.itc.it>.

file concrDomCheckErr.smv: line 14: cannot assign value 5 to variable foo

NuSMV terminated by a signal

To solve this problem, for each update rule of a numeric location we add a
condition that states that the value of term t must be contained in domain
Dl of location l:

t inDl

The correct translation of AsmetaL code 5.4 is shown in code 5.8; the correct
translation of AsmetaL code 5.6 is shown in code 5.9.

Code 5.8: Update rule 1: right NuSMV model
MODULE main

VAR

foo: 1..4;
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ASSIGN

init(foo) := 1;

next(foo) :=

case

(foo + 1) in 1..4: (foo + 1);

TRUE: foo;

esac;

Code 5.9: Update rule 2: right NuSMV model
MODULE main

VAR

cond: boolean;

foo: 1..4;

ASSIGN

init(cond) := TRUE;

init(foo) := 1;

next(cond) := !(cond);

next(foo) :=

case

!(cond) & (foo - 1) in 1..4: (foo - 1);

cond & (foo + 1) in 1..4: (foo + 1);

TRUE: foo;

esac;

The tool, by default, adds the conditions; the execution option "-nc" permits
not to add them. In fact, the adding of the conditions could change the
behaviour of the model and break the equivalence between the AsmetaL
model and the NuSMV one.
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Figure 5.1: Import of projects in Eclipse
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(a) Run Con�gurations

(b) Run

Figure 5.2: Tool execution in Eclipse



Chapter 6

Examples

In this chapter we describe some examples of use of AsmetaSMV.
We give the informal description of a problem, the ASM model written in
AsmetaL and the NuSMV code obtained from the execution of the tool.
In the writing of the AsmetaL code we have considered that it had to be
mapped into NuSMV; so, we didn't use elements that cannot be translated.
For each AsmetaL model we declare some properties we want to check with
NuSMV.

6.1 One way tra�c light control

6.1.1 Problem

In [14] it's described the speci�cation of a system made of two tra�c
lights (LIGHTUNIT1 and LIGHTUNIT2 ) placed at the beginning and at
the end of an alternated one-way street; both tra�c lights are connected to
a computer that controls them. Each tra�c light is equipped with a Stop
light (red light) and a Go light (green light). The computer turns on and o�
the lights sending to the tra�c lights two signals, Rpulses and Gpulses, that
inform the tra�c light to perform the switch1, respectively, of the red and
of the green light. The state of the lights of the two tra�c lights changes
following a four phases cycle:

• for 50 seconds both tra�c lights show the Stop signal;

• for 120 seconds LIGHTUNIT2 shows the Stop signal and LIGHTU-
NIT1 the Go signal;

1to turn on/o� the light if it's on/o�

59
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• for 50 seconds both tra�c lights show again the Stop signal;

• for 120 seconds LIGHTUNIT1 shows the Stop signal and LIGHTU-
NIT2 the Go signal.

When a tra�c light has the Go signal turned on, the cars waiting at that
entry of the street can pass through. In the following period, when both
units have the Stop signal, no cars can enter from both entries of the street;
in this period the cars that are driving in one direction have the time to exit
the street. In the following period, instead, the cars waiting at the other
entry of the street can pass through, and so on.
Figure 6.1 shows how the system works.

Figure 6.1: One-Way tra�c light model

6.1.2 Ground model

Let's see now how the model has been written in AsmetaL; by now, we
consider the ground model (code 6.1), where it's not considered the emission
of Rpulses and Gpulses signals.

Code 6.1: One-way tra�c light: AsmetaL ground model
asm oneWayTrafficLight

import ./ StandardLibrary

import ./ CTLlibrary
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signature:

enum domain LightUnit = {LIGHTUNIT1 | LIGHTUNIT2}

enum domain PhaseDomain = { STOP1STOP2 | GO2STOP1 | STOP2STOP1 |

GO1STOP2 }

domain Intervals subsetof Integer

dynamic controlled phase: PhaseDomain

dynamic controlled stopLight: LightUnit -> Boolean

dynamic controlled goLight: LightUnit -> Boolean

dynamic monitored passed: Intervals -> Boolean

definitions:

domain Intervals = {50, 120}

macro rule r_switch($l in Boolean) =

$l := not($l)

rule r_switchLightUnit($l in LightUnit) =

par

r_switch[goLight($l)]

r_switch[stopLight($l)]

endpar

rule r_stop1stop2_to_go2stop1 =

if(phase=STOP1STOP2 and passed (50)) then

par

r_switchLightUnit[LIGHTUNIT2]

phase:= GO2STOP1

endpar

endif

rule r_go2stop1_to_stop2stop1 =

if(phase=GO2STOP1 and passed (120)) then

par

r_switchLightUnit[LIGHTUNIT2]

phase:= STOP2STOP1

endpar

endif

rule r_stop2stop1_to_go1stop2 =

if(phase=STOP2STOP1 and passed (50)) then

par

r_switchLightUnit[LIGHTUNIT1]

phase:= GO1STOP2

endpar

endif

rule r_go1stop2_to_stop1stop2 =

if(phase=GO1STOP2 and passed (120)) then

par

r_switchLightUnit[LIGHTUNIT1]

phase:= STOP1STOP2

endpar

endif

//in each state a traffic light is red or green

axiom over goLight: ag(goLight(LIGHTUNIT1) xor stopLight(LIGHTUNIT1))

axiom over goLight: ag(goLight(LIGHTUNIT2) xor stopLight(LIGHTUNIT2))

//if a traffic light is green the other one is red ,

// otherwise are both red

axiom over goLight: ag(( goLight(LIGHTUNIT2) and stopLight(LIGHTUNIT1))
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xor

(goLight(LIGHTUNIT1) and stopLight(LIGHTUNIT2)) xor

(stopLight(LIGHTUNIT2) and stopLight(LIGHTUNIT1)))

//equal to the previous property

axiom over goLight: ag(not(goLight(LIGHTUNIT1) and goLight(LIGHTUNIT2)))

// properties about the right association between lights and states

axiom over phase: ag(( phase=STOP1STOP2 or phase=STOP2STOP1) iff

(stopLight(LIGHTUNIT1) and stopLight(LIGHTUNIT2)) )

axiom over phase: ag(phase=GO1STOP2 iff (goLight(LIGHTUNIT1) and

stopLight(LIGHTUNIT2)))

axiom over phase: ag(phase=GO2STOP1 iff (goLight(LIGHTUNIT2) and

stopLight(LIGHTUNIT1)))

// properties about the correctness of transitions between states

axiom over phase: ag(phase=STOP1STOP2 iff ax(phase=GO2STOP1 or phase=

STOP1STOP2))

axiom over phase: ag(phase=GO2STOP1 iff ax(phase=STOP2STOP1 or phase=

GO2STOP1))

axiom over phase: ag(phase=STOP2STOP1 iff ax(phase=GO1STOP2 or phase=

STOP2STOP1))

axiom over phase: ag(phase=GO1STOP2 iff ax(phase=STOP1STOP2 or phase=

GO1STOP2))

//if the traffic light is red , sooner or later it will be green

axiom over stopLight: ag(stopLight(LIGHTUNIT1) implies ef(goLight(

LIGHTUNIT1)))

axiom over stopLight: ag(stopLight(LIGHTUNIT2) implies ef(goLight(

LIGHTUNIT2)))

// absence of deadlock

axiom over phase: ag(ex(true))

main rule r_Main =

par

r_stop1stop2_to_go2stop1 []

r_go2stop1_to_stop2stop1 []

r_stop2stop1_to_go1stop2 []

r_go1stop2_to_stop1stop2 []

endpar

default init s0:

function stopLight($l in LightUnit) = true

function goLight($l in LightUnit) = false

function phase = STOP1STOP2

To represent the two tra�c lights we de�ne the enum domain LightUnit
made of two elements, LIGHTUNIT1 and LIGHTUNIT2. The stop and go
lights are represented by controlled boolean functions stopLight($l in Ligh-
tUnit) and goLight($l in LightUnit); the stopLight(LIGHTUNIT1) location,
for example, is true if the stop light of LIGHTUNIT1 is turned on, false oth-
erwise. The system can be in four states that are listed in the enum domain
PhaseDomain:

• STOP1STOP2 and STOP2STOP1 : both units show the stop light;

• GO1STOP2 : LIGHTUNIT1 shows the go light and LIGHTUNIT2 the
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stop light;

• GO2STOP1 : LIGHTUNIT2 shows the go light and LIGHTUNIT1 the
stop light.

The phase function, whose codomain is PhaseDomain, shows the current
phase of the system. We also de�ne the subset domain of Integer Intervals
that contains values 50 and 120, that is the lengths of stop and go signals.
The location passed($i) of the boolean monitored function passed($i in In-
tervals) is true when the period $i is �nished.
First of all we de�ne two rules that simplify the ASM structure:

• r_switch($l in Boolean) switches the value of $l variable;

• r_switchLightUnit($l in LightUnit) switches both the lights of tra�c
light $l.

The main rule executes four rules that change the state of the system:

• r_stop1stop2_to_go2stop1,

• r_go2stop1_to_stop2stop1,

• r_stop2stop1_to_go1stop2,

• r_go1stop2_to_stop1stop2.

Let's see r_stop1stop2_to_go2stop1 rule. If the system is in STOP1STOP2
phase (phase = STOP1STOP2) and the 50 seconds period is over (passed(50)),
the LIGHTUNIT2 lights switch their values with the macro call rule r_switchLightUnit[
LIGHTUNIT2] and the system goes in stateGO2STOP1 (phase:=GO2STOP1 ).

At the beginning (default init) the system is in STOP2STOP1 and both
units show the stop signal.

We can now describe the properties we want to check.
Safety properties

ag(goLight(LIGHTUNIT1) xor stopLight(LIGHTUNIT1))

ag(goLight(LIGHTUNIT2) xor stopLight(LIGHTUNIT2))

check that, in each unit, is turned on only one light.
Safety property
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ag((goLight(LIGHTUNIT2) and stopLight(LIGHTUNIT1)) xor

(goLight(LIGHTUNIT1) and stopLight(LIGHTUNIT2)) xor

(stopLight(LIGHTUNIT2) and stopLight(LIGHTUNIT1)))

checks that, in each state, the combination of lights of the two units is cor-
rect. If a unit shows the go signal, the other one must show the stop signal;
otherwise both units can show the stop signal.
An equivalent safety property is

ag(not(goLight(LIGHTUNIT1) and goLight(LIGHTUNIT2)))

that says that the two units can never show, at the same time, the go signal.
Since now we have checked properties that must be true in all the states
(temporal operator AG). Such properties are equal to AsmetaL axioms, that
are properties that are checked at each step of the execution of an AsmetaL
model. The translation of axioms in NuSMV permits us to verify them in
all the states of the machine with one execution of the model checker; to
have the same result with the simulator we should execute the ASM as many
times as the number of states.
Let's see now some properties that can be veri�ed only by NuSMV, because
they verify also the future states of the machine.
Safety properties

ag(phase=STOP1STOP2 iff ax(phase=GO2STOP1 or phase=STOP1STOP2))

ag(phase=GO2STOP1 iff ax(phase=STOP2STOP1 or phase=GO2STOP1))

ag(phase=STOP2STOP1 iff ax(phase=GO1STOP2 or phase=STOP2STOP1))

ag(phase=GO1STOP2 iff ax(phase=STOP1STOP2 or phase=GO1STOP2))

check that the next state of each state is correct. For example, the �rst
property checks that if phase=STOP1STOP2 in the next state phase is
GO2STOP1 or STOP1STOP2. We can notice that there are transitions
where phase do not change; in fact, in our example, if passed(50) is false
the phase value remains STOP1STOP2.
Liveness properties

ag(stopLight(LIGHTUNIT1) implies ef(goLight(LIGHTUNIT1)))

ag(stopLight(LIGHTUNIT2) implies ef(goLight(LIGHTUNIT2)))

check that, if a tra�c light shows the stop signal, sooner or later it will show
the go signal.
Property

ag(ex(true))
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checks the absence of deadlock; in each state there must be at least one next
state.
Code 6.2 shows the NuSMV code obtained from the mapping of AsmetaL
code 6.1.

Code 6.2: One-way tra�c light: NuSMV ground model
MODULE main

VAR

goLight_LIGHTUNIT1: boolean;

goLight_LIGHTUNIT2: boolean;

passed_120: boolean;

passed_50: boolean;

phase: {GO1STOP2 , GO2STOP1 , STOP1STOP2 , STOP2STOP1 };

stopLight_LIGHTUNIT1: boolean;

stopLight_LIGHTUNIT2: boolean;

ASSIGN

init(goLight_LIGHTUNIT1) := FALSE;

init(goLight_LIGHTUNIT2) := FALSE;

init(phase) := STOP1STOP2;

init(stopLight_LIGHTUNIT1) := TRUE;

init(stopLight_LIGHTUNIT2) := TRUE;

next(goLight_LIGHTUNIT1) :=

case

((( phase = STOP2STOP1) & (next(passed_50))) |

((phase = GO1STOP2) & (next(passed_120)))):

!( goLight_LIGHTUNIT1);

TRUE: goLight_LIGHTUNIT1;

esac;

next(goLight_LIGHTUNIT2) :=

case

((( phase = STOP1STOP2) & (next(passed_50))) |

((phase = GO2STOP1) & (next(passed_120)))):

!( goLight_LIGHTUNIT2);

TRUE: goLight_LIGHTUNIT2;

esac;

next(phase) :=

case

((phase = STOP2STOP1) & (next(passed_50))): GO1STOP2;

((phase = STOP1STOP2) & (next(passed_50))): GO2STOP1;

((phase = GO2STOP1) & (next(passed_120))): STOP2STOP1;

((phase = GO1STOP2) & (next(passed_120))): STOP1STOP2;

TRUE: phase;

esac;

next(stopLight_LIGHTUNIT1) :=

case

((( phase = STOP2STOP1) & (next(passed_50))) | (( phase =

GO1STOP2) & (next(passed_120)))): !( stopLight_LIGHTUNIT1);

TRUE: stopLight_LIGHTUNIT1;

esac;

next(stopLight_LIGHTUNIT2) :=

case

((( phase = STOP1STOP2) & (next(passed_50))) | (( phase =

GO2STOP1) & (next(passed_120)))): !( stopLight_LIGHTUNIT2);

TRUE: stopLight_LIGHTUNIT2;

esac;

SPEC AG(( goLight_LIGHTUNIT1) xor (stopLight_LIGHTUNIT1));

SPEC AG(( goLight_LIGHTUNIT2) xor (stopLight_LIGHTUNIT2));

SPEC AG(((( goLight_LIGHTUNIT2) & (stopLight_LIGHTUNIT1)) xor ((

goLight_LIGHTUNIT1) & (stopLight_LIGHTUNIT2))) xor ((

stopLight_LIGHTUNIT2) & (stopLight_LIGHTUNIT1)));
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SPEC AG(!(( goLight_LIGHTUNIT1) & (goLight_LIGHTUNIT2)));

SPEC AG(( phase = STOP1STOP2) | (phase = STOP2STOP1) <-> (

stopLight_LIGHTUNIT1) & (stopLight_LIGHTUNIT2));

SPEC AG(phase = GO1STOP2 <-> (goLight_LIGHTUNIT1) & (

stopLight_LIGHTUNIT2));

SPEC AG(phase = GO2STOP1 <-> (goLight_LIGHTUNIT2) & (

stopLight_LIGHTUNIT1));

SPEC AG(phase = STOP1STOP2 <-> AX((phase = GO2STOP1) | (phase =

STOP1STOP2)));

SPEC AG(phase = GO2STOP1 <-> AX((phase = STOP2STOP1) | (phase = GO2STOP1

)));

SPEC AG(phase = STOP2STOP1 <-> AX((phase = GO1STOP2) | (phase =

STOP2STOP1)));

SPEC AG(phase = GO1STOP2 <-> AX((phase = STOP1STOP2) | (phase = GO1STOP2

)));

SPEC AG(stopLight_LIGHTUNIT1 -> EF(goLight_LIGHTUNIT1));

SPEC AG(stopLight_LIGHTUNIT2 -> EF(goLight_LIGHTUNIT2));

SPEC AG(EX(TRUE));

The execution of NuSMV code veri�es the correctness of the properties:

*** This is NuSMV 2.4.0 (compiled on Sat Oct 4 10:17:49 UTC 2008)

*** For more information on NuSMV see <http://nusmv.irst.itc.it>

*** or email to <nusmv-users@irst.itc.it>.

*** Please report bugs to <nusmv@irst.itc.it>.

-- specification AG (goLight(LIGHTUNIT1) xor stopLight(LIGHTUNIT1)) is true

-- specification AG (goLight(LIGHTUNIT2) xor stopLight(LIGHTUNIT2)) is true

-- specification AG (((goLight(LIGHTUNIT2) & stopLight(LIGHTUNIT1)) xor

(goLight(LIGHTUNIT1) & stopLight(LIGHTUNIT2))) xor

(stopLight(LIGHTUNIT2) & stopLight(LIGHTUNIT1))) is true

-- specification AG !(goLight(LIGHTUNIT1) & goLight(LIGHTUNIT2)) is true

-- specification AG ((phase = STOP1STOP2 | phase = STOP2STOP1) <->

(stopLight(LIGHTUNIT1) & stopLight(LIGHTUNIT2))) is true

-- specification AG (phase = GO1STOP2 <->

(goLight(LIGHTUNIT1) & stopLight(LIGHTUNIT2))) is true

-- specification AG (phase = GO2STOP1 <->

(goLight(LIGHTUNIT2) & stopLight(LIGHTUNIT1))) is true

-- specification AG (phase = STOP1STOP2 <->

AX (phase = GO2STOP1 | phase = STOP1STOP2)) is true

-- specification AG (phase = GO2STOP1 <->

AX (phase = STOP2STOP1 | phase = GO2STOP1)) is true

-- specification AG (phase = STOP2STOP1 <->

AX (phase = GO1STOP2 | phase = STOP2STOP1)) is true

-- specification AG (phase = GO1STOP2 <->

AX (phase = STOP1STOP2 | phase = GO1STOP2)) is true

-- specification AG (stopLight(LIGHTUNIT1) -> EF goLight(LIGHTUNIT1)) is true

-- specification AG (stopLight(LIGHTUNIT2) -> EF goLight(LIGHTUNIT2)) is true

-- specification AG (EX TRUE) is true
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6.1.3 Re�ned model

Let's see now the re�ned model, where we introduce Rpulses and Gpulses
signals (code 6.3).

Code 6.3: One-way tra�c light: AsmetaL re�ned model
asm oneWayTrafficLight_refined

import ./ StandardLibrary

import ./ CTLlibrary

signature:

enum domain LightUnit = {LIGHTUNIT1 | LIGHTUNIT2}

enum domain PhaseDomain = { STOP1STOP2 | GO2STOP1 | STOP2STOP1

| GO1STOP2 | STOP1STOP2CHANGING | GO2STOP1CHANGING

| STOP2STOP1CHANGING | GO1STOP2CHANGING }

domain Intervals subsetof Integer

dynamic controlled phase: PhaseDomain

dynamic controlled stopLight: LightUnit -> Boolean

dynamic controlled goLight: LightUnit -> Boolean

dynamic monitored passed: Intervals -> Boolean

dynamic controlled rPulse: LightUnit -> Boolean

dynamic controlled gPulse: LightUnit -> Boolean

definitions:

domain Intervals = {50, 120}

macro rule r_switch($l in Boolean) =

$l := not($l)

rule r_switchLightUnit($l in LightUnit) =

par

rPulse($l) := true

gPulse($l) := true

endpar

rule r_stop1stop2_to_stop1stop2changing =

if(phase=STOP1STOP2 and passed (50)) then

par

r_switchLightUnit[LIGHTUNIT2]

phase:= STOP1STOP2CHANGING

endpar

endif

rule r_go2stop1_to_go2stop1changing =

if(phase=GO2STOP1 and passed (120)) then

par

r_switchLightUnit[LIGHTUNIT2]

phase:= GO2STOP1CHANGING

endpar

endif

rule r_stop2stop1_to_stop2stop1changing =

if(phase=STOP2STOP1 and passed (50)) then

par

r_switchLightUnit[LIGHTUNIT1]

phase:= STOP2STOP1CHANGING

endpar

endif

rule r_go1stop2_to_go1stop2changing =

if(phase=GO1STOP2 and passed (120)) then
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par

r_switchLightUnit[LIGHTUNIT1]

phase:= GO1STOP2CHANGING

endpar

endif

rule r_pulses =

forall $l in LightUnit with true do

par

if(gPulse($l)) then

par

r_switch[goLight($l)]

gPulse($l) := false

endpar

endif

if(rPulse($l)) then

par

r_switch[stopLight($l)]

rPulse($l) := false

endpar

endif

endpar

macro rule r_changeState =

par

if(phase=STOP1STOP2CHANGING) then

phase := GO2STOP1

endif

if(phase=GO2STOP1CHANGING) then

phase := STOP2STOP1

endif

if(phase=STOP2STOP1CHANGING) then

phase := GO1STOP2

endif

if(phase=GO1STOP2CHANGING) then

phase := STOP1STOP2

endif

endpar

// rPulse and gPulse signals are read and cleared in one step

axiom over rPulse: ag(rPulse(LIGHTUNIT1) implies ax(not(rPulse(

LIGHTUNIT1))))

axiom over rPulse: ag(rPulse(LIGHTUNIT2) implies ax(not(rPulse(

LIGHTUNIT2))))

axiom over gPulse: ag(gPulse(LIGHTUNIT1) implies ax(not(gPulse(

LIGHTUNIT1))))

axiom over gPulse: ag(gPulse(LIGHTUNIT2) implies ax(not(gPulse(

LIGHTUNIT2))))

main rule r_Main =

par

r_stop1stop2_to_stop1stop2changing []

r_go2stop1_to_go2stop1changing []

r_stop2stop1_to_stop2stop1changing []

r_go1stop2_to_go1stop2changing []

r_pulses []

r_changeState []

endpar

default init s0:

function stopLight($l in LightUnit) = true

function goLight($l in LightUnit) = false
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function phase = STOP1STOP2

function rPulse($l in LightUnit) = false

function gPulse($l in LightUnit) = false

Rpulses and Gpulses are represented with two boolean controlled func-
tions, rPulse($l LightUnit) and gPulse($l LightUnit). For example, location
rPulse(LIGHTUNIT1) is true if the computer has sent to LIGHTUNIT1
the signal to turn on the red light.
Besides the four state previously described, we de�ne four more states:

• STOP1STOP2CHANGING : both tra�c lights show the stop light;
LIGHTUNIT2 has received from the computer the signal to turn on
the go light and to turn o� the stop light;

• GO2STOP1CHANGING : LIGHTUNIT2 shows the go light and LIGH-
TUNIT1 the stop light; LIGHTUNIT2 has received from the com-
puter the signal to turn o� the go light and to turn on the stop light;

• STOP2STOP1CHANGING : both tra�c lights show the stop light;
LIGHTUNIT1 has received from the computer the signal to turn on
the go light and to turn o� the stop light;

• GO1STOP2CHANGING : LIGHTUNIT1 shows the go light and LIGH-
TUNIT2 the stop light; LIGHTUNIT1 has received from the com-
puter the signal to turn o� the go light and to turn on the stop light.

Rule r_switchLightUnit($l in LightUnit) has been modi�ed: it doesn't exe-
cute anymore the switch of the lights of tra�c light $l, but sends to it two
switch signals: it sets to true the locations rPulse($l) and gPulse($l).
The rules that, in the ground model, execute the transition between the main
states, have been replaced by other four rules that execute the transitions
between the main states and the intermediate states. The new rules are:

• r_stop1stop2_to_stop1stop2changing,

• r_go2stop1_to_go2stop1changing,

• r_stop2stop1_to_stop2stop1changing,

• r_go1stop2_to_go1stop2changing.

These four rules, with the rules r_pulses and r_changeState, are executed
in the main rule.
r_pulses reads rPulse($l LightUnit) and gPulse($l LightUnit) signals and
turn on/o� the lights of the tra�c lights.
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r_changeState executes the transitions between the intermediate states and
the principal states.
We declare four safety properties to check the communication between the
computer and the tra�c lights; signals, when are received by the tra�c lights,
are immediately read and cleared (updated to false).

ag(rPulse(LIGHTUNIT1) implies ax(not(rPulse(LIGHTUNIT1))))

ag(rPulse(LIGHTUNIT2) implies ax(not(rPulse(LIGHTUNIT2))))

ag(gPulse(LIGHTUNIT1) implies ax(not(gPulse(LIGHTUNIT1))))

ag(gPulse(LIGHTUNIT2) implies ax(not(gPulse(LIGHTUNIT2))))

Code 6.4 is the translation into NuSMV of AsmetaL code 6.3.

Code 6.4: One-way tra�c light: NuSMV re�ned model
MODULE main

VAR

gPulse_LIGHTUNIT1: boolean;

gPulse_LIGHTUNIT2: boolean;

goLight_LIGHTUNIT1: boolean;

goLight_LIGHTUNIT2: boolean;

passed_120: boolean;

passed_50: boolean;

phase: {GO1STOP2 , GO1STOP2CHANGING , GO2STOP1 , GO2STOP1CHANGING ,

STOP1STOP2 , STOP1STOP2CHANGING , STOP2STOP1 , STOP2STOP1CHANGING };

rPulse_LIGHTUNIT1: boolean;

rPulse_LIGHTUNIT2: boolean;

stopLight_LIGHTUNIT1: boolean;

stopLight_LIGHTUNIT2: boolean;

ASSIGN

init(gPulse_LIGHTUNIT1) := FALSE;

init(gPulse_LIGHTUNIT2) := FALSE;

init(goLight_LIGHTUNIT1) := FALSE;

init(goLight_LIGHTUNIT2) := FALSE;

init(phase) := STOP1STOP2;

init(rPulse_LIGHTUNIT1) := FALSE;

init(rPulse_LIGHTUNIT2) := FALSE;

init(stopLight_LIGHTUNIT1) := TRUE;

init(stopLight_LIGHTUNIT2) := TRUE;

next(gPulse_LIGHTUNIT1) :=

case

(gPulse_LIGHTUNIT1): FALSE;

((( phase = STOP2STOP1) & (next(passed_50))) |

((phase = GO1STOP2) & (next(passed_120)))): TRUE;

TRUE: gPulse_LIGHTUNIT1;

esac;

next(gPulse_LIGHTUNIT2) :=

case

((( phase = STOP1STOP2) & (next(passed_50))) |

((phase = GO2STOP1) & (next(passed_120)))): TRUE;

(gPulse_LIGHTUNIT2): FALSE;

TRUE: gPulse_LIGHTUNIT2;

esac;

next(goLight_LIGHTUNIT1) :=

case

(gPulse_LIGHTUNIT1): !( goLight_LIGHTUNIT1);

TRUE: goLight_LIGHTUNIT1;

esac;
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next(goLight_LIGHTUNIT2) :=

case

(gPulse_LIGHTUNIT2): !( goLight_LIGHTUNIT2);

TRUE: goLight_LIGHTUNIT2;

esac;

next(phase) :=

case

(phase = GO1STOP2CHANGING): STOP1STOP2;

((phase = STOP2STOP1) & (next(passed_50))):

STOP2STOP1CHANGING;

(phase = STOP1STOP2CHANGING): GO2STOP1;

(phase = STOP2STOP1CHANGING): GO1STOP2;

((phase = STOP1STOP2) & (next(passed_50))):

STOP1STOP2CHANGING;

(phase = GO2STOP1CHANGING): STOP2STOP1;

((phase = GO2STOP1) & (next(passed_120))): GO2STOP1CHANGING;

((phase = GO1STOP2) & (next(passed_120))): GO1STOP2CHANGING;

TRUE: phase;

esac;

next(rPulse_LIGHTUNIT1) :=

case

(rPulse_LIGHTUNIT1): FALSE;

((( phase = STOP2STOP1) & (next(passed_50))) | (( phase =

GO1STOP2) & (next(passed_120)))): TRUE;

TRUE: rPulse_LIGHTUNIT1;

esac;

next(rPulse_LIGHTUNIT2) :=

case

(rPulse_LIGHTUNIT2): FALSE;

((( phase = STOP1STOP2) & (next(passed_50))) | (( phase =

GO2STOP1) & (next(passed_120)))): TRUE;

TRUE: rPulse_LIGHTUNIT2;

esac;

next(stopLight_LIGHTUNIT1) :=

case

(rPulse_LIGHTUNIT1): !( stopLight_LIGHTUNIT1);

TRUE: stopLight_LIGHTUNIT1;

esac;

next(stopLight_LIGHTUNIT2) :=

case

(rPulse_LIGHTUNIT2): !( stopLight_LIGHTUNIT2);

TRUE: stopLight_LIGHTUNIT2;

esac;

SPEC AG(rPulse_LIGHTUNIT1 -> AX(!( rPulse_LIGHTUNIT1)));

SPEC AG(rPulse_LIGHTUNIT2 -> AX(!( rPulse_LIGHTUNIT2)));

SPEC AG(gPulse_LIGHTUNIT1 -> AX(!( gPulse_LIGHTUNIT1)));

SPEC AG(gPulse_LIGHTUNIT2 -> AX(!( gPulse_LIGHTUNIT2)));

Let's check the correctness of the properties through the execution of the
NuSMV code:

*** This is NuSMV 2.4.0 (compiled on Sat Oct 4 10:17:49 UTC 2008)

*** For more information on NuSMV see <http://nusmv.irst.itc.it>

*** or email to <nusmv-users@irst.itc.it>.

*** Please report bugs to <nusmv@irst.itc.it>.

-- specification AG (rPulse(LIGHTUNIT1) -> AX !rPulse(LIGHTUNIT1)) is true

-- specification AG (rPulse(LIGHTUNIT2) -> AX !rPulse(LIGHTUNIT2)) is true

-- specification AG (gPulse(LIGHTUNIT1) -> AX !gPulse(LIGHTUNIT1)) is true
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-- specification AG (gPulse(LIGHTUNIT2) -> AX !gPulse(LIGHTUNIT2)) is true

6.2 Sluice Gate Control

6.2.1 Problem

In [14] it's described the speci�cation of an irrigation system. The irriga-
tion system is composed by a small sluice, with a rising and a falling gate,
and a computer system that controls the sluice gate. This is the description
of the requirements as reported in [14]:

The sluice gate must be held in the fully open position for ten min-
utes in ever three hours and otherwise kept in the fully closed po-
sition. The gate is opened and closed by rotating vertical screws.
The screws are driven by a small motor, which can be controlled
by clockwise, anticlockwise, on and o� pulses. There are sensor
at the top and bottom of the gate travel; at the top it's fully
open, at the bottom it's fully shut.
The connection to the computer consists of four pulse lines for
motor control and two status lines for gate sensor.

6.2.2 Ground model

In the ground model the sluice gate can be only in two states: fully open
or fully closed. By now we don't consider the movements of the gate from
one state to the other.
We don't even consider the motor; we just model the elapsing of intervals in
which the sluice gate must be opened or closed. Code 6.5 is the AsmetaL
ground model.

Code 6.5: Sluice Gate Control: AsmetaL ground model
asm sluiceGateGround

import ./ StandardLibrary

import ./ CTLlibrary

signature:

domain Minutes subsetof Integer

enum domain PhaseDomain = {FULLYCLOSED | FULLYOPENED}

dynamic controlled phase: PhaseDomain

dynamic monitored passed: Minutes -> Boolean

definitions:

domain Minutes = {10, 170}

rule r_open =

skip



6.2. SLUICE GATE CONTROL 73

rule r_shut =

skip

// transitions between states are correct

axiom over phase: ag(phase=FULLYCLOSED implies ax(phase = FULLYOPENED

iff passed (170)))

axiom over phase: ag(phase=FULLYOPENED implies ax(phase = FULLYCLOSED

iff passed (10)))

main rule r_Main =

par

if(phase=FULLYCLOSED) then

if(passed (170)) then

par

r_open []

phase := FULLYOPENED

endpar

endif

endif

if(phase=FULLYOPENED) then

if(passed (10)) then

par

r_shut []

phase := FULLYCLOSED

endpar

endif

endif

endpar

default init s0:

function phase = FULLYCLOSED

In the AsmetaL model we have declared a function phase that records the
state of the gate: the gate can be fully opened (FULLY OPENED) or fully
closed (FULLY CLOSED). The boolean monitored locations passed(10)
and passed(170) say if the intervals in which the gate is, respectively, fully
opened and fully closed are elapsed.
The main rule simply simulates the changes of the gate state:

• if the state is FULLY CLOSED and 170 minutes are elapsed, the state
becomes FULLY OPENED;

• if the state is FULLY OPENED and 10 minutes are elapsed, the state
becomes FULLY CLOSED.

At the beginning the gate is closed.
Figure 6.2 shows how the ground model works.

In the model we have de�ned two safety properties

ag(phase=FULLYCLOSED implies ax(phase = FULLYOPENED iff passed(170)))

ag(phase=FULLYOPENED implies ax(phase = FULLYCLOSED iff passed(10)))
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Figure 6.2: Sluice Gate Control - ground model

that verify that the transitions between states are correct. For example, if the
gate is FULLY CLOSED, the next state of the gate will be FULLY OPENED
only if 170 minutes are elapsed (passed(170)).
Code 6.6 is the NuSMV code obtained from the mapping of AsmetaL code
6.5.

Code 6.6: Sluice Gate Control: NuSMV ground model
MODULE main

VAR

passed_10: boolean;

passed_170: boolean;

phase: {FULLYCLOSED , FULLYOPENED };

ASSIGN

init(phase) := FULLYCLOSED;

next(phase) :=

case

(phase = FULLYCLOSED) & (next(passed_170)): FULLYOPENED;

(phase = FULLYOPENED) & (next(passed_10)): FULLYCLOSED;

TRUE: phase;

esac;

SPEC AG(( phase = FULLYCLOSED) -> AX(phase = FULLYOPENED <-> passed_170))

;

SPEC AG(( phase = FULLYOPENED) -> AX(phase = FULLYCLOSED <-> passed_10));

We can see that, each AsmetaL location has been transformed into a NuSMV
variable.
Let's execute the NuSMV code to check the properties.

*** This is NuSMV 2.4.0 (compiled on Sat Oct 4 10:17:49 UTC 2008)

*** For more information on NuSMV see <http://nusmv.irst.itc.it>

*** or email to <nusmv-users@irst.itc.it>.

*** Please report bugs to <nusmv@irst.itc.it>.

-- specification AG (phase = FULLYCLOSED -> AX (phase = FULLYOPENED <->

passed(170))) is true

-- specification AG (phase = FULLYOPENED -> AX (phase = FULLYCLOSED <->

passed(10))) is true
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6.2.3 Re�ned model

Let's see in this section the re�ned model (code 6.7).

Code 6.7: Sluice Gate Control: AsmetaL re�ned model
asm sluiceGateMotorCtl

import ./ StandardLibrary

import ./ CTLlibrary

signature:

domain Minutes subsetof Integer

enum domain PhaseDomain = { FULLYCLOSED | OPENING | FULLYOPENED |

CLOSING }

enum domain DirectionDomain = { CLOCKWISE | ANTICLOCKWISE }

enum domain MotorDomain = { ON | OFF }

dynamic controlled phase: PhaseDomain

dynamic controlled dir: DirectionDomain

dynamic controlled motor: MotorDomain

dynamic monitored passed: Minutes -> Boolean

dynamic monitored event_top: Boolean

dynamic monitored event_bottom: Boolean

definitions:

domain Minutes = {10, 170}

rule r_start_to_raise =

par

dir := CLOCKWISE

motor := ON

endpar

rule r_start_to_lower =

par

dir := ANTICLOCKWISE

motor := ON

endpar

rule r_stop_motor =

motor := OFF

// correctness of phase changes

axiom over phase: ag(phase=FULLYCLOSED implies ax(phase=FULLYCLOSED or

phase=OPENING))

axiom over phase: ag(phase=OPENING implies ax(phase=OPENING or phase=

FULLYOPENED))

axiom over phase: ag(phase=FULLYOPENED implies ax(phase=FULLYOPENED or

phase=CLOSING))

axiom over phase: ag(phase=CLOSING implies ax(phase=CLOSING or phase=

FULLYCLOSED))

// properties about the connection between the state

//and the motor

axiom over phase: ag(phase=FULLYCLOSED implies motor = OFF)

axiom over phase: ag(phase=FULLYOPENED implies motor = OFF)

axiom over phase: ag(phase=OPENING implies motor = ON)

axiom over phase: ag(phase=CLOSING implies motor = ON)

// liveness properties

axiom over phase: ag(phase = FULLYOPENED implies ef(phase = FULLYCLOSED)
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)

axiom over phase: ag(phase = FULLYCLOSED implies ef(phase = FULLYOPENED)

)

main rule r_Main =

par

if(phase=FULLYCLOSED) then

if(passed (170)) then

par

r_start_to_raise []

phase := OPENING

endpar

endif

endif

if(phase=OPENING) then

if(event_top) then

par

r_stop_motor []

phase := FULLYOPENED

endpar

endif

endif

if(phase=FULLYOPENED) then

if(passed (10)) then

par

r_start_to_lower []

phase := CLOSING

endpar

endif

endif

if(phase=CLOSING) then

if(event_bottom) then

par

r_stop_motor []

phase := FULLYCLOSED

endpar

endif

endif

endpar

default init s0:

function phase = FULLYCLOSED

function motor = OFF

In the re�ned model we have introduced the representation of the motor and
of the opening and closing movements of the gate.
Variable phase can be in two new states: OPENING to signal that the gate
is opening, CLOSING to signal that the gate is closing.
To model the motor we have introduced the variable motor whose value is
ON if the motor is turned on, OFF if it's turned o�. Variable dir represents
the direction of the screws, CLOCKWISE or ANTICLOCKWISE. Mon-
itored functions event_top and event_bottom says if the gate has reached,
respectively, the highest and the lowest point.
The functioning of the system follows a four phases cycle:

• if the gate is fully closed (FULLY CLOSED) and 170 minutes have
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elapsed (passed(170)), the computer turns on the motor and sets the
screws direction to CLOCKWISE; the gate enters state OPENING;

• if the gate is opening (OPENING) and has reached the highest po-
sition (event_top), the computer turns o� the motor; the gate enters
state FULLY OPENED;

• if the gate is fully opened (FULLY OPENED) and 10 minutes have
elapsed (passed(10)), the computer turns on the motor and sets the
screws direction to ANTICLOCKWISE; the gate enters state CLOS-
ING ;

• if the gate is closing (CLOSING) and has reached the lower position
(event_bottom), the computer turns o� the motor; the gate enters state
FULLY CLOSED.

In the model we have declared some properties.
The four safety properties

ag(phase=FULLYCLOSED implies ax(phase=FULLYCLOSED or phase=OPENING))

ag(phase=OPENING implies ax(phase=OPENING or phase=FULLYOPENED))

ag(phase=FULLYOPENED implies ax(phase=FULLYOPENED or phase=CLOSING))

ag(phase=CLOSING implies ax(phase=CLOSING or phase=FULLYCLOSED))

check that transitions between states are correct; for example, if the gate is
FULLY CLOSED, in the next state can remain in FULLY CLOSED or
enter in OPENING.
The four safety properties

ag(phase=FULLYCLOSED implies motor = OFF)

ag(phase=FULLYOPENED implies motor = OFF)

ag(phase=OPENING implies motor = ON)

ag(phase=CLOSING implies motor = ON)

check that the motor is turned o� when the gate is stopped, and that is
turned on when the gate is moving.
The two liveness properties

ag(phase = FULLYOPENED implies ef(phase = FULLYCLOSED))

ag(phase = FULLYCLOSED implies ef(phase = FULLYOPENED))

check that, if the gate is FULLY CLOSED, sooner or later it will become
FULLY OPENED and vice versa.
Code 6.8 contains the NuSMV code obtained from the mapping of AsmetaL
code 6.7.
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Code 6.8: Sluice Gate Control: NuSMV re�ned model
MODULE main

VAR

dir: {ANTICLOCKWISE , CLOCKWISE };

event_bottom: boolean;

event_top: boolean;

motor: {OFF , ON};

passed_10: boolean;

passed_170: boolean;

phase: {CLOSING ,FULLYCLOSED ,FULLYOPENED ,OPENING };

ASSIGN

init(motor) := OFF;

init(phase) := FULLYCLOSED;

next(dir) :=

case

(phase = FULLYCLOSED) & (next(passed_170)):

CLOCKWISE;

(phase = FULLYOPENED) & (next(passed_10)):

ANTICLOCKWISE;

TRUE: dir;

esac;

next(motor) :=

case

(phase = OPENING) & (next(event_top)): OFF;

(phase = FULLYCLOSED) & (next(passed_170)): ON;

(phase = CLOSING) & (next(event_bottom)): OFF;

(phase = FULLYOPENED) & (next(passed_10)): ON;

TRUE: motor;

esac;

next(phase) :=

case

(phase = OPENING) & (next(event_top)):

FULLYOPENED;

(phase = FULLYCLOSED) & (next(passed_170)):

OPENING;

(phase = CLOSING) & (next(event_bottom)):

FULLYCLOSED;

(phase = FULLYOPENED) & (next(passed_10)):

CLOSING;

TRUE: phase;

esac;

SPEC AG((phase = FULLYCLOSED) -> AX((phase = FULLYCLOSED) | (phase =

OPENING)));

SPEC AG((phase = OPENING) -> AX((phase = OPENING) | (phase = FULLYOPENED)

));

SPEC AG((phase = FULLYOPENED) -> AX((phase = FULLYOPENED) | (phase =

CLOSING)));

SPEC AG((phase = CLOSING) -> AX((phase = CLOSING) | (phase = FULLYCLOSED)

));

SPEC AG((phase = FULLYCLOSED) -> (motor = OFF));

SPEC AG((phase = FULLYOPENED) -> (motor = OFF));

SPEC AG((phase = OPENING) -> (motor = ON));

SPEC AG((phase = CLOSING) -> (motor = ON));

SPEC AG(phase = FULLYCLOSED -> EF(phase = FULLYOPENED));

SPEC AG(phase = FULLYOPENED -> EF(phase = FULLYCLOSED));

Let's execute code 6.8 in order to check the correctness of the properties.

*** This is NuSMV 2.4.0 (compiled on Sat Oct 4 10:17:49 UTC 2008)

*** For more information on NuSMV see <http://nusmv.irst.itc.it>

*** or email to <nusmv-users@irst.itc.it>.
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*** Please report bugs to <nusmv@irst.itc.it>.

-- specification AG (phase = FULLYCLOSED -> AX (phase = FULLYCLOSED |

phase = OPENING)) is true

-- specification AG (phase = OPENING -> AX (phase = OPENING |

phase = FULLYOPEN)) is true

-- specification AG (phase = FULLYOPEN -> AX (phase = FULLYOPEN |

phase = CLOSING)) is true

-- specification AG (phase = CLOSING -> AX (phase = CLOSING |

phase = FULLYCLOSED)) is true

-- specification AG (phase = FULLYCLOSED -> motor = OFF) is true

-- specification AG (phase = FULLYOPEN -> motor = OFF) is true

-- specification AG (phase = OPENING -> motor = ON) is true

-- specification AG (phase = CLOSING -> motor = ON) is true

6.3 Mondex protocol

In [15] it's described an ASM model for the Mondex protocol [16]. The
mondex protocol implements electronic cash transfer between two purses
(cards); the transfer of money is implemented through the sending of mes-
sages over a lossy medium, that can be a device with two slots or an internet
connection. We have analyzed the �rst re�nement described in chapter 3
("From Atomic Transfers to Messages") of [15]. In section 6.3.1 we describe
the AsmetaL model we have written; the code implements a simpli�ed ver-
sion of the ASM model described in [15]. Moreover, in writing the AsmetaL
code, we have considered that it had to be translated into NuSMV and so
we have used only elements that are supported by the mapping. The model
contained in section 6.3.1 contains an error; in sections 6.3.2 and 6.3.3 we
will see two possible solutions.

6.3.1 Model with error

We consider a simpli�ed version of the problem:

• there are only two cards (AA and BB belonging to the domain Name);

• it's not possible that a message is lost, that is rule LOSEMSG of [15]
is not considered;

• it's not possible that a card aborts a transition, that is rule ABORT of
[15] is not considered; we will introduce the ABORT in section 6.3.2.
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Signature The function balance($n in Name) represents the balance of
card $n; the boolean function authentic($n in Name) says if card $n is au-
thentic.
Each card has an inbox that contains messages awaiting processing. The
boolean function inbox($n in Name, $m in MessageType, $na in Name,
$value in MoneyDomain, $t in TidDomain) models the inboxes of the cards;
the arguments are:

• $n: the owner of the inbox;

• $m: the type of the message;

• $na: the sender of the message;

• $value: the amount of money involved in the transfer; the values that
can be used are the elements of MoneyDomain domain;

• $t : the identi�er of the transaction; the values that can be used are the
elements of TidDomain domain.

The location inbox($n, $m, $na, $value, $t) is true if the message ($m, $na,
$value, $t) is in the inbox of $n.
Each card has an outbox that contains the last sent message. The outbox is
modeled through �ve functions that contain the elements of the message:

• outboxMessage: Name → MessageType: type of the message;

• outboxName: Name → Name: the addressee of the message;

• outboxMoney: Name→ MoneyDomain: the amount of money involved
in the transfer;

• outboxTid: Name → TidDomain: the identi�er of the transaction;

• outboxIsNone: Name → Boolean: says if the outbox contains a mes-
sage.

The element of the domain Name of the �ve functions is the owner of the
outbox. Let's see an example to visualize the correspondence between the
inbox of a card that has received a message and the outbox of the card that
has sent the same message. In this example BB has sent a REQ message of
0 money to AA; the identi�er of the transaction is 1.
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inbox of AA outbox of BB

inbox(AA, REQ, BB, 0n, 1n) = true

outboxMessage(BB) = REQ
outboxName(BB) = AA
outboxMoney(BB) = 0n
outboxTid(BB) = 1n
outboxIsNone(BB) = false

The derived function isNone($n Name) says if the outbox of $n is not in-
volved in a transaction: the outbox contains no message (outboxIsNone($n)
= true) or contains an ACK message (outboxMessage($n) = ACK ).
The boolean function tid($t in TidDomain) says if a tid has already been
used.

Rules A transfer of money from card card1 to card card2 is done through
the execution of this four rules:

1. r_startTo($receiver in Name): card2 requests v money to card1 (it
sends a REQ message in the inbox of card1 ) and memorizes the message
in its outbox; card2 can send the request only if it's not involved in a
transaction (isNone(card2) = true);

2. r_req($receiver in Name): card1 receives the request, removes v money
from its balance, removes the message from its inbox, sends a VAL
message in the inbox of card2 and puts the message also in its outbox;
card1 can receive the request only if it's not involved in a transaction
(isNone(card1) = true);

3. r_val($receiver in Name): card2 receives the VAL message, adds v
money on its balance, removes the message from its inbox, sends an
ACK message in the inbox of card1 and puts the message also in its
outbox;

4. r_ack($receiver in Name): card1 receives the ACK message, removes
the message from its inbox and clears its outbox.

In the main rule, nondeterministically a card and a rule are chosen; the cho-
sen card executes the chosen rule as a receiver of the message2.

2If the chosen rule is r_startTo the card can start a request of money
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Model error We focus our attention on the �rst two rules, r_startTo and
r_req ; we want to show that the system, through a particular execution of
this two rules, can enter in a deadlock state.
The execution of r_startTo($receiver in Name) is the following:

1. the rule can be executed only if card $receiver is not involved in a
previous transaction, that is isNone($receiver) = true;

2. a message ($na, REQ, $value, $tid) is chosen such that card $na is
authentic and di�erent from card $receiver, and the tid $tid has not
yet been used; if one of these conditions cannot be satis�ed the following
points can't be executed;

3. the card $receiver puts the message in its outbox and in the inbox of
card $na;

4. the tid $tid is removed from the available tids.

The execution of r_req($receiver in Name) is the following:

1. the rule can be executed only if card $receiver is not involved in a
previous transaction, that is isNone($receiver) = true;

2. a message ($na, REQ, $value, $tid) contained in the inbox of $receiver
is chosen such that card $na is authentic and di�erent from card $re-
ceiver, and the amount of money $value is less or equal to the balance of
the receiver; if one of these conditions cannot be satis�ed the following
points can't be executed;

3. the card $receiver puts a VAL message in its outbox and in the inbox
of card $na;

4. the chosen message is removed from the inbox of the card $receiver ;

5. the value $value is removed from the balance of the card $receiver.

Thanks to the veri�cation of some properties with the NuSMV model, we
have discovered that there is a situation in which the system is in deadlock:

1. card BB executes the r_startTo rule: it asks 0 money to card AA3.
The outbox of BB, at the end of the rule, contains the same message
it has sent to AA.

3We can notice that there will always be enough money on the balance of AA to satisfy
a request of 0 money.
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2. card AA executes the r_startTo rule: it asks 0 money to card BB. The
outbox of AA, at the end of the rule, contains the same message it has
sent to BB.

At this point, in order to continue the transfers of money, the two cards would
execute the r_req rule to satisfy the request of the other card. The r_req
rule, however, satis�es a REQ message only if the outbox of the receiver is
empty. Unfortunately both cards have their outboxes occupied by the REQ
message that they have sent to the other card. So we see that the two cards
are blocked.
Three properties help us to visualize the problem.
Property

ag(inbox(AA, REQ, BB, 0n, 1n) implies

ef(inbox(BB, VAL, AA, 0n, 1n)))

check that if BB has done a request of 0 money to AA, sooner or later AA
will reply with the VAL message. We will see that this property is false and
we will be able to observe a counterexample.
The next two properties have been suggested by the counterexample returned
by the previous property.
Property

not(ef(inbox(AA, REQ, BB, 0n, 1n) and inbox(BB, REQ, AA, 0n, 2n)))

veri�es that exists a state in which both cards have requested 0 money from
the other card. We can observe that the two requests, correctly, have two
di�erent tids. The property is negated in order to obtain a counterexample.
Since both cards request 0 money, the balances of the cards are enough to
satisfy the requests. Nonetheless the property

ag((inbox(AA,REQ,BB,0n,1n) and inbox(BB,REQ,AA,0n,2n)) implies

ag(not(inbox(BB,VAL,AA,0n, 1n) or inbox(AA,VAL,BB,0n,2n))))

veri�es that, if the system is in the state previously described, none of the
two requests can be satis�ed in the future. As we have say previously, in
fact, the two cards are in deadlock.
Code 6.9 is the AsmetaL code.

Code 6.9: Mondex protocol with error: AsmetaL model
asm mcCap3ForNuSMVoutboxSing

import ./ StandardLibrary

signature:

enum domain Name = {AA | BB} //2 cards
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enum domain MessageType = {REQ | VAL | ACK}

enum domain RuleId = {STARTTORULE | REQRULE | VALRULE | ACKRULE}

domain TidDomain subsetof Natural // domain for tids

domain MoneyDomain subsetof Natural // domain for money

dynamic controlled balance: Name -> MoneyDomain

dynamic controlled tids: TidDomain -> Boolean //true if a tid has been

used

dynamic controlled inbox: Prod(Name , MessageType , Name , MoneyDomain ,

TidDomain) -> Boolean

dynamic controlled outboxMessage: Name -> MessageType

dynamic controlled outboxName: Name -> Name

dynamic controlled outboxMoney: Name -> MoneyDomain

dynamic controlled outboxTid: Name -> TidDomain

dynamic controlled outboxIsNone: Name -> Boolean

derived isNone: Name -> Boolean

static authentic: Name -> Boolean //true if the card is authentic

definitions:

domain TidDomain = {1n..2n}

domain MoneyDomain = {0n, 5n, 10n}

function isNone($name in Name) =

outboxIsNone($name) or outboxMessage($name) = ACK

function authentic($n in Name) = if($n = AA or $n = BB) then

true

else

false

endif

macro rule r_startTo($receiver in Name) =

// receiver cannot be involved in a previous transaction

if(isNone($receiver)) then

choose $na in Name , $value in MoneyDomain , $tid in TidDomain

with

not(tids($tid)) //we must use a new tid

and authentic($na) //$na must be an authentic card

and $na != $receiver

do

par

inbox($na , REQ , $receiver , $value , $tid) := true

outboxMessage($receiver) := REQ

outboxName($receiver) := $na

outboxMoney($receiver) := $value

outboxTid($receiver) := $tid

outboxIsNone($receiver) := false

tids($tid) := true

endpar

endif

macro rule r_req($receiver in Name) =

choose $na in Name , $value in MoneyDomain , $tid in TidDomain with

inbox($receiver , REQ , $na , $value , $tid)

and authentic($na)

and $na!= $receiver

and $value <= balance($receiver)

and (isNone($receiver))// receiver cannot be involved in

//a previous transaction

do

par

inbox($na , VAL , $receiver , $value , $tid) := true
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outboxMessage($receiver) := VAL

outboxName($receiver) := $na

outboxMoney($receiver) := $value

outboxTid($receiver) := $tid

outboxIsNone($receiver) := false

balance($receiver) := balance($receiver) - $value

inbox($receiver , REQ , $na , $value , $tid) := false

endpar

macro rule r_val($receiver in Name) =

choose $na in Name , $value in MoneyDomain , $tid in TidDomain with

inbox($receiver , VAL , $na , $value , $tid) and

(outboxIsNone($receiver) = false and

outboxMessage($receiver) = REQ and

outboxName($receiver) = $na and

outboxMoney($receiver) = $value and

outboxTid($receiver) = $tid) do

par

inbox($na , ACK , $receiver , $value , $tid) := true

outboxMessage($receiver) := ACK

outboxName($receiver) := $na

outboxMoney($receiver) := $value

outboxTid($receiver) := $tid

outboxIsNone($receiver) := false

balance($receiver) := balance($receiver) + $value

inbox($receiver , VAL , $na , $value , $tid) := false

endpar

macro rule r_ack($receiver in Name) =

choose $na in Name , $value in MoneyDomain , $tid in TidDomain with

inbox($receiver , ACK , $na , $value , $tid) and

(outboxIsNone($receiver) = false and

outboxMessage($receiver) = VAL and

outboxName($receiver) = $na and

outboxMoney($receiver) = $value and

outboxTid($receiver) = $tid) do

par

outboxIsNone($receiver) := true

inbox($receiver , ACK , $na , $value , $tid) := false

endpar

axiom over inbox: ag(inbox(AA, REQ , BB, 0n, 1n) implies

ef(inbox(BB, VAL , AA, 0n, 1n)))

axiom over inbox: not(ef(inbox(AA, REQ , BB, 0n, 1n) and

inbox(BB, REQ , AA, 0n, 2n)))

axiom over inbox: ag(( inbox(AA ,REQ ,BB ,0n,1n) and inbox(BB,REQ ,AA ,0n,2n))

implies

ag(not(inbox(BB,VAL ,AA ,0n, 1n) and inbox(AA ,VAL ,BB ,0n,2n))))

main rule r_irule =

choose $receiver in Name , $rule in RuleId with authentic($receiver)

do

switch($rule)

case STARTTORULE:

r_startTo[$receiver]

case REQRULE:

r_req[$receiver]

case VALRULE:

r_val[$receiver]

case ACKRULE:

r_ack[$receiver]

endswitch
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default init s0:

function balance($n in Name) = at({AA ->5n, BB ->5n},$n)

function inbox($n in Name , $t in MessageType , $na in Name , $value in

MoneyDomain ,$tid in TidDomain) = false

function tids($tid in TidDomain) = false

function outboxIsNone($n in Name) = true

function outboxMessage($n in Name) = ACK

function outboxName($n in Name) = AA

function outboxMoney($n in Name) = 0n

function outboxTid($n in Name) = 1n

Code 6.10 is the NuSMV code obtained from the mapping of AsmetaL code
6.9.

Code 6.10: Mondex protocol with error: partial NuSMV model
MODULE main

VAR

balance_AA: {0, 10, 5};

balance_BB: {0, 10, 5};

inbox_AA_ACK_AA_0_1: boolean;

.

.

.

inbox_BB_VAL_BB_5_2: boolean;

outboxIsNone_AA: boolean;

.

.

.

outboxTid_BB: 1..2;

tids_1: boolean;

tids_2: boolean;

var_$na_1: {AA, BB};

.

.

.

var_$value_4: {0, 10, 5};

DEFINE

isNone_AA := (outboxIsNone_AA) | (outboxMessage_AA = ACK);

isNone_BB := (outboxIsNone_BB) | (outboxMessage_BB = ACK);

authentic_AA := TRUE;

authentic_BB := TRUE;

ASSIGN

init(balance_AA) := 5;

init(balance_BB) := 5;

init(inbox_AA_ACK_AA_0_1) := FALSE;

.

.

.

init(inbox_BB_VAL_BB_5_2) := FALSE;

init(outboxIsNone_AA) := TRUE;

init(outboxIsNone_BB) := TRUE;

init(outboxMessage_AA) := ACK;

init(outboxMessage_BB) := ACK;

init(outboxMoney_AA) := 0;

init(outboxMoney_BB) := 0;

init(outboxName_AA) := AA;

init(outboxName_BB) := AA;

init(outboxTid_AA) := 1;

init(outboxTid_BB) := 1;
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init(tids_1) := FALSE;

init(tids_2) := FALSE;

--the following four initializations have been added by us

--in the code obtained from the mapping. In this way

--we can choose a particular initial state: BB executes

--STARTTORULE and asks to AA 0 money; the tid of the

--transaction is 1.

init(var_$receiver_0) := BB; --added after the mapping

init(var_$rule_0) := STARTTORULE; --added after the mapping

init(var_$na_1) := AA; --added after the mapping

init(var_$tid_1) := 1; --added after the mapping

init(var_$value_1) := 0; --added after the mapping

next(balance_AA) :=

.

.

.

SPEC AG(inbox_AA_REQ_BB_0_1 -> EF(inbox_BB_VAL_AA_0_1));

SPEC !EF(( inbox_AA_REQ_BB_0_1) & (inbox_BB_REQ_AA_0_2));

SPEC AG(( inbox_AA_REQ_BB_0_1) & (inbox_BB_REQ_AA_0_2) -> AG(!((

inbox_BB_VAL_AA_0_1) | (inbox_AA_VAL_BB_0_2))));

We don't show the complete NuSMV code because it's too big (668 lines);
we just show the declarations, the initializations and the properties.
In the NuSMV code 6.10 we have added the initialization of choose variables
(var_$receiver_0, var_$rule_0, var_$na_1, var_$tid_1, var_$value_1 )
in order to let the model start with the execution of r_startTo rule in which
card BB asks 0 money to AA; the tid of the transaction is 1.
Let's see the execution of NuSMV code:

C:\code>NuSMV -dynamic -coi mcCap3ForNuSMVoutboxSing.smv

*** This is NuSMV 2.4.0 (compiled on Sat Oct 4 10:17:49 UTC 2008)

*** For more information on NuSMV see <http://nusmv.irst.itc.it>

*** or email to <nusmv-users@irst.itc.it>.

*** Please report bugs to <nusmv@irst.itc.it>.

-- specification AG (inbox_AA_REQ_BB_0_1 -> EF inbox_BB_VAL_AA_0_1) is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

balance_AA = 5

balance_BB = 5

inbox_AA_ACK_AA_0_1 = 0

.

.

.

inbox_BB_VAL_BB_5_2 = 0

outboxIsNone_AA = 1

outboxIsNone_BB = 1

outboxMessage_AA = ACK

outboxMessage_BB = ACK

outboxMoney_AA = 0
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outboxMoney_BB = 0

outboxName_AA = AA

outboxName_BB = AA

outboxTid_AA = 1

outboxTid_BB = 1

tids_1 = 0

tids_2 = 0

var_$na_1 = AA

var_$na_2 = BB

var_$na_3 = BB

var_$na_4 = BB

var_$receiver_0 = BB

var_$rule_0 = STARTTORULE

var_$tid_1 = 1

var_$tid_2 = 1

var_$tid_3 = 1

var_$tid_4 = 1

var_$value_1 = 0

var_$value_2 = 5

var_$value_3 = 5

var_$value_4 = 5

authentic_BB = 1

authentic_AA = 1

isNone_BB = 1

isNone_AA = 1

-> Input: 1.2 <-

-> State: 1.2 <-

inbox_AA_REQ_BB_0_1 = 1

outboxIsNone_BB = 0

outboxMessage_BB = REQ

tids_1 = 1

var_$na_1 = BB

var_$receiver_0 = AA

var_$tid_1 = 2

var_$value_1 = 5

isNone_BB = 0

-- specification !(EF (inbox_AA_REQ_BB_0_1 & inbox_BB_REQ_AA_0_2)) is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 2.1 <-

balance_AA = 5

balance_BB = 5

inbox_AA_ACK_AA_0_1 = 0

.

.

.

inbox_BB_VAL_BB_5_2 = 0

outboxIsNone_AA = 1
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outboxIsNone_BB = 1

outboxMessage_AA = ACK

outboxMessage_BB = ACK

outboxMoney_AA = 0

outboxMoney_BB = 0

outboxName_AA = AA

outboxName_BB = AA

outboxTid_AA = 1

outboxTid_BB = 1

tids_1 = 0

tids_2 = 0

var_$na_1 = AA

var_$na_2 = BB

var_$na_3 = BB

var_$na_4 = BB

var_$receiver_0 = BB

var_$rule_0 = STARTTORULE

var_$tid_1 = 1

var_$tid_2 = 1

var_$tid_3 = 1

var_$tid_4 = 1

var_$value_1 = 0

var_$value_2 = 5

var_$value_3 = 5

var_$value_4 = 5

authentic_BB = 1

authentic_AA = 1

isNone_BB = 1

isNone_AA = 1

-> Input: 2.2 <-

-> State: 2.2 <-

inbox_AA_REQ_BB_0_1 = 1

outboxIsNone_BB = 0

outboxMessage_BB = REQ

tids_1 = 1

var_$na_1 = BB

var_$receiver_0 = AA

var_$tid_1 = 2

isNone_BB = 0

-> Input: 2.3 <-

-> State: 2.3 <-

inbox_BB_REQ_AA_0_2 = 1

outboxIsNone_AA = 0

outboxMessage_AA = REQ

outboxName_AA = BB

outboxTid_AA = 2

tids_2 = 1

var_$receiver_0 = BB

var_$rule_0 = VALRULE
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var_$tid_1 = 1

var_$value_1 = 5

isNone_AA = 0

-- specification AG ((inbox_AA_REQ_BB_0_1 & inbox_BB_REQ_AA_0_2) ->

AG !(inbox_BB_VAL_AA_0_1 | inbox_AA_VAL_BB_0_2)) is true

As we have say previously, the �rst property is false. In state 1.2 BB has
requested 0 money to AA (inbox_AA_REQ_BB_0_1 = 1 ); from the ob-
servation of the variables we can say that in the next state AA will request
5 money to BB. From this state it's not possible that the card AA replies to
the request contained in inbox_AA_REQ_BB_0_1 : both the outboxes of
AA and BB, in fact, are occupied by a message and the r_req rule can be
executed only if the outbox of the receiver is empty.
The second property veri�es that exist a state in which both cards have done
a request to the other card4; the third property veri�es that from this state
it's impossible that at least one card responds to the request of the other
card.

6.3.2 First solution

In the AsmetaL model described in section 6.3.1 we haven't considered
the ABORT rule5 described in chapter 3 of [15]. We think that, even without
the ABORT rule, the transfer of money between a card to another card would
be always satis�ed if the balances of the cards permits it: in section 6.3.1,
instead, we have seen that there is a situation in which two cards enter in a
deadlock state when they make correct requests of money one another.
We have seen that the reintroduction of the ABORT rule can resolve the
problem. In the AsmetaL code 6.11 we show only the modi�cation we have
made to the AsmetaL code 6.9.

Code 6.11: Mondex protocol: AsmetaL model with abort rule
asm mcCap3ForNuSMVoutboxSingWithAbort

import ./ StandardLibrary

signature:

enum domain RuleId = {STARTTORULE | REQRULE | VALRULE | ACKRULE |

ABORTRULE}

.

.

.

dynamic controlled exLogFrom: Prod(Name , Name , MoneyDomain , TidDomain)

-> Boolean

4The property is negated in order to obtain an example: we see that in state 2.3
inbox_AA_REQ_BB_0_1 = 1 and inbox_BB_REQ_AA_0_2 = 1.

5We haven't considered the LOSEMSG rule too, but it's not important in our discus-
sion.
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dynamic controlled exLogTo: Prod(Name , Name , MoneyDomain , TidDomain) ->

Boolean

definitions:

.

.

.

macro rule r_abort($receiver in Name) =

par

choose $na in Name , $value in MoneyDomain , $tid in TidDomain

with

($na=outboxName($receiver) and

$value=outboxMoney($receiver) and

$tid=outboxTid($receiver)) do

par

if(outboxMessage($receiver)=REQ) then

exLogTo($receiver , $na , $value , $tid) := true

endif

if(outboxMessage($receiver)=VAL) then

exLogFrom($receiver , $na , $value , $tid) := true

endif

endpar

outboxIsNone($receiver) := true

endpar

axiom over inbox: ag(inbox(AA, REQ , BB, 0n, 1n) implies

ef(inbox(BB, VAL , AA, 0n, 1n) or exLogTo(BB, AA, 0n, 1n)))

main rule r_irule =

choose $receiver in Name , $rule in RuleId with authentic($receiver)

do

switch($rule)

case STARTTORULE:

r_startTo[$receiver]

case REQRULE:

r_req[$receiver]

case VALRULE:

r_val[$receiver]

case ACKRULE:

r_ack[$receiver]

case ABORTRULE:

r_abort[$receiver]

endswitch

default init s0:

.

.

.

function exLogFrom($n in Name , $na in Name , $value in MoneyDomain ,$tid

in TidDomain) = false

function exLogTo($n in Name , $na in Name , $value in MoneyDomain ,$tid in

TidDomain) = false

The boolean functions exLogTo($n in Name, $na in Name, $value in Mon-
eyDomain, $tid in TidDomain) and exLogFrom($n in Name, $na in Name,
$value in MoneyDomain, $tid in TidDomain) contain the logs of the aborted
transitions. The arguments of these functions are:
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• $n: the owner of the log;

• $na: the addressee of the message;

• $value: the amount of money involved in the transfer;

• $t : the identi�er of the transaction.

In the new model, the main rule can execute also the r_abort($receiver) rule
that interrupts the transaction of money identi�ed by the message contained
in the outbox of $receiver.
The r_abort rule memorizes the message contained in its outbox in the
exLogTo function, if it's a REQ message, or in the exLogFrom, if it's a VAL
message. In both cases the outbox is cleared.
We can see that this new rule can resolve the problem previously described.
Let's remember the example described in section 6.3.1 in which two cards
enter in a deadlock state; we also describe how they can exit from this state:

1. card BB executes the r_startTo rule: it asks 0 money to card AA. The
outbox of BB, at the end of the rule, contains the same message it has
sent to AA.

2. card AA executes the r_startTo rule: it asks 0 money to card BB. The
outbox of AA, at the end of the rule, contains the same message it has
sent to BB. At this point the two cards are in deadlock.

3. Now card BB (it would be the same with card AA) executes the r_abort
rule: it memorizes the REQ message contained in its outbox in the
exLogTo function and clears the outbox.

4. At this point, since the outbox of BB is empty, the card BB can execute
the r_req rule and satisfy the request received from the card AA.

The property

ag(inbox(AA, REQ, BB, 0n, 1n) implies

ef(inbox(BB, VAL, AA, 0n, 1n) or exLogTo(BB, AA, 0n, 1n)))

veri�es that, if the card BB requests 0 money to AA, sooner or later BB will
receive the VAL message or will abort the transaction recording the message
in the exLogTo function.
Let's verify the correctness of the property through the execution of the
NuSMV code:
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> NuSMV -dynamic -coi mcCap3ForNuSMVoutboxSingWithAbort.smv

*** This is NuSMV 2.4.0 (compiled on Sat Oct 4 10:17:49 UTC 2008)

*** For more information on NuSMV see <http://nusmv.irst.itc.it>

*** or email to <nusmv-users@irst.itc.it>.

*** Please report bugs to <nusmv@irst.itc.it>.

-- specification AG (inbox(AA,REQ,BB,0,1) -> EF (inbox(BB,VAL,AA,0,1) |

exLogTo(BB,AA,0,1))) is true

6.3.3 Second solution

In this section we present our proposal to solve the problem described in
section 6.3.1.
Code 6.12 contains the modi�cation we have made to the original code 6.9.

Code 6.12: Mondex protocol with our modi�cation: AsmetaL model
asm mcCap3ForNuSMVoutboxSingCheckOnStart

import ./ StandardLibrary

import ./ CTLlibrary

signature:

.

.

.

derived check: Prod(Name , Name) -> Boolean

definitions:

function check ($receiver in Name , $na in Name) =

if(not(exist $v in MoneyDomain , $t in TidDomain with inbox($receiver ,

REQ , $na , $v, $t))) then

true

else

false

endif

.

.

.

macro rule r_startTo($receiver in Name) =

if(isNone($receiver)) then

choose $na in Name , $value in MoneyDomain , $tid in TidDomain

with not(tids($tid)) and authentic($na) and $na!= $receiver

and check($receiver , $na) do

par

inbox($na , REQ , $receiver , $value , $tid) := true

outboxMessage($receiver) := REQ

outboxName($receiver) := $na

outboxMoney($receiver) := $value

outboxTid($receiver) := $tid

outboxIsNone($receiver) := false

tids($tid) := true

endpar

endif
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//If a card send a REQ message , sooner or later it will receive the VAL

message.

axiom over inbox: ag(inbox(AA, REQ , BB, 0n, 1n) implies ef(inbox(BB, VAL ,

AA, 0n, 1n)))

axiom over inbox: ag(inbox(BB, REQ , AA, 0n, 1n) implies ef(inbox(AA, VAL ,

BB, 0n, 1n)))

axiom over inbox: ag(inbox(AA, REQ , BB, 0n, 2n) implies ef(inbox(BB, VAL ,

AA, 0n, 2n)))

axiom over inbox: ag(inbox(BB, REQ , AA, 0n, 2n) implies ef(inbox(AA, VAL ,

BB, 0n, 2n)))

//The next properties , since verify messages with money greater than 0,

must also check the balance:

//if a card send a valid REQ message (to a card that have enough money),

sooner or later it will receive the VAL message

axiom over inbox: ag(( inbox(AA , REQ , BB , 5n, 1n) and ef( balance(AA) >= 5n

)) implies ef(inbox(BB, VAL , AA, 5n, 1n)))

axiom over inbox: ag(( inbox(BB , REQ , AA , 5n, 1n) and ef( balance(BB) >= 5n

)) implies ef(inbox(AA, VAL , BB, 5n, 1n)))

axiom over inbox: ag(( inbox(AA , REQ , BB , 5n, 2n) and ef( balance(AA) >= 5n

)) implies ef(inbox(BB, VAL , AA, 5n, 2n)))

axiom over inbox: ag(( inbox(BB , REQ , AA , 5n, 2n) and ef( balance(BB) >= 5n

)) implies ef(inbox(AA, VAL , BB, 5n, 2n)))

axiom over inbox: ag(( inbox(AA , REQ , BB , 10n, 1n) and ef( balance(AA) >=

10n)) implies ef(inbox(BB, VAL , AA, 10n, 1n)))

axiom over inbox: ag(( inbox(BB , REQ , AA , 10n, 1n) and ef( balance(BB) >=

10n)) implies ef(inbox(AA, VAL , BB, 10n, 1n)))

axiom over inbox: ag(( inbox(AA , REQ , BB , 10n, 2n) and ef( balance(AA) >=

10n)) implies ef(inbox(BB, VAL , AA, 10n, 2n)))

axiom over inbox: ag(( inbox(BB , REQ , AA , 10n, 2n) and ef( balance(BB) >=

10n)) implies ef(inbox(AA, VAL , BB, 10n, 2n)))

//A REQ message remains in the inbox of a card until the VAL message is

put in the inbox of the other card.

axiom over inbox: ag(inbox(AA, REQ , BB, 0n, 1n) implies e(inbox(AA, REQ ,

BB, 0n, 1n), inbox(BB, VAL , AA, 0n, 1n)))

axiom over inbox: ag(inbox(BB, REQ , AA, 0n, 1n) implies e(inbox(BB, REQ ,

AA, 0n, 1n), inbox(AA, VAL , BB, 0n, 1n)))

axiom over inbox: ag(inbox(AA, REQ , BB, 0n, 2n) implies e(inbox(AA, REQ ,

BB, 0n, 2n), inbox(BB, VAL , AA, 0n, 2n)))

axiom over inbox: ag(inbox(BB, REQ , AA, 0n, 2n) implies e(inbox(BB, REQ ,

AA, 0n, 2n), inbox(AA, VAL , BB, 0n, 2n)))

//The next properties , since verify messages with money greater than 0,

must also check the balance:

//a valid REQ message (to a card that have enough money) remains in the

inbox of a card until the VAL message is put in the inbox of the other

card.

axiom over inbox: ag(( inbox(AA , REQ , BB , 5n, 1n) and (balance(AA) >=5n))

implies e(inbox(AA , REQ , BB , 5n, 1n), inbox(BB , VAL , AA , 5n, 1n)))

axiom over inbox: ag(( inbox(BB , REQ , AA , 5n, 1n) and (balance(BB) >=5n))

implies e(inbox(BB , REQ , AA , 5n, 1n), inbox(AA , VAL , BB , 5n, 1n)))

axiom over inbox: ag(( inbox(AA , REQ , BB , 5n, 2n) and (balance(AA) >=5n))

implies e(inbox(AA , REQ , BB , 5n, 2n), inbox(BB , VAL , AA , 5n, 2n)))

axiom over inbox: ag(( inbox(BB , REQ , AA , 5n, 2n) and (balance(BB) >=5n))

implies e(inbox(BB , REQ , AA , 5n, 2n), inbox(AA , VAL , BB , 5n, 2n)))

axiom over inbox: ag(( inbox(AA , REQ , BB , 10n, 1n) and (balance(AA) >=10n))

implies e(inbox(AA , REQ , BB , 10n, 1n), inbox(BB , VAL , AA , 10n, 1n)))

axiom over inbox: ag(( inbox(BB , REQ , AA , 10n, 1n) and (balance(BB) >=10n))

implies e(inbox(BB , REQ , AA , 10n, 1n), inbox(AA , VAL , BB , 10n, 1n)))

axiom over inbox: ag(( inbox(AA , REQ , BB , 10n, 2n) and (balance(AA) >=10n))

implies e(inbox(AA , REQ , BB , 10n, 2n), inbox(BB , VAL , AA , 10n, 2n)))

axiom over inbox: ag(( inbox(BB , REQ , AA , 10n, 2n) and (balance(BB) >=10n))

implies e(inbox(BB , REQ , AA , 10n, 2n), inbox(AA , VAL , BB , 10n, 2n)))
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//If a card send a VAL message , sooner or later it will receive the ACK

message.

axiom over inbox: ag(inbox(AA, VAL , BB, 0n, 1n) implies ef(inbox(BB, ACK ,

AA, 0n, 1n)))

axiom over inbox: ag(inbox(BB, VAL , AA, 0n, 1n) implies ef(inbox(AA, ACK ,

BB, 0n, 1n)))

axiom over inbox: ag(inbox(AA, VAL , BB, 0n, 2n) implies ef(inbox(BB, ACK ,

AA, 0n, 2n)))

axiom over inbox: ag(inbox(BB, VAL , AA, 0n, 2n) implies ef(inbox(AA, ACK ,

BB, 0n, 2n)))

axiom over inbox: ag(inbox(AA, VAL , BB, 5n, 1n) implies ef(inbox(BB, ACK ,

AA, 5n, 1n)))

axiom over inbox: ag(inbox(BB, VAL , AA, 5n, 1n) implies ef(inbox(AA, ACK ,

BB, 5n, 1n)))

axiom over inbox: ag(inbox(AA, VAL , BB, 5n, 2n) implies ef(inbox(BB, ACK ,

AA, 5n, 2n)))

axiom over inbox: ag(inbox(BB, VAL , AA, 5n, 2n) implies ef(inbox(AA, ACK ,

BB, 5n, 2n)))

axiom over inbox: ag(inbox(AA, VAL , BB, 10n, 1n) implies ef(inbox(BB , ACK ,

AA, 10n, 1n)))

axiom over inbox: ag(inbox(BB, VAL , AA, 10n, 1n) implies ef(inbox(AA , ACK ,

BB, 10n, 1n)))

axiom over inbox: ag(inbox(AA, VAL , BB, 10n, 2n) implies ef(inbox(BB , ACK ,

AA, 10n, 2n)))

axiom over inbox: ag(inbox(BB, VAL , AA, 10n, 2n) implies ef(inbox(AA , ACK ,

BB, 10n, 2n)))

//A VAL message remains in the inbox of a card until the ACK message is

put in the inbox of the other card.

axiom over inbox: ag(inbox(AA, VAL , BB, 0n, 1n) implies e(inbox(AA, VAL ,

BB, 0n, 1n), inbox(BB, ACK , AA, 0n, 1n)))

axiom over inbox: ag(inbox(BB, VAL , AA, 0n, 1n) implies e(inbox(BB, VAL ,

AA, 0n, 1n), inbox(AA, ACK , BB, 0n, 1n)))

axiom over inbox: ag(inbox(AA, VAL , BB, 0n, 2n) implies e(inbox(AA, VAL ,

BB, 0n, 2n), inbox(BB, ACK , AA, 0n, 2n)))

axiom over inbox: ag(inbox(BB, VAL , AA, 0n, 2n) implies e(inbox(BB, VAL ,

AA, 0n, 2n), inbox(AA, ACK , BB, 0n, 2n)))

axiom over inbox: ag(inbox(AA, VAL , BB, 5n, 1n) implies e(inbox(AA, VAL ,

BB, 5n, 1n), inbox(BB, ACK , AA, 5n, 1n)))

axiom over inbox: ag(inbox(BB, VAL , AA, 5n, 1n) implies e(inbox(BB, VAL ,

AA, 5n, 1n), inbox(AA, ACK , BB, 5n, 1n)))

axiom over inbox: ag(inbox(AA, VAL , BB, 5n, 2n) implies e(inbox(AA, VAL ,

BB, 5n, 2n), inbox(BB, ACK , AA, 5n, 2n)))

axiom over inbox: ag(inbox(BB, VAL , AA, 5n, 2n) implies e(inbox(BB, VAL ,

AA, 5n, 2n), inbox(AA, ACK , BB, 5n, 2n)))

axiom over inbox: ag(inbox(AA, VAL , BB, 10n, 1n) implies e(inbox(AA, VAL ,

BB, 10n, 1n), inbox(BB , ACK , AA , 10n, 1n)))

axiom over inbox: ag(inbox(BB, VAL , AA, 10n, 1n) implies e(inbox(BB, VAL ,

AA, 10n, 1n), inbox(AA , ACK , BB , 10n, 1n)))

axiom over inbox: ag(inbox(AA, VAL , BB, 10n, 2n) implies e(inbox(AA, VAL ,

BB, 10n, 2n), inbox(BB , ACK , AA , 10n, 2n)))

axiom over inbox: ag(inbox(BB, VAL , AA, 10n, 2n) implies e(inbox(BB, VAL ,

AA, 10n, 2n), inbox(AA , ACK , BB , 10n, 2n)))

main rule r_irule =

choose $receiver in Name , $rule in RuleId with authentic($receiver) do

switch($rule)

case STARTTORULE:

r_startTo[$receiver]

case REQRULE:
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r_req[$receiver]

case VALRULE:

r_val[$receiver]

case ACKRULE:

r_ack[$receiver]

endswitch

default init s0:

function balance($n in Name) = at({AA ->5n, BB ->5n},$n)

function inbox($n in Name , $t in MessageType , $na in Name , $value in

MoneyDomain ,$tid in TidDomain) = false

function tids($tid in TidDomain) = false

function outboxIsNone($n in Name) = true

function outboxMessage($n in Name) = ACK

function outboxName($n in Name) = AA

function outboxMoney($n in Name) = 0n

function outboxTid($n in Name) = 1n

We have added the function check($receiver in Name, $na in Name) that
veri�es that card $receiver has not received a request from card $na.
In the r_startTo rule, the check(card1, card2) function let card1 make a
request to card2 only if card2 has not previously made a request to card1.
This control permits to avoid the deadlock states described in section 6.3.1.
We have declared the same property that failed in the original model6 (section
6.3.1) and that, instead, in our model is satis�ed.
Moreover we have declared other properties to check the overall execution of
the protocol.
The 4 liveness properties

ag(inbox(AA, REQ, BB, 0n, 1n) implies ef(inbox(BB, VAL, AA, 0n, 1n)))

ag(inbox(BB, REQ, AA, 0n, 1n) implies ef(inbox(AA, VAL, BB, 0n, 1n)))

ag(inbox(AA, REQ, BB, 0n, 2n) implies ef(inbox(BB, VAL, AA, 0n, 2n)))

ag(inbox(BB, REQ, AA, 0n, 2n) implies ef(inbox(AA, VAL, BB, 0n, 2n)))

check that, if a card send a REQ message for 0 money, sooner or later it will
receive the VAL message7.
The 8 liveness properties

ag((inbox(AA, REQ, BB, 5n, 1n) and ef( balance(AA) >= 5n)) implies

ef(inbox(BB, VAL, AA, 5n, 1n)))

ag((inbox(BB, REQ, AA, 5n, 1n) and ef( balance(BB) >= 5n)) implies

ef(inbox(AA, VAL, BB, 5n, 1n)))

ag((inbox(AA, REQ, BB, 5n, 2n) and ef( balance(AA) >= 5n)) implies

ef(inbox(BB, VAL, AA, 5n, 2n)))

ag((inbox(BB, REQ, AA, 5n, 2n) and ef( balance(BB) >= 5n)) implies

ef(inbox(AA, VAL, BB, 5n, 2n)))

ag((inbox(AA, REQ, BB, 10n, 1n) and ef( balance(AA) >= 10n)) implies

ef(inbox(BB, VAL, AA, 10n, 1n)))

ag((inbox(BB, REQ, AA, 10n, 1n) and ef( balance(BB) >= 10n)) implies

6ag(inbox(AA, REQ, BB, 0n, 1n) implies ef(inbox(BB, VAL, AA, 0n, 1n)))
7The �rst property is the property that, as we have say few rows above, failed with the

code described in section 6.3.1
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ef(inbox(AA, VAL, BB, 10n, 1n)))

ag((inbox(AA, REQ, BB, 10n, 2n) and ef( balance(AA) >= 10n)) implies

ef(inbox(BB, VAL, AA, 10n, 2n)))

ag((inbox(BB, REQ, AA, 10n, 2n) and ef( balance(BB) >= 10n)) implies

ef(inbox(AA, VAL, BB, 10n, 2n)))

are similar to the previous four properties but, since verify messages with
money greater than 0, must also check the balance: if a card send a valid
REQ message (to a card that have enough money on the balance), sooner or
later it will receive the VAL message.
Properties

ag(inbox(AA, REQ, BB, 0n, 1n) implies e(inbox(AA, REQ, BB, 0n, 1n),

inbox(BB, VAL, AA, 0n, 1n)))

ag(inbox(BB, REQ, AA, 0n, 1n) implies e(inbox(BB, REQ, AA, 0n, 1n),

inbox(AA, VAL, BB, 0n, 1n)))

ag(inbox(AA, REQ, BB, 0n, 2n) implies e(inbox(AA, REQ, BB, 0n, 2n),

inbox(BB, VAL, AA, 0n, 2n)))

ag(inbox(BB, REQ, AA, 0n, 2n) implies e(inbox(BB, REQ, AA, 0n, 2n),

inbox(AA, VAL, BB, 0n, 2n)))

ag((inbox(AA, REQ, BB, 5n, 1n) and (balance(AA)>=5n)) implies

e(inbox(AA, REQ, BB, 5n, 1n), inbox(BB, VAL, AA, 5n, 1n)))

ag((inbox(BB, REQ, AA, 5n, 1n) and (balance(BB)>=5n)) implies

e(inbox(BB, REQ, AA, 5n, 1n), inbox(AA, VAL, BB, 5n, 1n)))

ag((inbox(AA, REQ, BB, 5n, 2n) and (balance(AA)>=5n)) implies

e(inbox(AA, REQ, BB, 5n, 2n), inbox(BB, VAL, AA, 5n, 2n)))

ag((inbox(BB, REQ, AA, 5n, 2n) and (balance(BB)>=5n)) implies

e(inbox(BB, REQ, AA, 5n, 2n), inbox(AA, VAL, BB, 5n, 2n)))

ag((inbox(AA, REQ, BB, 10n, 1n) and (balance(AA)>=10n)) implies

e(inbox(AA, REQ, BB, 10n, 1n), inbox(BB, VAL, AA, 10n, 1n)))

ag((inbox(BB, REQ, AA, 10n, 1n) and (balance(BB)>=10n)) implies

e(inbox(BB, REQ, AA, 10n, 1n), inbox(AA, VAL, BB, 10n, 1n)))

ag((inbox(AA, REQ, BB, 10n, 2n) and (balance(AA)>=10n)) implies

e(inbox(AA, REQ, BB, 10n, 2n), inbox(BB, VAL, AA, 10n, 2n)))

ag((inbox(BB, REQ, AA, 10n, 2n) and (balance(BB)>=10n)) implies

e(inbox(BB, REQ, AA, 10n, 2n), inbox(AA, VAL, BB, 10n, 2n)))

verify that a REQ message remains in the inbox of a card until the VAL mes-
sage is put in the inbox of the other card. We consider only valid messages,
that is messages whose money value is available on the balance of the card
to whom has been made the request.
Liveness properties

ag(inbox(AA, VAL, BB, 0n, 1n) implies ef(inbox(BB, ACK, AA, 0n, 1n)))

ag(inbox(BB, VAL, AA, 0n, 1n) implies ef(inbox(AA, ACK, BB, 0n, 1n)))

ag(inbox(AA, VAL, BB, 0n, 2n) implies ef(inbox(BB, ACK, AA, 0n, 2n)))

ag(inbox(BB, VAL, AA, 0n, 2n) implies ef(inbox(AA, ACK, BB, 0n, 2n)))

ag(inbox(AA, VAL, BB, 5n, 1n) implies ef(inbox(BB, ACK, AA, 5n, 1n)))

ag(inbox(BB, VAL, AA, 5n, 1n) implies ef(inbox(AA, ACK, BB, 5n, 1n)))

ag(inbox(AA, VAL, BB, 5n, 2n) implies ef(inbox(BB, ACK, AA, 5n, 2n)))
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ag(inbox(BB, VAL, AA, 5n, 2n) implies ef(inbox(AA, ACK, BB, 5n, 2n)))

ag(inbox(AA, VAL, BB, 10n, 1n) implies ef(inbox(BB, ACK, AA, 10n, 1n)))

ag(inbox(BB, VAL, AA, 10n, 1n) implies ef(inbox(AA, ACK, BB, 10n, 1n)))

ag(inbox(AA, VAL, BB, 10n, 2n) implies ef(inbox(BB, ACK, AA, 10n, 2n)))

ag(inbox(BB, VAL, AA, 10n, 2n) implies ef(inbox(AA, ACK, BB, 10n, 2n)))

verify that, if a card send a VAL message, sooner or later it will receive the
ACK message.
Properties

ag(inbox(AA, VAL, BB, 0n, 1n) implies e(inbox(AA, VAL, BB, 0n, 1n),

inbox(BB, ACK, AA, 0n, 1n)))

ag(inbox(BB, VAL, AA, 0n, 1n) implies e(inbox(BB, VAL, AA, 0n, 1n),

inbox(AA, ACK, BB, 0n, 1n)))

ag(inbox(AA, VAL, BB, 0n, 2n) implies e(inbox(AA, VAL, BB, 0n, 2n),

inbox(BB, ACK, AA, 0n, 2n)))

ag(inbox(BB, VAL, AA, 0n, 2n) implies e(inbox(BB, VAL, AA, 0n, 2n),

inbox(AA, ACK, BB, 0n, 2n)))

ag(inbox(AA, VAL, BB, 5n, 1n) implies e(inbox(AA, VAL, BB, 5n, 1n),

inbox(BB, ACK, AA, 5n, 1n)))

ag(inbox(BB, VAL, AA, 5n, 1n) implies e(inbox(BB, VAL, AA, 5n, 1n),

inbox(AA, ACK, BB, 5n, 1n)))

ag(inbox(AA, VAL, BB, 5n, 2n) implies e(inbox(AA, VAL, BB, 5n, 2n),

inbox(BB, ACK, AA, 5n, 2n)))

ag(inbox(BB, VAL, AA, 5n, 2n) implies e(inbox(BB, VAL, AA, 5n, 2n),

inbox(AA, ACK, BB, 5n, 2n)))

ag(inbox(AA, VAL, BB, 10n, 1n) implies e(inbox(AA, VAL, BB, 10n, 1n),

inbox(BB, ACK, AA, 10n, 1n)))

ag(inbox(BB, VAL, AA, 10n, 1n) implies e(inbox(BB, VAL, AA, 10n, 1n),

inbox(AA, ACK, BB, 10n, 1n)))

ag(inbox(AA, VAL, BB, 10n, 2n) implies e(inbox(AA, VAL, BB, 10n, 2n),

inbox(BB, ACK, AA, 10n, 2n)))

ag(inbox(BB, VAL, AA, 10n, 2n) implies e(inbox(BB, VAL, AA, 10n, 2n),

inbox(AA, ACK, BB, 10n, 2n)))

verify that a VAL message remains in the inbox of a card until the ACK
message is put in the inbox of the other card.
Let's check the correctness of the properties through the execution of the
NuSMV code:

> NuSMV -dynamic -coi mcCap3ForNuSMVoutboxSingCheckOnStart.smv

*** This is NuSMV 2.4.0 (compiled on Sat Oct 4 10:17:49 UTC 2008)

*** For more information on NuSMV see <http://nusmv.irst.itc.it>

*** or email to <nusmv-users@irst.itc.it>.

*** Please report bugs to <nusmv@irst.itc.it>.

-- specification AG (inbox(AA,REQ,BB,0,1) -> EF inbox(BB,VAL,AA,0,1)) is true

-- specification AG (inbox(BB,REQ,AA,0,1) -> EF inbox(AA,VAL,BB,0,1)) is true

-- specification AG (inbox(AA,REQ,BB,0,2) -> EF inbox(BB,VAL,AA,0,2)) is true

-- specification AG (inbox(BB,REQ,AA,0,2) -> EF inbox(AA,VAL,BB,0,2)) is true

-- specification AG ((inbox(AA,REQ,BB,5,1) & EF balance(AA) >= 5) ->
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EF inbox(BB,VAL,AA,5,1)) is true

-- specification AG ((inbox(BB,REQ,AA,5,1) & EF balance(BB) >= 5) ->

EF inbox(AA,VAL,BB,5,1)) is true

-- specification AG ((inbox(AA,REQ,BB,5,2) & EF balance(AA) >= 5) ->

EF inbox(BB,VAL,AA,5,2)) is true

-- specification AG ((inbox(BB,REQ,AA,5,2) & EF balance(BB) >= 5) ->

EF inbox(AA,VAL,BB,5,2)) is true

-- specification AG ((inbox(AA,REQ,BB,10,1) & EF balance(AA) >= 10) ->

EF inbox(BB,VAL,AA,10,1)) is true

-- specification AG ((inbox(BB,REQ,AA,10,1) & EF balance(BB) >= 10) ->

EF inbox(AA,VAL,BB,10,1)) is true

-- specification AG ((inbox(AA,REQ,BB,10,2) & EF balance(AA) >= 10) ->

EF inbox(BB,VAL,AA,10,2)) is true

-- specification AG ((inbox(BB,REQ,AA,10,2) & EF balance(BB) >= 10) ->

EF inbox(AA,VAL,BB,10,2)) is true

-- specification AG (inbox(AA,REQ,BB,0,1) -> E [ inbox(AA,REQ,BB,0,1) U

inbox(BB,VAL,AA,0,1) ] ) is true

-- specification AG (inbox(BB,REQ,AA,0,1) -> E [ inbox(BB,REQ,AA,0,1) U

inbox(AA,VAL,BB,0,1) ] ) is true

-- specification AG (inbox(AA,REQ,BB,0,2) -> E [ inbox(AA,REQ,BB,0,2) U

inbox(BB,VAL,AA,0,2) ] ) is true

-- specification AG (inbox(BB,REQ,AA,0,2) -> E [ inbox(BB,REQ,AA,0,2) U

inbox(AA,VAL,BB,0,2) ] ) is true

-- specification AG ((inbox(AA,REQ,BB,5,1) & balance(AA) >= 5) ->

E [ inbox(AA,REQ,BB,5,1) U inbox(BB,VAL,AA,5,1) ] ) is true

-- specification AG ((inbox(BB,REQ,AA,5,1) & balance(BB) >= 5) ->

E [ inbox(BB,REQ,AA,5,1) U inbox(AA,VAL,BB,5,1) ] ) is true

-- specification AG ((inbox(AA,REQ,BB,5,2) & balance(AA) >= 5) ->

E [ inbox(AA,REQ,BB,5,2) U inbox(BB,VAL,AA,5,2) ] ) is true

-- specification AG ((inbox(BB,REQ,AA,5,2) & balance(BB) >= 5) ->

E [ inbox(BB,REQ,AA,5,2) U inbox(AA,VAL,BB,5,2) ] ) is true

-- specification AG ((inbox(AA,REQ,BB,10,1) & balance(AA) >= 10) ->

E [ inbox(AA,REQ,BB,10,1) U inbox(BB,VAL,AA,10,1) ] ) is true

-- specification AG ((inbox(BB,REQ,AA,10,1) & balance(BB) >= 10) ->

E [ inbox(BB,REQ,AA,10,1) U inbox(AA,VAL,BB,10,1) ] ) is true

-- specification AG ((inbox(AA,REQ,BB,10,2) & balance(AA) >= 10) ->

E [ inbox(AA,REQ,BB,10,2) U inbox(BB,VAL,AA,10,2) ] ) is true

-- specification AG ((inbox(BB,REQ,AA,10,2) & balance(BB) >= 10) ->

E [ inbox(BB,REQ,AA,10,2) U inbox(AA,VAL,BB,10,2) ] ) is true

-- specification AG (inbox(AA,VAL,BB,0,1) -> EF inbox(BB,ACK,AA,0,1)) is true

-- specification AG (inbox(BB,VAL,AA,0,1) -> EF inbox(AA,ACK,BB,0,1)) is true

-- specification AG (inbox(AA,VAL,BB,0,2) -> EF inbox(BB,ACK,AA,0,2)) is true

-- specification AG (inbox(BB,VAL,AA,0,2) -> EF inbox(AA,ACK,BB,0,2)) is true

-- specification AG (inbox(AA,VAL,BB,5,1) -> EF inbox(BB,ACK,AA,5,1)) is true

-- specification AG (inbox(BB,VAL,AA,5,1) -> EF inbox(AA,ACK,BB,5,1)) is true

-- specification AG (inbox(AA,VAL,BB,5,2) -> EF inbox(BB,ACK,AA,5,2)) is true

-- specification AG (inbox(BB,VAL,AA,5,2) -> EF inbox(AA,ACK,BB,5,2)) is true

-- specification AG (inbox(AA,VAL,BB,10,1) -> EF inbox(BB,ACK,AA,10,1)) is true

-- specification AG (inbox(BB,VAL,AA,10,1) -> EF inbox(AA,ACK,BB,10,1)) is true
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-- specification AG (inbox(AA,VAL,BB,10,2) -> EF inbox(BB,ACK,AA,10,2)) is true

-- specification AG (inbox(BB,VAL,AA,10,2) -> EF inbox(AA,ACK,BB,10,2)) is true

-- specification AG (inbox(AA,VAL,BB,0,1) -> E [ inbox(AA,VAL,BB,0,1) U

inbox(BB,ACK,AA,0,1) ] ) is true

-- specification AG (inbox(BB,VAL,AA,0,1) -> E [ inbox(BB,VAL,AA,0,1) U

inbox(AA,ACK,BB,0,1) ] ) is true

-- specification AG (inbox(AA,VAL,BB,0,2) -> E [ inbox(AA,VAL,BB,0,2) U

inbox(BB,ACK,AA,0,2) ] ) is true

-- specification AG (inbox(BB,VAL,AA,0,2) -> E [ inbox(BB,VAL,AA,0,2) U

inbox(AA,ACK,BB,0,2) ] ) is true

-- specification AG (inbox(AA,VAL,BB,5,1) -> E [ inbox(AA,VAL,BB,5,1) U

inbox(BB,ACK,AA,5,1) ] ) is true

-- specification AG (inbox(BB,VAL,AA,5,1) -> E [ inbox(BB,VAL,AA,5,1) U

inbox(AA,ACK,BB,5,1) ] ) is true

-- specification AG (inbox(AA,VAL,BB,5,2) -> E [ inbox(AA,VAL,BB,5,2) U

inbox(BB,ACK,AA,5,2) ] ) is true

-- specification AG (inbox(BB,VAL,AA,5,2) -> E [ inbox(BB,VAL,AA,5,2) U

inbox(AA,ACK,BB,5,2) ] ) is true

-- specification AG (inbox(AA,VAL,BB,10,1) -> E [ inbox(AA,VAL,BB,10,1) U

inbox(BB,ACK,AA,10,1) ] ) is true

-- specification AG (inbox(BB,VAL,AA,10,1) -> E [ inbox(BB,VAL,AA,10,1) U

inbox(AA,ACK,BB,10,1) ] ) is true

-- specification AG (inbox(AA,VAL,BB,10,2) -> E [ inbox(AA,VAL,BB,10,2) U

inbox(BB,ACK,AA,10,2) ] ) is true

-- specification AG (inbox(BB,VAL,AA,10,2) -> E [ inbox(BB,VAL,AA,10,2) U

inbox(AA,ACK,BB,10,2) ] ) is true

6.4 Taxi central

In this section we describe a problem that we have already modeled di-
rectly in NuSMV; in this model we have veri�ed some properties. We'll call
this model originalNuSMV
Now, for the same problem, we create an AsmetaL model containing the same
properties checked in originalNuSMV. We'll call the NuSMV model obtained
from the mapping mappedNuSMV.
We'll see that the veri�cation of the properties in originalNuSMV and the
veri�cation of the properties in mappedNuSMV give the same results. Ob-
viously this cannot be considered a demonstration of the correctness of the
mapping, but shows that, for a problem, there are di�erent equivalent mod-
els.
We have seen that, generally, the code obtained from a mapping is more com-
putational onerous than a code written directly in NuSMV; the mapping, in
fact, introduces some elements that can be avoid in the direct encoding.
The comparison of the two codes, moreover, can be useful to write AsmetaL
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models that produce better NuSMV models.

6.4.1 Problem

In a city, a taxi station (also called central) receives the clients requests;
the central knows the state and the position of all the taxis and, so, it couples
each client with a free taxi. The city is represented by a 8x8 grid of integer
coordinates.
There are two types of clients:

• single client that needs one taxi;

• group of clients that needs more than one taxi.

In the city there are three single clients, a group that requires two taxis and
a group that requires three taxis. Each client must do two travels.
Client can be in �ve states:

• IDLE: is walking or is standing in a point of the city;

• CALLTAXI: is calling the central to book a taxi; in this state the client
chooses the destination coordinates of his travel;

• WAITING: is standing in a point of the grid, waiting the booked taxi;

• TRAVELLING: is travelling with the taxi;

• ENDTRAVELS: has done two travels and he doesn't have to travel
anymore.

Taxi can be in three states:

• IDLE: is stopped in a point of the grid, waiting to be coupled to a
client;

• TOCLIENT: is travelling towards the client who has booked it;

• WITHCLIENT: is travelling, with the client on board, towards the
destination chosen by the client.

In the city there are three taxi.
We want to simulate the process of taxis booking, the travels of taxis towards
the clients, and the travels of clients on board of the taxis towards the chosen
destinations.
In order to simplify the model, we split the problem in two subproblems:
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• in section 6.4.2 we model the service given to a single client; in this
section we want to verify the correctness of the taxi and client move-
ments. We want also verify that the client states and the taxi states
are compatible. Finally we want to verify that the client can do both
his two travels.

• in section 6.4.3 we model the coupling of taxis to clients; in this section
we are just interested in the correctness of the booking system.

6.4.2 Taxi and client movements

Original NuSMV model Let's see the NuSMV model that we had pre-
viously developed (code 6.13).

Code 6.13: Taxi and client movements: original NuSMV model
MODULE moduletaxi(client)

VAR

state:{IDLE , TOCLIENT , WITHCLIENT };

posX: 0..8; --coordinate x of taxi

posY: 0..8; --coordinate y of taxi

ASSIGN

init(state) :=IDLE;

init(posX) := {0..8};

init(posY) := {0..8};

next(state) :=case

client.state=CALLTAXI & state=IDLE:TOCLIENT;

state=TOCLIENT & client.posX=posX & client.posY=posY:WITHCLIENT;

state=WITHCLIENT & posX = client.destX & posY = client.destY:

IDLE;

1:state;

esac;

next(posX) :=case

state=TOCLIENT & posX > client.posX : posX - 1 ;

state=TOCLIENT & posX < client.posX : posX + 1 ;

state=WITHCLIENT & posX > client.destX: posX - 1 ;

state=WITHCLIENT & posX < client.destX: posX + 1 ;

1: posX;

esac;

next(posY) :=case

state=TOCLIENT & posY > client.posY : posY - 1 ;

state=TOCLIENT & posY < client.posY : posY + 1 ;

state=WITHCLIENT & posY > client.destY: posY - 1 ;

state=WITHCLIENT & posY < client.destY: posY + 1 ;

1: posY;

esac;

MODULE moduleclient(tax)

VAR

posX: 0..8;

posY: 0..8;

destX: 0..8;

destY: 0..8;

clientNumTravels: 0..2;
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state: {WAITING ,TRAVELLING ,IDLE ,CALLTAXI ,ENDTRAVELS };

ASSIGN

init(state) := IDLE;

init(posX) := {0..8};

init(posY) := {0..8};

init(clientNumTravels) := 2;

next(state) := case

state=IDLE & clientNumTravels >0 :{IDLE , CALLTAXI };

state=IDLE & clientNumTravels =0 :ENDTRAVELS;

state=CALLTAXI:WAITING;

state=WAITING & tax.posX=posX & tax.posY=posY:TRAVELLING;

state=TRAVELLING & tax.posX=destX & tax.posY=destY: IDLE;

1:state;

esac;

next(destX) :=case

next(state)=CALLTAXI : {0..8};

1: destX;

esac;

next(destY) :=case

next(state)=CALLTAXI : {0..8};

1: destY;

esac;

next(posX) :=case

state=IDLE & posX >0 & posX < 8:{ posX -1, posX , posX +1 };

state=TRAVELLING: next(tax.posX);

1: posX;

esac;

next(posY) :=case

state=IDLE & posY >0 & posY < 8:{ posY -1 , posY , posY +1 };

state=TRAVELLING: next(tax.posY);

1: posY;

esac;

next(clientNumTravels) :=case

state=CALLTAXI & clientNumTravels >0 : clientNumTravels - 1;

1: clientNumTravels;

esac;

MODULE main

VAR

client: moduleclient(taxi);

taxi: moduletaxi(client);

--safety property: it the taxi is travelling with the client their

coordinates must be equal

SPEC AG(taxi.state=WITHCLIENT ->(taxi.posX=client.posX & taxi.posY=client

.posY));

--when the client has done his travels , he doesn 't travel anymore

SPEC AG(client.state=ENDTRAVELS -> AG(client.state=ENDTRAVELS));

--liviness property: if the client is waiting the taxi , the taxi sooner or

later will arrive and the client will be able to travel

SPEC AG(client.state=WAITING -> AF(client.state= TRAVELLING));

--safety property: the client is travelling only if the taxi is in

WITHCLIENT

SPEC AG(client.state = TRAVELLING <-> taxi.state = WITHCLIENT);

--safety property: when the taxi is going to the client , the client is

waiting for it

SPEC AG(client.state = WAITING <-> taxi.state = TOCLIENT);

--reachability property: it exists a state in which the client calls a taxi

that is in its position

SPEC EF(( client.state = CALLTAXI & client.posX = taxi.posX) & client.posY
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= taxi.posY)

--deadlock absence

SPEC AG(EX(TRUE))

The model is made of:

• module moduletaxi that represents the taxi;

• module moduleclient that represents the client;

• module main in which are created the instances of the two previous
modules8.

The states of the taxi and of the client, described by variables state in the
two modules, are the same described in section 6.4.1.
Variables posX and posY of taxi and client are the coordinates of their po-
sitions.
The client, moreover, has variables destX and destY to record the coordi-
nates of the destination of the travel, and the variable clientNumTravels to
record the number of travels he have to do before entering state ENDTRAV-
ELS.
The client, when is in IDLE, can stay in one place or move in each direction;
when he's waiting a taxi (CALLTAXI or WAITING), instead, he remains
in the place where he has called the taxi. When a taxi and a client are trav-
elling towards a destination, their coordinates are equal.
In the model we have veri�ed some properties.
A safety property checks that, if the taxi is travelling with the client, their
coordinates are equal:

AG(taxi.state=WITHCLIENT -> (taxi.posX=client.posX &

taxi.posY=client.posY))

Another property checks that, when the client has done two travels, he
doesn't travel anymore:

AG(client.state=ENDTRAVELS -> AG(client.state=ENDTRAVELS))

A liveness property checks that, if the client is waiting a taxi, the taxi sooner
or later will arrive and the client will be able to travel:

AG(client.state=WAITING -> AF(client.state= TRAVELLING))

A safety property checks that the client is travelling only if the taxy is in
WITHCLIENT :

8We have created only the instances of a taxi and a client, because now we are interested
in the modelling of the movements and not of the global booking system.
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AG(client.state = TRAVELLING <-> taxi.state = WITHCLIENT)

A safety property checks that, when the taxi is going to the client, the client
is waiting for it:

AG(client.state = WAITING <-> taxi.state = TOCLIENT)

A reachability property checks that exists a state in which the client calls a
taxi that is in his position:

EF((client.state = CALLTAXI & client.posX = taxi.posX) &

client.posY = taxi.posY)

Finally we verify the absence of deadlock:

AG(EX(TRUE))

Let's check the correctness of the properties:

[user@localhost progetto_taxi]$ NuSMV taxi_sing.smv

*** This is NuSMV 2.4.0 (compiled on Sat Oct 4 10:17:49 UTC 2008)

*** For more information on NuSMV see <http://nusmv.irst.itc.it>

*** or email to <nusmv-users@irst.itc.it>.

*** Please report bugs to <nusmv@irst.itc.it>.

-- specification AG (taxi.state = WITHCLIENT ->

(taxi.posX = client.posX & taxi.posY = client.posY)) is true

-- specification AG (client.state = ENDTRAVELS ->

AG client.state = ENDTRAVELS) is true

-- specification AG (client.state = WAITING ->

AF client.state = TRAVELLING) is true

-- specification AG (client.state = TRAVELLING <->

taxi.state = WITHCLIENT) is true

-- specification AG (client.state = WAITING <->

taxi.state = TOCLIENT) is true

-- specification EF ((client.state = CALLTAXI & client.posX = taxi.posX) &

client.posY = taxi.posY) is true

-- specification AG (EX TRUE) is true

AsmetaL model In this section we describe the AsmetaL model we have
written for the subproblem (code 6.14).

Code 6.14: Taxi and client movements: AsmetaL model
asm taxi_sing

import ./ StandardLibrary

import ./ CTLlibrary

signature:

domain Coord subsetof Integer
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domain NumTravels subsetof Integer

domain Step subsetof Integer

enum domain TaxiState = {IDLETX | TOCLIENT | WITHCLIENT}

enum domain ClientState = {WAITING | TRAVELLING | IDLECL | CALLTAXI |

ENDTRAVELS}

dynamic controlled taxiState: TaxiState

dynamic controlled taxiPosX: Coord

dynamic controlled taxiPosY: Coord

dynamic controlled clientState: ClientState

dynamic controlled clientPosX: Coord

dynamic controlled clientPosY: Coord

dynamic controlled clientDestX: Coord

dynamic controlled clientDestY: Coord

dynamic controlled clientNumTravels: NumTravels

dynamic monitored stepX: Step

dynamic monitored stepY: Step

dynamic monitored decideToTravel: Boolean

dynamic monitored destX: Coord

dynamic monitored destY: Coord

definitions:

domain Coord = {1..8}

domain NumTravels = {0..2}

domain Step ={ -1..1}

// updates coordinate $i of a taxi or of a client

//that is travelling towards $j

rule r_updateCoord($i in Coord , $j in Coord) =

par

if($i > $j) then

$i := $i - 1

endif

if($i < $j) then

$i := $i + 1

endif

endpar

rule r_idleMove =

par

if(clientPosX > 1 and clientPosX < 8) then

clientPosX := clientPosX + stepX

endif

if(clientPosY > 1 and clientPosY < 8) then

clientPosY := clientPosY + stepY

endif

endpar

rule r_idle =

if(clientState=IDLECL) then

if(clientNumTravels >0) then

if(decideToTravel) then

par

clientState := CALLTAXI

clientDestX := destX

clientDestY := destY

endpar

else

r_idleMove []//if he doesn 't call the taxi , he can walk

around

endif

else

clientState := ENDTRAVELS
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endif

endif

rule r_receiveCall =

if(clientState = CALLTAXI) then

par

taxiState := TOCLIENT //taxi goes to the client

clientState := WAITING // client waits the taxi

endpar

endif

rule r_toClient =

if(taxiState=TOCLIENT) then

if(taxiPosX = clientPosX and taxiPosY = clientPosY) then

par

taxiState := WITHCLIENT //taxi picks up the client

clientState := TRAVELLING // client is travelling with

taxi

endpar

else

par

r_updateCoord[taxiPosX , clientPosX]

r_updateCoord[taxiPosY , clientPosY]

endpar

endif

endif

rule r_withClient =

if(taxiState=WITHCLIENT) then

if(taxiPosX = clientDestX and taxiPosY = clientDestY) then

par

taxiState := IDLETX //taxi has no clients on board

clientState := IDLECL // client is no more on taxi

clientNumTravels := clientNumTravels - 1

endpar

else

par

r_updateCoord[taxiPosX , clientDestX]

r_updateCoord[taxiPosY , clientDestY]

r_updateCoord[clientPosX , clientDestX]

r_updateCoord[clientPosY , clientDestY]

endpar

endif

endif

// safety property: it the taxi is travelling with the

// client their coordinates must be equal

axiom over taxiState: ag(taxiState = WITHCLIENT implies (taxiPosX =

clientPosX and taxiPosY = clientPosY))

//when the client has done his travels , he don 't

// travel anymore

axiom over clientState: ag(( clientState = ENDTRAVELS) implies ag(

clientState = ENDTRAVELS))

// liviness property: if the client is waiting the taxi ,

//the taxi sooner or later will arrive and the

// client will be able to travel

axiom over clientState: ag(( clientState = WAITING) implies af(

clientState = TRAVELLING))

// safety property: the client is travelling only if
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//the taxi is in WITHCLIENT

axiom over clientState: ag(clientState = TRAVELLING iff taxiState =

WITHCLIENT)

// safety property:when the taxi is going to the client ,

//the client is waiting for it

axiom over clientState: ag(clientState = WAITING iff taxiState =

TOCLIENT)

// reachability property: it exists a state in which

//the client calls a taxi that is in its position

axiom over clientState: ef(clientState = CALLTAXI and clientPosX =

taxiPosX and clientPosY = taxiPosY)

// deadlock absence

axiom over clientState: ag(ex(true))

main rule r_Main =

par

r_idle []

r_receiveCall []

r_toClient []

r_withClient []

endpar

default init s0:

function clientNumTravels = 2

function clientState = IDLECL

function taxiState = IDLETX

We can see that each variable of the NuSMV code 6.13 has an equivalent
location in the AsmetaL code 6.14.
The state of the machine is determined by the four rules called in the main
rule:

• r_idle: if the client is in IDLE, he can decide to call a taxi, entering
state CALLTAXI, or to stay in IDLE;

• r_receivecall: if the client has called the taxi, the taxi receives the call
and enters in state TOCLIENT ; the client enters in stateWAITING;

• r_toClient: if the taxi is travelling towards the client (state TO-
CLIENT ), this rule modi�es the coordinates of the taxi in order to
reduce the distance from the client; if the coordinates of the taxi and
of the client are equal, taxi enters in state WITHCLIENT and client
in state TRAV ELLING;

• r_withClient: if the client and the taxi are travelling towards the
destination of the travel, this rule modi�es their coordinates; if taxi
coordinates and client coordinates are equal, they enter in state IDLE.

In each transaction just one of the previous four rules can modify the state
of the system.
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If we look at the properties declared in the axiom section, we can see that
they correspond to the properties declared in the original NuSMV code (code
6.13).

NuSMV model obtained from the mapping In this section we de-
scribe the NuSMV code obtained from the mapping of AsmetaL code 6.14
(code 6.15); we want to compare it with the NuSMV code developed by our-
selves (code 6.13).

Code 6.15: Taxi and client movements: NuSMV model obtained from the
mapping
MODULE main

VAR

clientDestX: 1..8;

clientDestY: 1..8;

clientNumTravels: 0..2;

clientPosX: 1..8;

clientPosY: 1..8;

clientState: {CALLTAXI , ENDTRAVELS , IDLECL , TRAVELLING , WAITING };

decideToTravel: boolean;

destX: 1..8;

destY: 1..8;

stepX: -1..1;

stepY: -1..1;

taxiPosX: 1..8;

taxiPosY: 1..8;

taxiState: {IDLETX , TOCLIENT , WITHCLIENT };

ASSIGN

init(clientNumTravels) := 2;

init(clientState) := IDLECL;

init(taxiState) := IDLETX;

next(clientDestX) :=

case

(( clientState = IDLECL) & (clientNumTravels > 0) & (next(

decideToTravel))) & next(destX) in 1..8: next(destX);

TRUE: clientDestX;

esac;

next(clientDestY) :=

case

(( clientState = IDLECL) & (clientNumTravels > 0) & (next(

decideToTravel))) & next(destY) in 1..8: next(destY);

TRUE: clientDestY;

esac;

next(clientNumTravels) :=

case

(( taxiState = WITHCLIENT) & (( taxiPosX = clientDestX) & (

taxiPosY = clientDestY))) & clientNumTravels - 1 in 0..2:

clientNumTravels - 1;

TRUE: clientNumTravels;

esac;

next(clientPosX) :=

case

(( taxiState = WITHCLIENT) & (!(( taxiPosX = clientDestX) & (

taxiPosY = clientDestY))) & (clientPosX < clientDestX)) & clientPosX + 1

in 1..8: clientPosX + 1;
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(( clientState = IDLECL) & (clientNumTravels > 0) & (!( next(

decideToTravel))) & (( clientPosX > 1) & (clientPosX < 8))) & clientPosX

+ next(stepX) in 1..8: clientPosX + next(stepX);

(( taxiState = WITHCLIENT) & (!(( taxiPosX = clientDestX) & (

taxiPosY = clientDestY))) & (clientPosX > clientDestX)) & clientPosX - 1

in 1..8: clientPosX - 1;

TRUE: clientPosX;

esac;

next(clientPosY) :=

case

(( clientState = IDLECL) & (clientNumTravels > 0) & (!( next(

decideToTravel))) & (( clientPosY > 1) & (clientPosY < 8))) & clientPosY

+ next(stepY) in 1..8: clientPosY + next(stepY);

(( taxiState = WITHCLIENT) & (!(( taxiPosX = clientDestX) & (

taxiPosY = clientDestY))) & (clientPosY < clientDestY)) & clientPosY + 1

in 1..8: clientPosY + 1;

(( taxiState = WITHCLIENT) & (!(( taxiPosX = clientDestX) & (

taxiPosY = clientDestY))) & (clientPosY > clientDestY)) & clientPosY - 1

in 1..8: clientPosY - 1;

TRUE: clientPosY;

esac;

next(clientState) :=

case

(clientState = CALLTAXI): WAITING;

(( clientState = IDLECL) & (clientNumTravels > 0) & (next(

decideToTravel))): CALLTAXI;

(( taxiState = WITHCLIENT) & (( taxiPosX = clientDestX) & (

taxiPosY = clientDestY))): IDLECL;

(( taxiState = TOCLIENT) & (( taxiPosX = clientPosX) & (

taxiPosY = clientPosY))): TRAVELLING;

(( clientState = IDLECL) & (!( clientNumTravels > 0))):

ENDTRAVELS;

TRUE: clientState;

esac;

next(taxiPosX) :=

case

((( taxiState = TOCLIENT) & (!(( taxiPosX = clientPosX) & (

taxiPosY = clientPosY))) & (taxiPosX > clientPosX)) | (( taxiState =

WITHCLIENT) & (!(( taxiPosX = clientDestX) & (taxiPosY = clientDestY))) &

(taxiPosX > clientDestX))) & taxiPosX - 1 in 1..8: taxiPosX - 1;

((( taxiState = TOCLIENT) & (!(( taxiPosX = clientPosX) & (

taxiPosY = clientPosY))) & (taxiPosX < clientPosX)) | (( taxiState =

WITHCLIENT) & (!(( taxiPosX = clientDestX) & (taxiPosY = clientDestY))) &

(taxiPosX < clientDestX))) & taxiPosX + 1 in 1..8: taxiPosX + 1;

TRUE: taxiPosX;

esac;

next(taxiPosY) :=

case

((( taxiState = TOCLIENT) & (!(( taxiPosX = clientPosX) & (

taxiPosY = clientPosY))) & (taxiPosY > clientPosY)) | (( taxiState =

WITHCLIENT) & (!(( taxiPosX = clientDestX) & (taxiPosY = clientDestY))) &

(taxiPosY > clientDestY))) & taxiPosY - 1 in 1..8: taxiPosY - 1;

((( taxiState = TOCLIENT) & (!(( taxiPosX = clientPosX) & (

taxiPosY = clientPosY))) & (taxiPosY < clientPosY)) | (( taxiState =

WITHCLIENT) & (!(( taxiPosX = clientDestX) & (taxiPosY = clientDestY))) &

(taxiPosY < clientDestY))) & taxiPosY + 1 in 1..8: taxiPosY + 1;

TRUE: taxiPosY;

esac;

next(taxiState) :=

case

(clientState = CALLTAXI): TOCLIENT;

(( taxiState = WITHCLIENT) & (( taxiPosX = clientDestX) & (
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taxiPosY = clientDestY))): IDLETX;

(( taxiState = TOCLIENT) & (( taxiPosX = clientPosX) & (

taxiPosY = clientPosY))): WITHCLIENT;

TRUE: taxiState;

esac;

SPEC AG(taxiState = WITHCLIENT -> (taxiPosX = clientPosX) & (taxiPosY =

clientPosY));

SPEC AG(clientState = ENDTRAVELS -> AG(clientState = ENDTRAVELS));

SPEC AG(clientState = WAITING -> AF(clientState = TRAVELLING));

SPEC AG(clientState = TRAVELLING <-> taxiState = WITHCLIENT);

SPEC AG(clientState = WAITING <-> taxiState = TOCLIENT);

SPEC EF((( clientState = CALLTAXI) & (clientPosX = taxiPosX)) & (

clientPosY = taxiPosY));

SPEC AG(EX(TRUE));

If we compare the original NuSMV code (code 6.13) with the mapped one
(code 6.15), we can see that all the variables of the original model (state, cur-
rent coordinates, destination coordinates, etc.) have an equivalent variable
in the mapped code. Previously, in fact, we have observed that there is a
correspondence between the variables of the original NuSMV model and the
functions of the AsmetaL model; so, thanks to the transitive property, there
is a correspondence between the variables of the original NuSMV model and
the variables of the mapped NuSMV model.
Nevertheless there are some di�erences.
The original NuSMV code is divided into three modules; the mapped NuSMV
code, instead, has just one module as the AsmetaL model.
The two codes are also di�erent in the way they use nondeterminism. For ex-
ample we know that the client, when is in IDLE, can decide to stay in IDLE
or to enter in CALLTAXI; in the original NuSMV code this behaviour is
obtained with a very simple instruction:

next(state):=

case

state=IDLE & clientNumTravels>0: {IDLE, CALLTAXI};

...

esac;

In AsmetaL, the choosing process has been modeled through the use of a
monitored function decideToTravel; the decision to change state is made in
the following way:

rule r_idle =

if(clientState=IDLECL) then

if(clientNumTravels>0) then

if(decideToTravel) then

par

clientState := CALLTAXI
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...

So, in the mapped NuSMV code, the decision to change state is made with
the monitored variable decideToTravel:

next(clientState):=

case

(clientState = IDLECL) & (clientNumTravels>0) &

(decideToTravel): CALLTAXI;

...

esac;

In this case the NuSMV code obtained from the mapping is not much more
complicated than the original NuSMV code. However, in other situations,
the overhead introduced by the mapping could be more signi�cant.
Finally, we can see that the veri�cation of the properties in the mapped
NuSMV code (code 6.15) gives the same results of the veri�cation of the
same properties in the original NuSMV code (code 6.13):

> NuSMV -dynamic -coi examples\taxi_sing.smv

** This is NuSMV 2.4.0 (compiled on Sat Oct 4 10:17:49 UTC 2008)

** For more information on NuSMV see <http://nusmv.irst.itc.it>

** or email to <nusmv-users@irst.itc.it>.

** Please report bugs to <nusmv@irst.itc.it>.

-- specification AG (taxiState = WITHCLIENT -> (taxiPosX = clientPosX &

taxiPosY = clientPosY)) is true

-- specification AG (clientState = ENDTRAVELS -> AG clientState = ENDTRAVELS) is true

-- specification AG (clientState = WAITING -> AF clientState = TRAVELLING) is true

-- specification AG (clientState = TRAVELLING <-> taxiState = WITHCLIENT) is true

-- specification AG (clientState = WAITING <-> taxiState = TOCLIENT) is true

-- specification EF ((clientState = CALLTAXI & clientPosX = taxiPosX) &

clientPosY = taxiPosY) is true

-- specification AG (EX TRUE) is true

6.4.3 Booking system model

Original NuSMV model Let's see now the original NuSMV model (code
6.16).

Code 6.16: Booking system: original NuSMV model
MODULE taxi

VAR

taxis: 0..3 ; --num of available taxis

ASSIGN

init(taxis) :=3; --at the beginning all the taxis are available
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MODULE client(tax ,numtaxi)

VAR

travelLength: 0..5; -- length of travel

state: {waiting , travelling , idle , calltaxi };

ASSIGN

init(travelLength) :={1..5};

init(state) :=idle;

next(travelLength) := case

state=travelling & travelLength >0: travelLength - 1;

state=calltaxi : {1..5};

1: travelLength;

esac;

next(state) := case

state=idle:{idle , calltaxi };

state=calltaxi: waiting;

state=waiting & tax.taxis >= numtaxi: travelling;

state=travelling & travelLength > 0: travelling;

state=travelling & travelLength = 0: idle;

1: idle;

esac;

next(tax.taxis) := case

state = waiting & next(state)=travelling & tax.taxis >= numtaxi

: tax.taxis - numtaxi;

next(state)=idle & state=travelling & travelLength = 0 & tax.

taxis <= 3 - numtaxi: tax.taxis + numtaxi;

1 : tax.taxis ;

esac;

FAIRNESS

running

MODULE main

VAR

t: taxi;

CL1: process client(t,1);

CL2: process client(t,1);

CL3: process client(t,1);

GR2: process client(t,2); --group that needs 2 taxis

GR3: process client(t,3); --group that needs 3 taxis

FAIRNESS

running

--it exists a three minutes period in which there aren 't available taxis

SPEC EF (t.taxis = 0 & EX (t.taxis = 0 & EX t.taxis = 0));

--do not exists a path in which the taxis are always busy

SPEC !EF (t.taxis = 0 & EG t.taxis = 0);

--liviness property: if there aren 't available taxis , sooner or later at

least one taxi will become available

SPEC AG (t.taxis = 0 -> AF t.taxis > 0);

--it exists a state in which group GR3 asks all 3 taxis and it 's request is

accepted; in the following state all the 3 taxis are busy

SPEC EF ((t.taxis = 3 & GR3.state = waiting) & EX (t.taxis = 0 & GR3.

state = travelling))

--liviness property: if a client or a group is waiting a taxi , sooner or

later the taxi will arrive

SPEC AG (CL1.state = waiting -> EF CL1.state = travelling)

SPEC AG (CL2.state = waiting -> EF CL2.state = travelling)

SPEC AG (CL3.state = waiting -> EF CL3.state = travelling)

SPEC AG (GR2.state = waiting -> EF GR2.state = travelling)

SPEC AG (GR3.state = waiting -> EF GR3.state = travelling)

--reachability property: it exists a state in which all the single clients
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and group GR2 have called a taxi. The property has been negated in order

to obtain the print of a particular example

SPEC !EF (((CL1.state = waiting & CL2.state = waiting) & CL3.state =

waiting) & GR2.state = waiting)

--deadlock absence

SPEC AG(EX(TRUE))

In this subproblem we are no more interested in the movements of the taxi
and of the client; now we want to model the booking system: we want to
check that all the requests are correctly satis�ed.
Clients are di�erent instances of module client ; the client states are the same
described in section 6.4.19. Variable numtaxi represents the number of taxis
that the client needs. Variable travelLength models the length of the travel
that the client must do; in this model, in fact, we are not interested in the
position of the client, but just in the time he holds the taxi.
Since we are not interested in the taxi movements, but just that the booking
system is correct, module taxi contains just the variable taxis, that is the
number of available taxis.
In the main module are created an instance of module taxi, three single
clients, a group that needs two taxis and a group that needs three taxis.
Since the instances of client have been created as asynchronous processes
(they have been created through the keyword process), we have added to the
model the declaration FAIRNESS running so that each instance of client is
chosen "in�nitely often".
In the model we have de�ned some properties.
A reachability property checks that exists a three minutes period in which
there are no available taxis:

EF (t.taxis = 0 & EX (t.taxis = 0 & EX t.taxis = 0))

A property checks that not exists a path in which the taxis are always occu-
pied:

!EF (t.taxis = 0 & EG t.taxis = 0);

A liveness property checks that, if there aren't available taxis, sooner or later
at least one taxi will become available:

AG (t.taxis = 0 -> AF t.taxis > 0);

Another property checks that exists a state in which the group GR3 asks all
the three taxis and it's request is satis�ed; in the following state there aren't
available taxis:

9There is no more the state ENDTRAV ELS because, in this model, the number of
travels is not considered.
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EF ((t.taxis = 3 & GR3.state = waiting) & EX (t.taxis = 0 &

GR3.state = travelling))

Five liveness properties check that, if a client or a group is waiting a taxi,
sooner or later the taxi will arrive:

AG (CL1.state = waiting -> EF CL1.state = travelling)

AG (CL2.state = waiting -> EF CL2.state = travelling)

AG (CL3.state = waiting -> EF CL3.state = travelling)

AG (GR2.state = waiting -> EF GR2.state = travelling)

AG (GR3.state = waiting -> EF GR3.state = travelling)

A reachability property checks that exist a state in which all the single clients
and the group GR2 have called a taxi; the property is negated in order to
obtain the print of an example:

!EF (((CL1.state = waiting & CL2.state = waiting) &

CL3.state = waiting) & GR2.state = waiting)

Finally we verify the absence of deadlock:

AG(EX(TRUE))

Let's check the correctness of the properties through the execution of NuSMV
code:

[user@localhost progetto_taxi]$ NuSMV taxi.smv

*** This is NuSMV 2.4.0 (compiled on Sat Oct 4 10:17:49 UTC 2008)

*** For more information on NuSMV see <http://nusmv.irst.itc.it>

*** or email to <nusmv-users@irst.itc.it>.

*** Please report bugs to <nusmv@irst.itc.it>.

-- specification EF (t.taxis = 0 & EX (t.taxis = 0 & EX t.taxis = 0)) is true

-- specification !(EF (t.taxis = 0 & EG t.taxis = 0)) is true

-- specification AG (t.taxis = 0 -> AF t.taxis > 0) is true

-- specification EF ((t.taxis = 3 & GR3.state = waiting) & EX (t.taxis = 0 &

GR3.state = travelling)) is true

-- specification AG (CL1.state = waiting -> EF CL1.state = travelling) is true

-- specification AG (CL2.state = waiting -> EF CL2.state = travelling) is true

-- specification AG (CL3.state = waiting -> EF CL3.state = travelling) is true

-- specification AG (GR2.state = waiting -> EF GR2.state = travelling) is true

-- specification AG (GR3.state = waiting -> EF GR3.state = travelling) is true

-- specification !(EF (((CL1.state = waiting & CL2.state = waiting) &

CL3.state = waiting) & GR2.state = waiting)) is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

t.taxis = 3
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CL1.travelLength = 1

CL1.state = idle

CL2.travelLength = 1

CL2.state = idle

CL3.travelLength = 1

CL3.state = idle

GR2.travelLength = 1

GR2.state = idle

GR3.travelLength = 1

GR3.state = idle

-> Input: 1.2 <-

_process_selector_ = CL1

running = 0

GR3.running = 0

GR2.running = 0

CL3.running = 0

CL2.running = 0

CL1.running = 1

-> State: 1.2 <-

CL1.state = calltaxi

-> Input: 1.3 <-

_process_selector_ = CL1

running = 0

GR3.running = 0

GR2.running = 0

CL3.running = 0

CL2.running = 0

CL1.running = 1

-> State: 1.3 <-

CL1.state = waiting

-> Input: 1.4 <-

_process_selector_ = CL2

running = 0

GR3.running = 0

GR2.running = 0

CL3.running = 0

CL2.running = 1

CL1.running = 0

-> State: 1.4 <-

CL2.state = calltaxi

-> Input: 1.5 <-

_process_selector_ = CL2

running = 0

GR3.running = 0

GR2.running = 0

CL3.running = 0

CL2.running = 1

CL1.running = 0

-> State: 1.5 <-
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CL2.state = waiting

-> Input: 1.6 <-

_process_selector_ = CL3

running = 0

GR3.running = 0

GR2.running = 0

CL3.running = 1

CL2.running = 0

CL1.running = 0

-> State: 1.6 <-

CL3.state = calltaxi

-> Input: 1.7 <-

_process_selector_ = CL3

running = 0

GR3.running = 0

GR2.running = 0

CL3.running = 1

CL2.running = 0

CL1.running = 0

-> State: 1.7 <-

CL3.state = waiting

-> Input: 1.8 <-

_process_selector_ = GR2

running = 0

GR3.running = 0

GR2.running = 1

CL3.running = 0

CL2.running = 0

CL1.running = 0

-> State: 1.8 <-

GR2.state = calltaxi

-> Input: 1.9 <-

_process_selector_ = GR2

running = 0

GR3.running = 0

GR2.running = 1

CL3.running = 0

CL2.running = 0

CL1.running = 0

-> State: 1.9 <-

GR2.state = waiting

-- specification AG (EX TRUE) is true

AsmetaL model In this section we analyze the AsmetaL model that we
have developed for the subproblem (code 6.17).

Code 6.17: Booking system: AsmetaL model
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asm taxi

import ./ StandardLibrary

import ./ CTLlibrary

signature:

enum domain Client = {CL1|CL2|CL3|GR2|GR3}

enum domain State = {WAITING | TRAVELLING | IDLE | CALLTAXI}

domain Taxi subsetof Integer

domain Lengths subsetof Integer

static neededTaxi: Client -> Taxi

derived numtaxis: Taxi

dynamic controlled state: Client -> State

dynamic controlled travelLength: Client -> Lengths

dynamic monitored calltaxi: Client -> Boolean

dynamic controlled keepTaxi: Client -> Taxi

dynamic monitored chooseLength: Lengths

definitions:

domain Taxi = {0..3}

domain Lengths = {1..3}

function numtaxis = 3- keepTaxi(CL1) - keepTaxi(CL2) - keepTaxi(CL3) -

keepTaxi(GR2) - keepTaxi(GR3)

function neededTaxi($c in Client) =

if($c=CL1 or $c=CL2 or $c=CL3) then

1

else

if($c=GR2) then

2

else

3

endif

endif

rule r_waiting =

choose $c in Client with ((state($c) = WAITING) and numtaxis >=

neededTaxi($c)) do

par

state($c) := TRAVELLING

keepTaxi($c) := neededTaxi($c)

travelLength($c) := chooseLength

endpar

rule r_travel =

forall $c in Client with state($c)=TRAVELLING do

if(travelLength($c) = 1) then

par

state($c) := IDLE

keepTaxi($c) := 0

endpar

else

travelLength($c) := travelLength($c) - 1

endif

rule r_idle =

forall $c in Client with state($c)=IDLE do

if(calltaxi($c)) then

state($c) := CALLTAXI

endif

rule r_callTaxi =

forall $c in Client with state($c)=CALLTAXI do
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state($c) := WAITING

//it exists a three minutes period in which

//there aren 't available taxis

axiom over numtaxis: ef(numtaxis = 0 and ex(numtaxis = 0 and ex(numtaxis

= 0)))

//do not exists a path in which the taxis are

// always busy

axiom over numtaxis: not(ef(numtaxis = 0 and eg(numtaxis = 0)))

// liviness property: if there aren 't available taxis ,

// sooner or later at least one taxi will

// become available

axiom over numtaxis: ag(numtaxis = 0 implies af(numtaxis > 0))

//it exists a state in which group GR3 asks all 3

//taxis and it's request is accepted; in the

// following state all the 3 taxis are busy

axiom over numtaxis: ef(( numtaxis = 3 and state(GR3) = WAITING) and ex(

numtaxis = 0 and state(GR3) = TRAVELLING))

// liviness property: if a client or a group is

// waiting a taxi , sooner or later the taxi

//will arrive

axiom over state: ag(state(CL1) = WAITING implies ef(state(CL1) =

TRAVELLING))

axiom over state: ag(state(CL2) = WAITING implies ef(state(CL2) =

TRAVELLING))

axiom over state: ag(state(CL3) = WAITING implies ef(state(CL3) =

TRAVELLING))

axiom over state: ag(state(GR2) = WAITING implies ef(state(GR2) =

TRAVELLING))

axiom over state: ag(state(GR3) = WAITING implies ef(state(GR3) =

TRAVELLING))

// reachability property: it exists a state in which

//all the single clients and group GR2 have called

//a taxi. The property has been negated in order to

// obtain the print of a particular example.

axiom over state: not(ef(state(CL1) = WAITING and state(CL2) = WAITING

and state(CL3) = WAITING and state(GR2) = WAITING))

// deadlock absence

axiom over state: ag(ex(true))

main rule r_Main =

par

r_idle []

r_waiting []

r_travel []

r_callTaxi []

endpar

default init s0:

function state($c in Client) = IDLE

function keepTaxi($c in Client) = 0

As in the previous subproblem, each variable of the original NuSMV code
(code 6.16) can be associated with an equivalent location in the AsmetaL
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model. The AsmetaL model, moreover, contains a monitored boolean func-
tion calltaxi($c in Client) that signals if the client $c has called a taxi.
The state of the machine is determined by the four rules called in the main
rule:

• r_idle: if a client $c is in IDLE, he can decide to call a taxi (location
calltaxi($c)), entering state CALLTAXI, or to stay in IDLE;

• r_callTaxi: if a client has called a taxi, he enters state WAITING in
order to wait for it;

• r_waiting: if a client $c is in WAITING and the number of available
taxis is greater or equal to neededTaxi($c), he enters state TRAVEL-
LING and occupies neededTaxi($c) taxis; the client decides also the
length of the travel through the location travelLength($c);

• r_travel: if a client $c is in TRAV ELLING and he hasn't reached his
destination, he decrements of a unity the location travelLength($c); if
he has reached the destination, instead, he enters state IDLE and sets
neededTaxi($c) taxis free.

In each transaction just one of the four rules can modify the state of the
system.
If we look at the properties declared in the axiom section, we can see that
they correspond to the properties declared in the original NuSMV code (code
6.16).

NuSMV model obtained from the mapping In this section we de-
scribe the NuSMV code obtained from the mapping of AsmetaL code 6.17
(code 6.18); we want to compare it with the NuSMV code developed by our-
selves (code 6.16).

Code 6.18: Booking system: NuSMV model obtained from the mapping
MODULE main

VAR

calltaxi_CL1: boolean;

calltaxi_CL2: boolean;

calltaxi_CL3: boolean;

calltaxi_GR2: boolean;

calltaxi_GR3: boolean;

chooseLength: 1..3;

keepTaxi_CL1: 0..3;

keepTaxi_CL2: 0..3;

keepTaxi_CL3: 0..3;

keepTaxi_GR2: 0..3;

keepTaxi_GR3: 0..3;
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state_CL1: {CALLTAXI , IDLE , TRAVELLING , WAITING };

state_CL2: {CALLTAXI , IDLE , TRAVELLING , WAITING };

state_CL3: {CALLTAXI , IDLE , TRAVELLING , WAITING };

state_GR2: {CALLTAXI , IDLE , TRAVELLING , WAITING };

state_GR3: {CALLTAXI , IDLE , TRAVELLING , WAITING };

travelLength_CL1: 1..3;

travelLength_CL2: 1..3;

travelLength_CL3: 1..3;

travelLength_GR2: 1..3;

travelLength_GR3: 1..3;

var_$c_0: {CL1 , CL2 , CL3 , GR2 , GR3};

DEFINE

neededTaxi_CL1 :=

case

(!((( CL1 = CL1) | (CL1 = CL2)) | (CL1 = CL3))) & (!( CL1 =

GR2)) & 3 in 0..3: 3;

(!((( CL1 = CL1) | (CL1 = CL2)) | (CL1 = CL3))) & (CL1 = GR2)

& 2 in 0..3: 2;

((CL1 = CL1) | (CL1 = CL2)) | (CL1 = CL3) & 1 in 0..3: 1;

esac;

neededTaxi_CL2 :=

case

(!((( CL2 = CL1) | (CL2 = CL2)) | (CL2 = CL3))) & (!( CL2 =

GR2)) & 3 in 0..3: 3;

(!((( CL2 = CL1) | (CL2 = CL2)) | (CL2 = CL3))) & (CL2 = GR2)

& 2 in 0..3: 2;

((CL2 = CL1) | (CL2 = CL2)) | (CL2 = CL3) & 1 in 0..3: 1;

esac;

neededTaxi_CL3 :=

case

(!((( CL3 = CL1) | (CL3 = CL2)) | (CL3 = CL3))) & (!( CL3 =

GR2)) & 3 in 0..3: 3;

(!((( CL3 = CL1) | (CL3 = CL2)) | (CL3 = CL3))) & (CL3 = GR2)

& 2 in 0..3: 2;

((CL3 = CL1) | (CL3 = CL2)) | (CL3 = CL3) & 1 in 0..3: 1;

esac;

neededTaxi_GR2 :=

case

(!((( GR2 = CL1) | (GR2 = CL2)) | (GR2 = CL3))) & (!( GR2 =

GR2)) & 3 in 0..3: 3;

(!((( GR2 = CL1) | (GR2 = CL2)) | (GR2 = CL3))) & (GR2 = GR2)

& 2 in 0..3: 2;

((GR2 = CL1) | (GR2 = CL2)) | (GR2 = CL3) & 1 in 0..3: 1;

esac;

neededTaxi_GR3 :=

case

(!((( GR3 = CL1) | (GR3 = CL2)) | (GR3 = CL3))) & (!( GR3 =

GR2)) & 3 in 0..3: 3;

(!((( GR3 = CL1) | (GR3 = CL2)) | (GR3 = CL3))) & (GR3 = GR2)

& 2 in 0..3: 2;

((GR3 = CL1) | (GR3 = CL2)) | (GR3 = CL3) & 1 in 0..3: 1;

esac;

numtaxis := 3 - keepTaxi_CL1 - keepTaxi_CL2 - keepTaxi_CL3 -

keepTaxi_GR2 - keepTaxi_GR3;

ASSIGN

init(keepTaxi_CL1) := 0;

init(keepTaxi_CL2) := 0;

init(keepTaxi_CL3) := 0;

init(keepTaxi_GR2) := 0;

init(keepTaxi_GR3) := 0;

init(state_CL1) := IDLE;

init(state_CL2) := IDLE;
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init(state_CL3) := IDLE;

init(state_GR2) := IDLE;

init(state_GR3) := IDLE;

next(keepTaxi_CL1) :=

case

(( state_CL1 = TRAVELLING) & (travelLength_CL1 = 1)) & 0 in

0..3: 0;

(( var_$c_0 = CL1) & (( state_CL1 = WAITING) & (numtaxis >=

neededTaxi_CL1))) & neededTaxi_CL1 in 0..3: neededTaxi_CL1;

TRUE: keepTaxi_CL1;

esac;

next(keepTaxi_CL2) :=

case

(( state_CL2 = TRAVELLING) & (travelLength_CL2 = 1)) & 0 in

0..3: 0;

(( var_$c_0 = CL2) & (( state_CL2 = WAITING) & (numtaxis >=

neededTaxi_CL2))) & neededTaxi_CL2 in 0..3: neededTaxi_CL2;

TRUE: keepTaxi_CL2;

esac;

next(keepTaxi_CL3) :=

case

(( state_CL3 = TRAVELLING) & (travelLength_CL3 = 1)) & 0 in

0..3: 0;

(( var_$c_0 = CL3) & (( state_CL3 = WAITING) & (numtaxis >=

neededTaxi_CL3))) & neededTaxi_CL3 in 0..3: neededTaxi_CL3;

TRUE: keepTaxi_CL3;

esac;

next(keepTaxi_GR2) :=

case

(( state_GR2 = TRAVELLING) & (travelLength_GR2 = 1)) & 0 in

0..3: 0;

(( var_$c_0 = GR2) & (( state_GR2 = WAITING) & (numtaxis >=

neededTaxi_GR2))) & neededTaxi_GR2 in 0..3: neededTaxi_GR2;

TRUE: keepTaxi_GR2;

esac;

next(keepTaxi_GR3) :=

case

(( state_GR3 = TRAVELLING) & (travelLength_GR3 = 1)) & 0 in

0..3: 0;

(( var_$c_0 = GR3) & (( state_GR3 = WAITING) & (numtaxis >=

neededTaxi_GR3))) & neededTaxi_GR3 in 0..3: neededTaxi_GR3;

TRUE: keepTaxi_GR3;

esac;

next(state_CL1) :=

case

(( state_CL1 = TRAVELLING) & (travelLength_CL1 = 1)): IDLE;

(( var_$c_0 = CL1) & (( state_CL1 = WAITING) & (numtaxis >=

neededTaxi_CL1))): TRAVELLING;

(state_CL1 = CALLTAXI): WAITING;

(( state_CL1 = IDLE) & (next(calltaxi_CL1))): CALLTAXI;

TRUE: state_CL1;

esac;

next(state_CL2) :=

case

(( state_CL2 = IDLE) & (next(calltaxi_CL2))): CALLTAXI;

(( state_CL2 = TRAVELLING) & (travelLength_CL2 = 1)): IDLE;

(( var_$c_0 = CL2) & (( state_CL2 = WAITING) & (numtaxis >=

neededTaxi_CL2))): TRAVELLING;

(state_CL2 = CALLTAXI): WAITING;

TRUE: state_CL2;

esac;

next(state_CL3) :=
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case

(( state_CL3 = TRAVELLING) & (travelLength_CL3 = 1)): IDLE;

(( var_$c_0 = CL3) & (( state_CL3 = WAITING) & (numtaxis >=

neededTaxi_CL3))): TRAVELLING;

(state_CL3 = CALLTAXI): WAITING;

(( state_CL3 = IDLE) & (next(calltaxi_CL3))): CALLTAXI;

TRUE: state_CL3;

esac;

next(state_GR2) :=

case

(( state_GR2 = TRAVELLING) & (travelLength_GR2 = 1)): IDLE;

(( state_GR2 = IDLE) & (next(calltaxi_GR2))): CALLTAXI;

(( var_$c_0 = GR2) & (( state_GR2 = WAITING) & (numtaxis >=

neededTaxi_GR2))): TRAVELLING;

(state_GR2 = CALLTAXI): WAITING;

TRUE: state_GR2;

esac;

next(state_GR3) :=

case

(( state_GR3 = TRAVELLING) & (travelLength_GR3 = 1)): IDLE;

(state_GR3 = CALLTAXI): WAITING;

(( var_$c_0 = GR3) & (( state_GR3 = WAITING) & (numtaxis >=

neededTaxi_GR3))): TRAVELLING;

(( state_GR3 = IDLE) & (next(calltaxi_GR3))): CALLTAXI;

TRUE: state_GR3;

esac;

next(travelLength_CL1) :=

case

(( var_$c_0 = CL1) & (( state_CL1 = WAITING) & (numtaxis >=

neededTaxi_CL1))) & next(chooseLength) in 1..3: next(chooseLength);

(( state_CL1 = TRAVELLING) & (!( travelLength_CL1 = 1))) &

travelLength_CL1 - 1 in 1..3: travelLength_CL1 - 1;

TRUE: travelLength_CL1;

esac;

next(travelLength_CL2) :=

case

(( state_CL2 = TRAVELLING) & (!( travelLength_CL2 = 1))) &

travelLength_CL2 - 1 in 1..3: travelLength_CL2 - 1;

(( var_$c_0 = CL2) & (( state_CL2 = WAITING) & (numtaxis >=

neededTaxi_CL2))) & next(chooseLength) in 1..3: next(chooseLength);

TRUE: travelLength_CL2;

esac;

next(travelLength_CL3) :=

case

(( var_$c_0 = CL3) & (( state_CL3 = WAITING) & (numtaxis >=

neededTaxi_CL3))) & next(chooseLength) in 1..3: next(chooseLength);

(( state_CL3 = TRAVELLING) & (!( travelLength_CL3 = 1))) &

travelLength_CL3 - 1 in 1..3: travelLength_CL3 - 1;

TRUE: travelLength_CL3;

esac;

next(travelLength_GR2) :=

case

(( var_$c_0 = GR2) & (( state_GR2 = WAITING) & (numtaxis >=

neededTaxi_GR2))) & next(chooseLength) in 1..3: next(chooseLength);

(( state_GR2 = TRAVELLING) & (!( travelLength_GR2 = 1))) &

travelLength_GR2 - 1 in 1..3: travelLength_GR2 - 1;

TRUE: travelLength_GR2;

esac;

next(travelLength_GR3) :=

case

(( var_$c_0 = GR3) & (( state_GR3 = WAITING) & (numtaxis >=

neededTaxi_GR3))) & next(chooseLength) in 1..3: next(chooseLength);
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(( state_GR3 = TRAVELLING) & (!( travelLength_GR3 = 1))) &

travelLength_GR3 - 1 in 1..3: travelLength_GR3 - 1;

TRUE: travelLength_GR3;

esac;

INVAR (( var_$c_0 = CL1) & (( state_CL1 = WAITING) & (numtaxis >=

neededTaxi_CL1))) | (( var_$c_0 = CL2) & (( state_CL2 = WAITING) & (

numtaxis >= neededTaxi_CL2))) | (( var_$c_0 = CL3) & (( state_CL3 =

WAITING) & (numtaxis >= neededTaxi_CL3))) | (( var_$c_0 = GR2) & ((

state_GR2 = WAITING) & (numtaxis >= neededTaxi_GR2))) | (( var_$c_0 = GR3

) & (( state_GR3 = WAITING) & (numtaxis >= neededTaxi_GR3))) | ((!((

state_CL1 = WAITING) & (numtaxis >= neededTaxi_CL1))) & (!(( state_CL2 =

WAITING) & (numtaxis >= neededTaxi_CL2))) & (!(( state_CL3 = WAITING) & (

numtaxis >= neededTaxi_CL3))) & (!(( state_GR2 = WAITING) & (numtaxis >=

neededTaxi_GR2))) & (!(( state_GR3 = WAITING) & (numtaxis >=

neededTaxi_GR3))));

SPEC EF(( numtaxis = 0) & (EX(( numtaxis = 0) & (EX(numtaxis = 0)))));

SPEC !(EF(( numtaxis = 0) & (EG(numtaxis = 0))));

SPEC AG(numtaxis = 0 -> AF(numtaxis > 0));

SPEC EF((( numtaxis = 3) & (state_GR3 = WAITING)) & (EX(( numtaxis = 0) & (

state_GR3 = TRAVELLING))));

SPEC AG(state_CL1 = WAITING -> EF(state_CL1 = TRAVELLING));

SPEC AG(state_CL2 = WAITING -> EF(state_CL2 = TRAVELLING));

SPEC AG(state_CL3 = WAITING -> EF(state_CL3 = TRAVELLING));

SPEC AG(state_GR2 = WAITING -> EF(state_GR2 = TRAVELLING));

SPEC AG(state_GR3 = WAITING -> EF(state_GR3 = TRAVELLING));

SPEC !(EF(((( state_CL1 = WAITING) & (state_CL2 = WAITING)) & (state_CL3 =

WAITING)) & (state_GR2 = WAITING)));

SPEC AG(EX(TRUE));

We can see that the NuSMV code obtained from the mapping is much more
complex that the original NuSMV code; in AsmetaL code, in fact, we have
used a lot of forall and choose rules, whose mappings are particularly com-
plex.
Finally we can observe that code 6.18 and code 6.16 verify the same proper-
ties. The counterexample of the penultimate property, obviously, is not the
same; it's important that both codes give a counterexample and not that the
counterexamples are the same.

> NuSMV -dynamic -coi examples\taxi.smv

** This is NuSMV 2.4.0 (compiled on Sat Oct 4 10:17:49 UTC 2008)

** For more information on NuSMV see <http://nusmv.irst.itc.it>

** or email to <nusmv-users@irst.itc.it>.

** Please report bugs to <nusmv@irst.itc.it>.

-- specification EF (numtaxis = 0 & EX (numtaxis = 0 & EX numtaxis = 0)) is true

-- specification !(EF (numtaxis = 0 & EG numtaxis = 0)) is true

-- specification AG (numtaxis = 0 -> AF numtaxis > 0) is true

-- specification EF ((numtaxis = 3 & state(GR3) = WAITING) & EX (numtaxis = 0 &

state(GR3) = TRAVELLING)) is true

-- specification AG (state(CL1) = WAITING -> EF state(CL1) = TRAVELLING) is true

-- specification AG (state(CL2) = WAITING -> EF state(CL2) = TRAVELLING) is true

-- specification AG (state(CL3) = WAITING -> EF state(CL3) = TRAVELLING) is true

-- specification AG (state(GR2) = WAITING -> EF state(GR2) = TRAVELLING) is true

-- specification AG (state(GR3) = WAITING -> EF state(GR3) = TRAVELLING) is true
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-- specification !(EF (((state(CL1) = WAITING & state(CL2) = WAITING) &

state(CL3) = WAITING) & state(GR2) = WAITING)) is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

calltaxi(CL1) = 0

calltaxi(CL2) = 0

calltaxi(CL3) = 0

calltaxi(GR2) = 0

calltaxi(GR3) = 0

chooseLength = 1

keepTaxi(CL1) = 0

keepTaxi(CL2) = 0

keepTaxi(CL3) = 0

keepTaxi(GR2) = 0

keepTaxi(GR3) = 0

state(CL1) = IDLE

state(CL2) = IDLE

state(CL3) = IDLE

state(GR2) = IDLE

state(GR3) = IDLE

travelLength(CL1) = 1

travelLength(CL2) = 1

travelLength(CL3) = 1

travelLength(GR2) = 1

travelLength(GR3) = 1

var_$c_0 = GR3

numtaxis = 3

neededTaxi(GR3) = 3

neededTaxi(GR2) = 2

neededTaxi(CL3) = 1

neededTaxi(CL2) = 1

neededTaxi(CL1) = 1

-> Input: 1.2 <-

-> State: 1.2 <-

calltaxi(CL1) = 1

calltaxi(CL2) = 1

calltaxi(CL3) = 1

calltaxi(GR2) = 1

state(CL1) = CALLTAXI

state(CL2) = CALLTAXI

state(CL3) = CALLTAXI

state(GR2) = CALLTAXI

-> Input: 1.3 <-

-> State: 1.3 <-

calltaxi(CL1) = 0

calltaxi(CL2) = 0

calltaxi(CL3) = 0
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calltaxi(GR2) = 0

calltaxi(GR3) = 1

state(CL1) = WAITING

state(CL2) = WAITING

state(CL3) = WAITING

state(GR2) = WAITING

state(GR3) = CALLTAXI

var_$c_0 = GR2

-- specification AG (EX TRUE) is true
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