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Abstract. We consider a conserved phase-field system on a tridimensional

bounded domain. The heat conduction is characterized by memory effects

depending on the past history of the (relative) temperature ϑ. These effects
are represented through a convolution integral whose relaxation kernel k is a

summable and decreasing function. Therefore the system consists of a linear

integrodifferential equation for ϑ which is coupled with a viscous Cahn-Hilliard
type equation governing the order parameter χ. The latter equation contains

a nonmonotone nonlinearity φ and the viscosity effects are taken into account

by the term −α∆χt, for some α ≥ 0. Thus, we formulate a Cauchy-Neumann
problem depending on α. Assuming suitable conditions on k, we prove that

this problem generates a dissipative strongly continuous semigroup Sα(t) on
an appropriate phase space accounting for the past histories of ϑ as well as for

the conservation of the spatial means of the enthalpy ϑ + χ and of the order

parameter. We first show, for any α ≥ 0, the existence of the global attractor
Aα. Also, in the viscous case (α > 0), we prove the finiteness of the fractal

dimension and the smoothness of Aα.

1. Introduction. This paper is concerned with the study of the large time be-
havior of a phase-separation model with memory. The mathematical formulation
that we are going to describe is basically a modification of the well known phase
separation model proposed by G. Caginalp [5] (see also Brokate and Sprekels [4]).
Let Ω ⊂ R3 be a given bounded domain with regular boundary ∂Ω. Suppose
that Ω is occupied by an isotropic, rigid and homogeneous heat conductor, free of
mechanical stresses. Let us denote by θ the absolute temperature, and assume that
at a specific temperature value θc the phase-transition occurs. Then, we define the
temperature variation field, by setting

ϑ =
θ − θc
θc

.

The variable that accounts for the presence of two phases (e.g. the concentrations
of two chemical substances) is called order parameter χ (or phase-field). Both the
state variables ϑ and χ depend on x ∈ Ω and on t ∈ [0,∞).
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2 G. MOLA

In absence of heat sources and mechanical stresses, the energy balance equation
reads

∂tE +∇ · q = 0 in Ω× [0,∞),

E being the internal energy and q the heat flux vector.
If we consider only small variations of the absolute temperature and its gradient,

the equation for the relative temperature can be formulated by introducing two
suitable constitutive assumptions. Concerning the internal energy, we consider the
linear relation

E(x, t) = Eeq + cvθcϑ(x, t) + `χ(x, t) for (x, t) ∈ Ω× [0,∞),

Eeq being the temperature at equilibrium, cv the specific heat and ` the latent heat
constant. Regarding the heat flux vector, different choices can be made. The most
simple and well known is the classical Fourier law

(F ) q(x, t) = −Kdiff∇ϑ(x, t) for (x, t) ∈ Ω× [0,∞),

where Kdiff is the (positive) instantaneous diffusivity coefficient. On the other hand,
if we consider a linearized version of the Coleman-Gurtin law [7], we have

(CG) q(x, t) = −Kdiff∇ϑ(x, t)−
∫ ∞

0

k(s)∇ϑ(x, t−s)ds for (x, t) ∈ Ω× [0,∞).

Here k is a nonnegative and summable memory kernel. When Kdiff = 0 we obtain
the law proposed by Gurtin and Pipkin [24],

(GP ) q(x, t) = −
∫ ∞

0

k(s)∇ϑ(x, t− s)ds for (x, t) ∈ Ω× [0,∞).

The latter two choices have been widely discussed in the literature. In particular,
Herrera and Pavòn in [26], analyze some relevant dissipative processes (e.g. the
telegraph equation and transport equation), claiming that a hyperbolic description
leads to a deeper understanding of the transient states. Also, Jäckle in [27], following
the phenomenological theory of thermoviscoelasticity, discusses the heat conduction
processes in some materials (e.g., high viscosity liquids), pointing out how, in the
frequency domain, the conduction coefficient may depend on the frequency itself.
In this regard, we also refer the reader to the work of Jou and Casas-Vázquez [30]
and Joseph and Preziosi [28, 29], where the concept of heat wave propagation is
reviewed and interpreted in great detail. In this paper we consider the (GP ) heat
conduction law.

Therefore, substituting the constitution laws for the internal energy and (GP )
into the energy balance equation, we obtain

(eϑ) ∂t [cvθcϑ(x, t) + `χ(x, t)]−
∫ ∞

0

k(s)∆ϑ(x, t−s)ds = 0 for (x, t) ∈ Ω×[0,∞).

This is the first equation of our system. Note that it entails a finite speed of
propagation of ϑ, provided that k is smooth enough.

We now define an evolution equation for the order parameter, following the
Landau-Ginzburg approach (see, for instance, [4, Section 4.4]). Let us consider
the free energy functional defined by

Fϑ{χ} =
∫

Ω

[
1
2
|∇χ|2 + Φ(χ)− `ϑχ

]
dΩ,
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where the nonlinear term Φ is usually a double well potential which accounts for the
presence of two different phases (typically, Φ(r) = (r2 − 1)2, r ∈ R). The main fea-
ture of this approach to nonequilibrium processes is based on the phenomenological
assumption that the equation for χ has the form

τ∂tχ = −∆
(
δFϑ{χ}
δχ

)
,

τ being a positive relaxation time. On account of the definition of the functional,
we thus derive the following Cahn-Hilliard type equation

(CH) τ∂tχ−∆ (−∆χ+ φ(χ)− `ϑ) = 0 in Ω× [0,∞),

having set Φ′ = φ. More precisely, we shall consider a generalized version of (CH),
which describes the influence of viscosity effects, by means of a viscous term α∂tχ
inside the Laplace operator (see, [33] for the physical justification, cf. also [12, 13,
14]). The modified equation then reads

(eχ) τ∂tχ−∆ (−∆χ+ α∂tχ+ φ(χ)− `ϑ) = 0 in Ω× [0,∞),

where the constant α ≥ 0 is the viscosity parameter. We point out that the assump-
tion α > 0 will play a basic role in some of our results. Without loss of generality,
in sequel we shall suppose α ∈ [0, 1].

Collecting equations (eϑ)-(eχ), we deduce the following nonlinear integro-partial
differential system

∂t (cvθcϑ+ `χ)−
∫ ∞

0

k(s)∆ϑ(t− s)ds = 0, (1.1)

τ∂tχ−∆ (−∆χ+ α∂tχ+ φ(χ)− `ϑ) = 0, (1.2)

endowed with the adiabatic boundary conditions

∂nϑ = ∂nχ = ∂n (−∆χ+ α∂tχ+ φ(χ)− `ϑ) = 0 (1.3)

on ∂Ω, for t ∈ R, where ∂n represents the outward normal derivative to ∂Ω, and
initial conditions

ϑ(0) = ϑ0 in Ω, (1.4)

χ(0) = χ0 in Ω, (1.5)

ϑ(−s) = ϑ1(s) in Ω, s ∈ (0,∞). (1.6)

Here ϑ0, χ0 : Ω→ R and ϑ1 : Ω× (0,∞)→ R are given functions, whose properties
will be discussed later on.

Systems like (1.1)-(1.2), endowed with various boundary and initial conditions,
have been studied by many authors. In particular, the first existence result was
provided by Novick-Cohen in [32]. There, uniqueness was proven as well under
a smallness assumption on the latent heat ` and for a smooth kernel k. Then,
Colli, Gilardi, Laurençot and Novick-Cohen in [9] improved the uniqueness result
by removing the smallness of `, and showed the stabilization of solutions for large
times. Colli, Gilardi, Grasselli, Schimperna in [8] instead proven well-posedness and
regularity for a more general class of φ.
The common feature of all the results quoted above is that the contributions to the
convolution integrals due to the past history of the temperature up to t = 0 are
always considered as given data, and therefore regarded as external sources. Thus,
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the only convolution integrals appearing in the equations are over (0, t). Notice that
such a formulation forces the system to become non autonomous, even if the original
system is not. Therefore, in this case, the given past history approach seems not
convenient to study the problem within the framework of dynamical systems (cf.,
for instance, [1], [25] and [40] for a general overview). This point shall be discussed
in details in the next subsection.

1.1. The past history formulation. From now on, for the sake of simplicity, we
let

cv = θc = ` = τ = 1.

In order to prove that our problem generates a dynamical system, we follow an
approach based on an idea contained in [11], and then developed by several of
authors in the context of dynamical systems (see the review papers [19, 22]). This
idea consists in introducing an additional variable, usually called the summed past
history, which in our case is

ηt(s) = −
∫ s

0

∆ (e(t− y)− χ(t− y)) dy in Ω, (t, s) ∈ [0,∞)× (0,∞),

where
e = ϑ+ χ

is the enthalpy density.
It is immediate to check that ηt formally satisfies the first order hyperbolic equa-

tion
∂tη = −∂sη −∆ (e− χ) in Ω, (t, s) ∈ (0,∞)× (0,∞). (1.7)

Concerning the boundary and initial conditions to associate with equation (1.7), on
account of (1.3) and (1.6), we deduce

ηt(0) = 0 on Ω, t ∈ (0,∞), (1.8)

η0(s) = η0(s) in Ω, s ∈ (0,∞) (1.9)

with

η0(s) = −
∫ s

0

∆ϑ1(y)dy, s ∈ (0,∞).

Considering then equation (1.1), and making physically reasonable assumptions on
the past history and the memory kernel, we observe that a formal integration by
parts yields

−
∫ ∞

0

k(s)∆ (e(t− s)− χ(t− s)) ds =
∫ ∞

0

µ(s)ηt(s)ds in Ω, s ∈ (0,∞),

where we have set
µ(s) = −k′(s), ∀s ∈ (0,∞).

Then we can reformulate the original boundary and initial value problem as the
following integro-partial differential system in the variables (e, χ, η).

Problem P. Find a solution (e, χ, η) to the system
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∂te+
∫ ∞

0

µ(s)η(s)ds = 0,

∂tχ−∆ (−∆χ+ α∂tχ+ φ(χ)− e+ χ) = 0,

∂tη = −∂sη −∆ (e− χ) ,

in Ω× (0,∞), subjected to the boundary and initial conditions

∂ne = ∂nχ = 0, on ∂Ω× (0,∞),

∂n (−∆χ+ α∂tχ+ φ(χ)− e+ χ) = 0, on ∂Ω× (0,∞),

e(0) = e0 = ϑ0 + χ0, in Ω,

χ(0) = χ0 in Ω,

η0 = η0, in Ω× (0,∞).

Observe that, according to the original boundary conditions, a formal application
of the Green formula yields immediately the following identities∫

Ω

e(t)dΩ =
∫

Ω

e0d Ω,
∫

Ω

χ(t)d Ω =
∫

Ω

χ0 dΩ,
∫

Ω

ηt(s) dΩ = 0,

for any t ∈ (0,∞) and any s > 0. The conservation of such quantities is a struc-
tural feature of our system. Such a feature also explains the reason why the system
under consideration is usually called the conserved phase-field model (cf. [4, 5]).
This feature will be taken into special account when we shall face the problem of
constructing a suitable phase-space in order to study Problem P as a dissipative
dynamical system (see Section 2). To be more precise, the constraints introduced
above, though they play no role as far as well-posedness is concerned, will be essen-
tial in order to prove the existence of a bounded absorbing set (see Section 4).

The first formulation of Problem P can be found in [41], where existence and
dissipativity of the dynamical system were proven in the nonviscous case and with
mixed Dirichlet and Neumann boundary conditions for the temperature field and for
the order parameter, respectively. Subsequently, in [21], the existence of the global
attractor was demonstrated in the same setting as [41]. Such a task was achieved
by means of sharp interpolation techniques. Nevertheless, regularity properties of
the attractor as well as the existence of an exponential attractor were left as open
problems. This paper is to deepen the results provided in [21] and [41] in the case
of adiabatic boundary conditions.

It is also worth recalling that, in the simpler case of Coleman-Gurtin heat conduc-
tion law (CG), well-posedness, dissipativity and the existence of a global attractor
were proven in [23]. Further regularity properties, such as the existence of an ex-
ponential attractors were shown in [15]. Note that, in this case, the presence of an
instantaneous diffusive term improves the dissipative nature of the system.

More precisely, in the mentioned results, a more general constitutive law for the
internal energy was considered, namely, by assuming a thermal memory effects, i.e.,

Eh(x, t) = Eeq+cvθcϑ(x, t)+`χ(x, t)+
∫ ∞

0

h(s)ϑ(x, t−s)ds for (x, t) ∈ Ω×[0,∞),
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h being a positive smooth function such that h′ and h′′ are summable, and h(0) > 0.
This law can also be handled by means of the techniques we shall apply, but we
chose to neglect h for the sake of clarity. However, note that the presence of h would
also improve the dissipative nature of the system (compare with [18] and [21]).

The goal of the present paper is to investigate the existence of the global attractor
both for the viscous case (α > 0) and the nonviscous one (α = 0). In the latter
case we shall also demonstrate that the global attractor is smooth and possesses
finite fractal dimension. We conclude by observing that it seems particularly hard
to establish analogous results in the nonviscous case.

2. Preliminary tools. This section is devoted to the construction of the functional
setting which will be used to treat the equations, and to recall many results that
will be useful in the sequel. Since most of the tools that we need are well known,
we shall omit the proofs, providing appropriate references when necessary.

2.1. Function spaces and operators. Let H be the Hilbert space L2(Ω) of the
measurable functions which are square summable on Ω, endowed with the usual
scalar product 〈·, ·〉 and the induced norm ‖ · ‖.

Given any ω ∈ H we define the spatial mean value of ω on Ω as the real number

mω =
1
|Ω|
〈ω, 1〉.

We then introduce
H0 = {ω ∈ H : mω = 0} .

Denoting, as usual, by ∆ the spatial Laplacian, we now define the (unbounded)
operators

B : D(B)→ H0 and B0 : D(B0)→ H0

by setting

B = −∆, D(B) = {ω ∈ H2(Ω) : ∂nω = 0 a.e. on ∂Ω},

B0 = −∆, D(B0) = D(B) ∩H0.

Here the symbol ∂n denotes the outward normal derivative. Since B0 is a strictly
positive operator, we can define

V r0 = D(Br/20 ), ∀r ∈ R,

as well as the shorthands

V0 = V 1
0 and W0 = V 2

0 .

For further use, we also introduce the Hilbert spaces

V = H1(Ω) and W = D(B),

endowed with the norms

‖ω‖2V = ‖ω‖2 + ‖Pω‖2V0
and ‖ω‖2W = ‖ω‖2V + ‖Pω‖2W0

;

it is easy to realize that the norms defined above are equivalent, respectively, to the
usual norms in H1(Ω) and H2(Ω).

By means of the Poincaré inequality (see, for instance, [40]), we deduce

‖ω‖ ≤ cP ‖∇ω‖, ∀ ω ∈ V0,
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cP > 0 being the Poincaré-Wirtinger constant, and ∇ : V → H3 the gradient
operator. Here and by, we replace ‖ · ‖X3 with the shorter notation ‖ · ‖X , for any
vector valued Banach space X3 = X ×X ×X, for the sake of convenience.

In the sequel, we shall need to work in nonzero mean function spaces (see, in
particular, Sections 5 and 6). To this purpose, on account to the definitions and
notation introduced in the previous subsection for any σ > 0, we can consider the
Banach space Vσ equipped with the norm

‖ω‖2Vσ = ‖ω‖2 + ‖Pω‖2V σ0 .

Notice immediately that there holds

‖Pω‖V σ0 ≤ ‖ω‖Vσ , ∀ω ∈ H.

Throughout the rest of the paper, in order to derive suitable controls on the
physically relevant quantities discussed in the introduction, we shall often need to
estimate functions in the norms introduced above. Therefore, we need to recall
some consequences of the Sobolev embedding theorems (see, e.g., in [40]).

Making the identification H ≡ H∗ (here and by, the superposed asterisk denotes
the topological dual of a Banach space), we have the compact and dense embeddings

W ↪→ V ↪→ H ↪→ V ∗ ↪→W ∗ (2.1)

and
W0 ↪→ V0 ↪→ H0 ↪→ V ∗0 ↪→W ∗0 . (2.2)

Notice that, according to the notation introduced above, we have

V ∗0 = V −1
0 and W ∗0 = V −2

0 .

Moreover, there holds

V ↪→ Lp(Ω), ∀p ∈ [2, 6], W ↪→ C(Ω), and V0 ↪→ V, W0 ↪→W, (2.3)

and, for any σ ∈ (0, 3/2)

V σ0 ↪→ Vσ ↪→ L6/(3−2σ)(Ω), (2.4)

W 1,6/(3−2σ)(Ω) ↪→ Vσ. (2.5)

Here we denote by Wn,p(Ω) the usual Sobolev space of order n and exponent p ∈
[1,∞].

2.2. Assumptions on the φ and µ. In order to state our results, we need to
make some structural assumptions on the nonlinearity and on the memory kernel.
Concerning the former one, the assumptions that we consider include (and slightly
generalize) the case of the derivative of a double-well potential. Concerning the
latter, the key property to ensure the dissipativity of our system (cf. Section 4) is
the exponential decay of µ.

Conditions on φ. Let φ ∈ C2(R) and assume that there exist c0 > 0 and c1, c2 ≥ 0
such that

(H1) rφ(r) ≥ c0r4 − c1, ∀r ∈ R,

(H2) |φ′′(r)| ≤ c2(1 + |r|), ∀r ∈ R.
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Remark 1. As outlined in [20], under assumptions (H1) and (H2), the function
φ admits a decomposition of the form φ = φ0 + φ1, with φ0, φ1 ∈ C2(R) such that

(H10) rφ0(r) ≥ 0, ∀r ∈ R,

(H20) |φ′′(r)| ≤ c3(1 + |r|), ∀r ∈ R,
and

(H11) lim inf
|r|→∞

φ1(r)
r

> − 1
cP
,

(H21) |φ1(r)| ≤ c4(1 + |r|θ), ∀r ∈ R,

for some constants c3, c4 ≥ 0 and θ ∈ [0, 3). Without loss of generality we can
suppose θ ∈ [2, 3).

Conditions on µ. Let µ : (0,∞)→ (0,∞) be a summable function such that

(K1) µ ∈ C1((0,∞)) ∩ L1(0,∞),

(K2) µ(s) ≥ 0, µ′(s) ≤ 0, ∀s ∈ (0,∞),

(K3) k0 =
∫ ∞

0

µ(s)ds > 0, ∀s ∈ (0,∞),

(K4) µ′(s) + λµ(s) ≤ 0, ∀s ∈ (0,∞),

for some λ > 0.

Remark 2. Notice that µ is decreasing and the Gronwall Lemma entails the ex-
ponential decay

µ(s) ≤ µ(s0)e−λ(s−s0), ∀s ≥ s0 > 0. (2.6)
Notice also that µ is allowed to be unbounded in a right neighborhood of 0.

2.3. The past history function space. The presence of memory effects in our
phase-field system requires the introduction of suitable past history spaces.
Let r ∈ R. On account of assumptions (K1)-(K2), we consider the family of
weighted Hilbert spaces

Mr = L2
µ(0,∞;V r−1

0 ),
endowed with the inner product defined by

〈η1, η2〉Mr
=
∫ ∞

0

µ(s)〈η1(s), η2(s)〉V r−1
0

ds, ∀ η1, η2 ∈Mr.

For the sake of clarity, from now on we will use the shorthand M in place of M0,
and N in place of M1. In these cases, the norms become, respectively,

‖η‖2M =
∫ ∞

0

µ(s)‖η(s)‖2V ∗0 ds and ‖η‖2N =
∫ ∞

0

µ(s)‖η(s)‖2ds.

Notice that the embeddings Mr1 ⊂ Mr2 , for r1 > r2, are clearly continuous but
not compact. To construct a functional space which is compactly embedded in M,
we proceed as follows (see [15] and [16] for details). Let T be the linear operator on
M with domain

D(T ) = {η ∈M : ∂sη ∈M, η(0) = 0} ,
defined by

Tη = −∂sη,



CONSERVED PHASE-FIELD SYSTEM WITH MEMORY 9

where ∂sη is the distributional derivative of η with respect to the internal variable s.
We also define, for any η ∈M, the tail of η in M, that is the function

Tη : [1,∞) → [0,∞)

given by

Tη(x) =
∫

(0,1/x)∪(x,∞)

µ(s)‖η(s)‖2V ∗0 ds.

Thus, on account of an immediate generalization of [37, Lemma 5.5], we have

Lemma 2.1. Let C ⊂ M such that

sup
η∈C

[
‖η‖Mr

+ ‖Tη‖M−1

]
<∞ and lim

x→∞

[
sup
η∈C
Tη(x)

]
= 0.

for some r > 0. Then C is relatively compact in M.

The representation formula. On account of notation and notion introduced so far
in this section, we can now come back to equation (1.7) and provide its rigorous
formulation within the theory of strongly continuous linear semigroups, which has
been detailed in [19]. Let us recall the following

Theorem 2.2. The operator T : D(T )→M is the generator of the right-translation
(strongly continuous) linear semigroup of operators on the space M.

Moreover, we have

Corollary 1. Let T > 0 to be fixed. Then, for f ∈ L1(0, T ;V ∗0 ) and η0 ∈ M, the
Cauchy problem {

∂tη
t = Tηt + f, t ∈ (0,∞),

η0 = η0,

admits a unique solution η ∈ C([0,∞);M) which has the explicit representation
formula

ηt(s) =


∫ s

0

f(t− τ)dτ, 0 < s ≤ t,

η0(s− t) +
∫ t

0

f(t− τ)dτ, s > t.

(2.7)

Remark 3. By means of Theorem 2.2, we learn also that the inclusion D(T ) ⊂M
is dense.

2.4. The phase-space. We are now in a position to define the functional setup
of our investigation, namely, the phase-space for our dynamical system. We then
define the product space

H = H × V ×M.

Proposition 1. H is a Hilbert space, if endowed with the inner product

〈(e1, χ1, η1) , (e2, χ2, η2)〉H = 〈e1, e2〉+ 〈χ1, χ2〉V + 〈η1, η2〉M,

for all (e1, χ1, η1) , (e2, χ2, η2) ∈ H.
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From now on, we agree to denote by BH(R, z) the ball of radius R and center z in
H. In the case z = 0, we shall use the shorthand BH(R).

We also recall that the Hausdorff semidistance between subsets A and B of a
metric space X endowed with a distance d is defined as

distX (A,B) = sup
a∈A

d (a,B) = sup
a∈A

inf
b∈B

d(a, b).

Notice that the Hausdorff semidistance is not symmetric (so it is not a distance).
In particular, distX (A,B) = 0 if and only if A ⊂ B.

Finally, on account of the fact that the spatial means e and χ are constant in
time, we also consider the function space

Hβ,γ =
{

(e, χ, η) ∈ H :
∣∣me

∣∣ ≤ β and
∣∣mχ

∣∣ ≤ γ}
for some fixed β, γ ≥ 0. Notice that Hβ,γ is not linear spaces. Nevertheless, it has
a metric structure, as stated in the next

Proposition 2. Let β, γ ≥ 0 be fixed. Then Hβ,γ is a complete metric space with
respect to the topology induced by the Hilbert structure of H.

Remark 4. In the case β = γ = 0 the space H0,0 turns out to be Hilbert.

Even in this case, we agree to denote by BHβ,γ (R, z) the ball of radius R and
center z in Hβ,γ . Moreover, if z = 0, we shall use the shorthand BHβ,γ (R).

3. Well-posedness. On account of the previous section, we can now introduce the
rigorous operator formulation of our problem, namely,

Problem Pα. Given (e0, χ0, η0) ∈ H, find (e, χ, η) ∈ C (H;H) satisfying the equa-
tions

∂te+
∫ ∞

0

µ(s)η(s)ds = 0, (3.1)

∂tχ+B0 (B0Pχ+ α∂tχ+ Pφ(χ)− P (ec − χc)) = 0, (3.2)

∂tη = Tη +B0P (e− χ), (3.3)

(e(0), χ(0), η(0)) = (e0, χ0, η0), (3.4)

where equation (3.3) has to be interpreted in a distributional sense.

3.1. Semigroup generation. The next theorem ensures the existence of such a
solution, and the proofs can be obtained by approximating problem Pα by means
of a suitable Faedo-Galerkin scheme. Details go exactly like in [41] (see also [23]).

Theorem 3.1. Let assumptions (H1)-(H2) and (K1)-(K3) hold true. Then, for
any T > 0, there exists a solution to problem Pα such that

(e, χ, η) ∈ C ([0, T ];H) .
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Moreover, the further regularity properties hold

∂te ∈ C([0, T ];V ∗0 ),

χ ∈ L2(0, T ;W ) ∩H1(0, T ;V ∗),

α ∂tχ ∈ L2(0, T ;H0),

ω ∈ L2(0, T ;V ).

Remark 5. From now on, whenever necessary, we shall always assume to work
within a regularization scheme provided by the constructive Faedo-Galerkin method,
devised in [41]. Such a remark is crucial, in order to make rigorous the formal deriva-
tion of most of the estimates in the following.

The next theorem provides the continuous dependence estimate for the solutions
of problem Pα.

Theorem 3.2. For any T > 0 and any R > 0, there exists a positive and increasing
continuous function C0 = C0(R) : [0, T ] → [0,∞), independent of α ∈ [0, 1], such
that, given z0,1, z0,2 ∈ H with ‖z0,i‖H ≤ R, the following continuous dependence
estimate holds

‖e1(t)− e2(t)‖2 + ‖χ1(t)− χ2(t)‖2V + ‖ηt1 − ηt2‖2M

+
∫ t

0

[
‖χ1(τ)− χ2(τ)‖2W + ‖∂tχ1(τ)− ∂tχ2(τ)‖2V ∗0 + α‖∂tχ1(τ)− ∂tχ2(τ)‖2

]
dτ

≤ C0(t)‖z0,1 − z0,2‖2H, ∀t ∈ [0, T ],

where we call (ei, χi, ηi) ∈ C ([0, T ];H) the solution to Pα with initial datum z0,i,
for i = 1, 2.

As an immediate consequence of Theorems 3.1 and 3.2, we have the generation
theorem

Theorem 3.3. Problem Pα generates a strongly continuous semigroup Sα(t), both
on the phase-space H and on the phase-space Hβ,γ , for any fixed β, γ ≥ 0.

Let us observe that, for any α ∈ [0, 1], Sα(t) is injective on H. This is an
immediate consequence of the backward uniqueness property (cf., e.g., [40, Chap.III,
Sec.6] and references therein).

Proposition 3. For any given z0,1, z0,2 ∈ H, if Sα(τ)z0,1 = Sα(τ)z0,2 for some
τ > 0, then Sα(t)z0,1 = Sα(t)z0,2, for all t ∈ [0,∞).

Proof. Denoting by (ẽ0, χ̃0, η̃0) the difference of two initial data in H, let (ẽ, χ̃, η̃) be
the difference of the corresponding solutions, that coincide at time τ . Since η̃τ = 0,
we get directly from (2.7) (with f = B0P (e−χ)) that η̃0 = 0 and so η̃t = 0 in [0, τ ].
Owing to equation (3.3), we deduce that ẽ− χ̃ = 0 in [0, τ ]. Then, equation (3.1),
written for the differences, yields ∂tχ̃ = 0 almost everywhere in Ω × [0, τ ], so that
χ̃ = 0 in [0, τ ]. Equality for t > τ follows from uniqueness.

3.2. Proof of Theorem 3.2. In the course of this proof, let c and c∗ be generic
positive constants depending on the structural data of the problem and on T only.
We also define, for all t ∈ [0, T ], the function

Θ(t) = 1 + ‖χ1(t)‖2W + ‖χ2(t)‖2W .
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On account of Theorem 3.1 we have Θ ∈ L1(0, T ) and, besides,

‖χ1(t)‖2V + ‖χ2(t)‖2V ≤ c, ∀t ∈ [0, T ]. (3.5)

For z0,1, z0,2 ∈ H, we set

z̃0 = (ẽ0, χ̃0, η̃0) = (e0,1, χ0,1, η0,1)− (e0,2, χ0,2, η0,2).

Then the difference of trajectories, defined as

z̃(t) = (ẽ(t), χ̃(t), η̃t) = (e1(t), χ1(t), η1(t))− (e2(t), χ2(t), η2(t))

fulfills the system

∂tẽ+
∫ ∞

0

µ(s)η̃(s)ds = 0, (3.6)

∂tχ̃+B0

(
B0Pχ̃+ α∂tχ̃+ P (φ(χ1)− φ(χ2))− P (ẽ− χ̃)

)
= 0, (3.7)

∂tη̃ = T η̃ +B0P (ẽ− χ̃), (3.8)

z̃(0) = z̃0. (3.9)

We consider the product of (3.8) by η̃ in M. This yields

1
2
d

dt
‖η̃‖2M =

∫ ∞
0

µ(s)〈B−1/2
0 T η̃(s), B−1/2

0 η̃(s)〉ds+
∫ ∞

0

µ(s)〈P (ẽ− χ̃) , η̃(s)〉ds.

Since we work in a regularization scheme, on account of assumption (K2), it is
possible to prove that (see [21, Theorem 3.1])∫ ∞

0

µ(s)〈B−1/2
0 T η̃(s), B−1/2

0 η̃(s)〉ds ≤ 0.

Henceforth, we have

1
2
d

dt
‖η̃‖2M ≤

∫ ∞
0

µ(s)〈P (ẽ− χ̃) , η̃(s)〉ds. (3.10)

Consider the product of equation (3.6) by P (ẽ− χ̃). Keeping (3.10) into account,
we get

1
2
d

dt

[
‖P (ẽ− χ̃) ‖2 + ‖η̃‖2M

]
+ 〈∂tχ, P (ẽ− χ̃)〉 ≤ 0. (3.11)

We now perform the following products of equation (3.7) by suitable test func-
tions.

• By B−1
0 ∂tχ̃, to get

1
2
d

dt
‖Pχ̃‖2V0

+ ‖∂tχ̃‖2V ∗0 + α‖∂tχ̃‖2 − 〈∂tχ̃, P (ẽ− χ̃)〉 = −〈φ(χ1)− φ(χ2), ∂tχ̃〉.

Notice that, by the Young inequality, we have

− 〈φ(χ1)− φ(χ2), ∂tχ̃〉 ≤ ‖φ(χ1)− φ(χ2)‖2V +
1
2
‖∂tχ̃‖2V ∗0 . (3.12)

On the other hand, there holds

‖φ(χ1)− φ(χ2)‖2V ≤ ‖φ(χ1)− φ(χ2)‖2 + ‖ (φ′(χ1)− φ′(χ2))∇χ1‖2 + ‖φ′(χ1)∇χ̃‖2.
(3.13)
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In order to estimate terms on the right-hand side of (3.13), we shall use assumption
(H2) and bound (3.5). Concerning the first summand, it is immediate to check
that

‖φ(χ1)− φ(χ2)‖2 ≤ c
(
‖χ1‖4V + ‖χ2‖4V

)
‖χ̃‖2V ≤ c‖χ̃‖2V . (3.14)

Concerning the second and third summands, we use the generalized Hölder inequal-
ity with suitable exponents, to get

‖ (φ′(χ1)− φ′(χ2))∇χ1‖2 ≤ c
(
‖χ1‖2V + ‖χ2‖2V

)
‖∇χ1‖2V ‖χ̃‖2V (3.15)

≤ c‖χ1‖2W ‖χ̃‖2V ≤ cΘ‖χ̃‖2V ,
and

‖φ(χ1)− φ(χ2)‖2V ≤ c
(
1 + ‖χ1‖4V

)
‖∇χ̃‖2V ≤ c∗‖χ̃‖2W . (3.16)

Substituting controls (3.14)-(3.16) in (3.13), the above differential inequality yields
1
2
d

dt
‖Pχ̃‖2V0

+
1
2
‖∂tχ̃‖2V ∗0 +α‖∂tχ̃‖2 + 〈∂tχ̃, P (ẽ− χ̃)〉 ≤ cΘ‖χ̃‖2V + c∗‖χ̃‖2W . (3.17)

• By v = Pχ̃, to get
1
2
d

dt

[
‖Pχ̃‖2 + α‖Pχ̃‖2V0

]
+ ‖Pχ̃‖2W0

= −〈P (φ(χ1)− φ(χ2)) , B0Pχ̃〉

+〈P (ẽ− χ̃), B0Pχ̃〉.
Recalling (3.14), we deduce the inequalities

−〈P (φ(χ1)− φ(χ2)) , B0Pχ̃〉+ 〈P (ẽ− χ̃), B0Pχ̃〉

≤ ‖φ(χ1)− φ(χ2)‖2 +
1
2
‖Pχ̃‖2W0

+ ‖P (ẽ− χ̃)‖2 + ‖Pχ̃‖2

≤ c
(
‖ẽ− χ̃‖2 + ‖χ̃‖2V

)
+

1
2
‖Pχ̃‖2W0

.

We thus infer
1
2
d

dt

[
‖Pχ̃‖2 + α‖Pχ̃‖2V0

]
+

1
2
‖Pχ̃‖2W0

≤ c
(
‖ẽ− χ̃‖2 + ‖χ̃‖2V

)
. (3.18)

Adding together inequalities (3.11) and (3.17), we get
1
2
d

dt

[
‖P (ẽ− χ̃) ‖2 + ‖Pχ̃‖2V0

+ ‖η̃‖2M
]

(3.19)

+
1
2
‖∂tχ̃‖2V ∗0 + α‖∂tχ̃‖2 ≤ cΘ‖χ̃‖2V + c∗‖χ̃‖2W .

Let us now introduce the positive functional, defined for all t ∈ [0,∞),

Φ̃(t) = ‖P (ẽ(t)− χ̃(t)) ‖2 + 4c∗‖Pχ̃(t)‖2 + (1 + 4αc∗)‖Pχ̃(t)‖2V0
+ ‖η̃t‖2M.

Using the control

‖ẽ−χ̃‖2 +‖χ‖2V ≤ ‖P (ẽ− χ̃) ‖2 +‖Pχ‖2V0
+c
(
m2ee−eχ +m2eχ) ≤ c (‖ẽ− χ̃‖2 + ‖χ‖2V

)
,

we can find some positive c̃ > 1 such that there holds
1
c̃
‖z̃(t)‖2H ≤ Φ̃(t) ≤ c̃‖z̃(t)‖2H, ∀t ∈ [0,+∞). (3.20)

Since
‖χ̃‖2W = ‖Pχ̃‖2W0

+m2eχ ≤ ‖Pχ̃‖2W0
+ c‖χ̃‖2V ,
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then, adding together inequality (3.18) multiplied by 4c∗ and (3.19), we infer

d

dt
Φ̃ (t) + K̃

(
‖χ̃(t)‖2W + ‖∂tχ̃(t)‖2V ∗0 + α‖∂tχ̃(t)‖2

)
≤ cΘ(t)Φ̃ (t) , ∀t ∈ [0, T ],

(3.21)
for some positive K̃. Recalling now that Θ ∈ L1(0, T ), we can apply [3, Lemma
A.5], to get

Φ̃ (t) ≤ c‖z̃0‖2Hec
R t
0 Θ(τ)dτ , ∀t ∈ [0, T ]. (3.22)

On account of (3.20) the thesis is then proven by integrating both sides of (3.21)
on the time interval [0, T ], and using (3.22), provided that we choose

C0(t) = cec
R t
0 Θ(τ)dτ , ∀t ∈ [0, T ]. (3.23)

4. Absorbing sets. We begin our asymptotic analysis by proving the existence of
a bounded absorbing set for Sα(t).

In the course of this section, c ≥ 0 will denote a generic constant depending on
the structural data of the problem. By c̃ ≥ 0 we shall indicate a generic constant
which also depends on β, γ and on φ, such that, if β = γ = 0 and c1 = 0 in
assumption (H1), then c̃ = 0. We point out that c and c̃ may vary even within the
same formula and are both independent of α ∈ [0, 1]. Further dependencies will be
pointed out in the sequel, if needed. We shall also use the Hölder and the Young
inequalities repeatedly, avoiding to stress it out each time.

The crucial assumption to prove the following dissipation result is (K4), that
will be always assumed from now on.

Theorem 4.1. There exists R0 > 0 such that the ball B0 = B0(β, γ) of Hβ,γ of
radius 2R0 centered in zero is a bounded absorbing set for the restriction of Sα(t)
to Hβ,γ , uniformly with respect to α ∈ [0, 1]. Namely, given any R > 0, there exists
a time t0 = t0(R) ≥ 0 such that

Sα(t)BHβ,γ (R) ⊂ B0, ∀t ≥ t0.

Moreover, for every R > 0, there exists a constant C0 = C0(R, β, γ) ≥ 0 independent
of α ∈ [0, 1], such that, for any z0 ∈ B0,

sup
t∈[0,∞)

‖Sα(t)z0‖H ≤ C0. (4.1)

In addition, for any fixed r > 0, the following bound holds

sup
z0∈B0

sup
t∈[0,∞)

∫ t+r

t

[
‖χ(τ)‖2W + ‖∂tχ(τ)‖2V ∗0 + α‖∂tχ(τ)‖2

]
dτ ≤ c, (4.2)

uniformly with respect to α ∈ [0, 1].

Remark 6. It is worth noting that, up to choosing R0 large enough in Theorem
4.1, the resulting absorbing set B0 is independent of α ∈ [0, 1].
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4.1. Proof of inequality (4.1). We divide the proof into several steps.

As a first step, in order to handle the possible integrable singularity of µ at
0, following [34], we introduce, for any fixed s0 ∈ [0,∞), the function ψ = ψs0 :
[0,∞)→ [0,∞), defined by

ψ(s) = µ(s0)χ(0,s0](s) + µ(s)χ[s0,∞)(s),

where χI denotes the indicator function of any interval I ⊂ [0,∞). Notice that
conditions (K1)-(K4) imply

ψ(s) ≤ µ(s) and − ψ′(s) ≤ −µ′(s) for a.e. s ∈ (0,∞). (4.3)

Moreover, by choosing s0 large enough,∫ ∞
0

ψ(s)ds =
k0

2
, (4.4)

and, without loss of generality, we can also suppose

µ(s0) ≤ 1.

Next, to overcome the lack of an instantaneous diffusion term in equation (3.1),
along the lines of [17], we first introduce, for all z = (e, χ, η) ∈ Hβ,γ , the functional

L0(z) = −
∫ ∞

0

ψ(s)〈B−1/2
0 η(s), B−1/2

0 P (e− χ)〉ds.

Notice first that, using (K3), there holds

|L0(z)| ≤ c
(
‖P (e− χ)‖2 + ‖η‖2M

)
. (4.5)

Taking the time-derivative of L0, by means of equation (3.3), we get

d

dt
L0(z) +

k0

2
‖P (e− χ) ‖2 =

∫ ∞
0

ψ(s)〈B−1/2
0 η(s), B−1/2

0 ∂tχ〉ds

+
∫ ∞

0

ψ(s)µ(s) ‖η(s)‖2V ∗0 ds−
∫ ∞

0

µ(s)〈B−1/2
0 Tη(s), B−1/2

0 P (e− χ)〉ds, (4.6)

where the last equality is obtained by taking the product of equation (3.1) with
B−1

0 η(s) and integrating over (0,∞) with respect to ψ(s)ds.
Using now assumptions (K2)− (K4), we see that∫ ∞

0

ψ(s)〈B−1/2
0 η(s), B−1/2

0 ∂tχ〉ds ≤ ‖η‖2M + c‖∂tχ‖2V ∗0 , (4.7)

∫ ∞
0

ψ(s)µ(s) ‖η(s)‖2V ∗0 ds ≤ µ(s0)‖η‖2M ≤ ‖η‖2M. (4.8)

Observe now that, since we work in a regularization scheme, there holds

lim
s→0

ψ(s)〈B−1/2
0 P (e− χ), B−1/2

0 η(s)〉 = lim
s→∞

ψ(s)〈B−1/2
0 P (e− χ), B−1/2

0 η(s)〉 = 0.
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Then, we have

−
∫ ∞

0

µ(s)〈B−1/2
0 Tη(s), B−1/2

0 P (e− χ)〉ds (4.9)

= −
∫ ∞

0

µ′(s)〈B−1/2
0 η(s), B−1/2

0 P (e− χ)〉ds

≤ k0

4
‖P (e− χ) ‖2 − c

∫ ∞
0

µ′(s)‖η(s)‖2V ∗0 ds.

Substituting (4.7)-(4.9) into (4.6), we are thus led to
d

dt
L0(z) +

k0

4
‖P (e− χ) ‖2 ≤ 2‖η‖2M + c‖∂tχ‖2V ∗0 (4.10)

− c

∫ ∞
0

µ′(s)‖η(s)‖2V ∗0 ds.

We now consider the product of equation (3.3) by η in M. As a consequence of
(K4) we get

1
2
d

dt
‖η‖2M +

λ

2
‖η‖2M −

1
2

∫ ∞
0

µ′(s)‖η(s)‖2V ∗0 ds (4.11)

≤
∫ ∞

0

µ(s)〈P (e− χ) , η(s)〉ds.

On the other hand, considering the product of equation (3.1) by P (e− χ), and
taking (4.11) into account, we obtain

1
2
d

dt

[
‖P (e− χ) ‖2 + ‖η‖2M

]
+
λ

2
‖η‖2M (4.12)

−1
2

∫ ∞
0

µ′(s)‖η(s)‖2V ∗0 ds+ 〈∂tχ, P (e− χ)〉 ≤ 0.

Let us perform the following products of equation (3.2).

• By B−1
0 ∂tχ , to get

1
2
d

dt

[
‖Pχ‖2V0

+ 2〈Φ(χ), 1〉
]

+ ‖∂tχ‖2V ∗0 + α‖∂tχ‖2 − 〈P (e− χ), ∂tχ〉 = 0, (4.13)

where we define
Φ(x) =

∫ x

0

φ(y)dy, ∀x ∈ R.

Here we have used the fact that, since ∂tχ has null average, there holds

〈Pφ(χ), ∂tχ〉 = 〈φ(χ), ∂tχ〉.

• By B−1
0 Pχ, to get

1
2
d

dt

[
‖Pχ‖2V ∗0 + α‖Pχ‖2

]
+ ‖Pχ‖2V0

+ 〈Pφ(χ), Pχ〉 = 〈P (e− χ), Pχ〉.

Notice first that, by the continuous embedding V0 ↪→ H0, we have

〈P (e− χ), Pχ〉 ≤ c‖P (e− χ) ‖2 +
1
2
‖Pχ‖2V0

.

Concerning the nonlinear term, there holds

〈Pφ(χ), Pχ〉 = 〈φ(χ), χ〉+ (2 + |Ω|)mφ(χ)mχ, (4.14)
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where we denote by |Ω| the Lebesgue measure of Ω. It is then immediate to check

c0‖χ‖4L4(Ω) − c̃ ≤ 〈φ(χ), χ〉,

c0 being the same constant appearing in (H1). Furthermore, by means of (H2)
and the bound on the mean value of χ, we infer

(2 + |Ω|)mφ(χ)mχ ≤ c̃
(

1 + ‖χ‖3L3(Ω)

)
≤ c̃+

c0
2
‖χ‖4L4(Ω).

We are therefore led to
1
2
d

dt

[
‖Pχ‖2V ∗0 + α‖Pχ‖2

]
+

1
2
‖Pχ‖2V0

≤ c‖P (e− χ) ‖2 + c̃. (4.15)

Adding together (4.12) and (4.13), we obtain

1
2
d

dt

[
‖P (e− χ) ‖2 + ‖η‖2M + ‖Pχ‖2V0

+ 2〈Φ(χ), 1〉
]

+
λ

2
‖η‖2M (4.16)

−1
2

∫ ∞
0

µ′(s)‖η(s)‖2V ∗0 ds+ ‖∂tχ‖2V ∗0 + α‖∂tχ‖2 ≤ 0.

Let ν > 0 be a small constant, and add together inequalities ν times (4.10) and
(4.16). By choosing

ν < min
{
λ

2
,

1
2c

}
,

we get

1
2
d

dt

[
‖P (e− χ) ‖2 + ‖η‖2M + ‖Pχ‖2V0

+ 2〈Φ(χ), 1〉+ νL0(z)
]

(4.17)

+c
[
‖P (e− χ) ‖2 + ‖η‖2M

]
+K0

[
‖∂tχ‖2V ∗0 + α‖∂tχ‖2

]
≤ 0,

for some positive K0 independent of α ∈ [0, 1].
We now introduce the functional, defined for all z = (e, χ, η) ∈ Hβ,γ and for all

α ∈ [0, 1]

Φ0(z) = ‖P (e− χ) ‖2 + ξ‖Pχ‖2V ∗0 + ξα‖Pχ‖2

+‖Pχ‖2V0
+ ‖η‖2M + 2〈Φ(χ), 1〉+ νL0(z),

where ξ > 0 is a small constant to be chosen in the sequel. Since the structural
bounds on the averages imply

‖e− χ‖2 + ‖χ‖2V − c̃ ≤ ‖P (e− χ) ‖2 + ξ‖Pχ‖2V ∗0 + ξα‖Pχ‖2 + ‖Pχ‖2V0

≤ ≤ ‖e− χ‖2 + ‖χ‖2V + c̃,

by means of (4.5) and assumptions (H1) and (H2), we infer that there exists a
constant ω0 ∈ (0, 1), independent of α ∈ [0, 1], such that

ω0‖z‖2H − c̃ ≤ Φ0(z) ≤ c
(
1 + ‖z‖4H

)
. (4.18)

Now we add ξ times (4.15) to (4.17). By setting ξ = c/2, we can find κ0 > 0,
independent of α ∈ [0, 1], such that

d

dt
Φ0 (Sα(t)z0) + κ0‖Sα(t)z0‖2H +K0

[
‖∂tχ‖2V ∗0 + α‖∂tχ‖2

]
≤ c̃. (4.19)
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We now proceed to prove inequality (4.1). Since, by assumption, ‖z0‖H ≤ R, by
(4.18) we infer the bounds

sup
t∈[0,∞)

Φ0 (Sα(t)z0) ≥ −ωR− c̃ and Φ0 (z0) ≤ c(1 +R4), (4.20)

so that we are in a position to apply the Gronwall-type lemma [2, Lemma 2.7],
which implies the existence of t0 = t0(R) > 0 such that

Φ0 (Sα(t)z0) ≤ sup
ζ∈Hβ,γ

{
Φ0(ζ) : κ0‖ζ‖2H ≤ c̃

}
, ∀t ≥ t0.

Together with (4.18) we then have

sup
t∈[t0,∞)

‖z(t)‖H ≤ c̃.

In order to prove the inequality we are left to prove the same control on [0, t0).
To this purpose, integrate (4.19) on [0, t0) and use bounds (4.18) and (4.20). This
yields

sup
t∈[0,t0)

‖z(t)‖H ≤ c.

By choosing C0 = min{c, c̃} we reach the desired conclusion.

Remark 7. If we work in a null average space for the order parameter (i.e., in the
space Hβ,0), condition (H1) can be replaced by the weaker

(H1′) lim inf
|r|→∞

φ(r)
r

> − 1
cP
,

where cP is the Poincaré-Wirtinger constant for null-average functions of V . This
is enough in order to deduce inequality (4.15).

4.2. Proof of inequality (4.2). Taking the product of equation (3.2) with Pχ in
H, we deduce

1
2
d

dt

[
‖Pχ‖2 + α‖Pχ‖2V0

]
+ ‖Pχ‖2W0

≤ 〈B0P (e− χ), Pχ〉 − 〈B0Pφ(χ), Pχ〉.

Concerning the first summand term on the right-hand side of the above inequality,
it is easy to get

〈B0P (e− χ), Pχ〉 = 〈P (e− χ), B0Pχ〉 ≤ c‖P (e− χ) ‖2 +
1
4
‖Pχ‖2W0

.

On the other hand, by assumption (H2), we have

〈B0Pφ(χ), Pχ〉 = 〈Pφ(χ), B0Pχ〉 ≤ c+ c‖χ‖6L6(Ω) +
1
4
‖Pχ‖2W0

.

Thanks to the continuous embedding V ↪→ L6(Ω) and (4.1), we finally deduce
d

dt

[
‖Pχ‖2 + α‖Pχ‖2V0

]
+ ‖Pχ‖2W0

≤ c (4.21)

Adding together inequalities (4.19) and (4.21), and invoking the bound on the mean
values of e and χ, we infer

d

dt
Φ0 (Sα(t)z0) +K0

[
‖χ‖2W + ‖∂tχ‖2V ∗0 + α‖∂tχ‖2

]
≤ c. (4.22)

Inequality (4.2) is then proven by integrating both members of (4.22) over (t, t+ r)
and using (4.1) and (4.18) once again.
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5. Global attractors. In this section we consider a further asymptotic property
for Sα(t), namely the existence of the global attractor Aα. We recall that the global
attractor is the (unique) compact subset of Hβ,γ which is fully invariant under the
action of Sα(t) and attracts bounded sets with respect to the Hausdorff semidistance
(cf., e.g., [40]).

Therefore, the main result of this section is

Theorem 5.1. The strongly continuous semigroup Sα(t) acting on the phase-space
Hβ,γ possesses a connected global attractor Aα = Aα(β, γ), which is given by

Aα = {zα(0) : zα(t) is a complete bounded trajectory of Sα(t)} .

Furthermore, since Aα is by definition fully invariant under the action of the
semigroup Sα(t), as an immediate consequence of the backward uniqueness property
given by Proposition 3, we have

Proposition 4. The semigroup Sα(t) on Aα uniquely extends to a continuous group
of operators S̃α(t) on Aα.

For any z0 = (e0, χ0, η0) ∈ B0, consider the decomposition of

z(t) = (e(t), χ(t), ηt) = Sα(t)z0

into the sum
z(t) = zd(t) + zc(t),

where
zd(t) = (ed(t), χd(t), ηtd) and zc(t) = (ec(t), χc(t), ηtc)

are the solutions at time t ∈ [0,∞) to the following problems, respectively,

∂ted +
∫ ∞

0

µ(s)ηd(s)ds = 0, (5.1)

∂tχd +B0

(
B0χd + α∂tχd + Pφ0(χd)− (ed − χd)

)
= 0, (5.2)

∂tηd = Tηd +B0(ed − χd), (5.3)

zd(0) = (Pe0, Pχ0, η0), (5.4)

and

∂tec +
∫ ∞

0

µ(s)ηc(s)ds = 0, (5.5)

∂tχc +B0

(
B0Pχc + α∂tχc + P (φ(χ)− φ(χd) + φ1(χd))

−P (ec − χc)
)

= 0, (5.6)

∂tηc = Tηc +B0P (ec − χc), (5.7)

zc(0) = (me0 ,mχ0 , 0), (5.8)

where the nonlinearities φ0 and φ1 are defined as in Remark 1.

The next Lemmas provide basic asymptotic properties for zd and zc, respectively.
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Lemma 5.2. There exist κd > 0 and cd ≥ 0, independent of α ∈ [0, 1], such that

‖zd(t)‖H ≤ cde−κdt‖z0‖H, ∀t ∈ [0,∞), (5.9)

for all z0 ∈ B0. In addition, for any fixed r > 0, the following bound holds

sup
z0∈B0

sup
t∈[0,∞)

∫ t+r

t

[
‖χd(τ)‖2W + ‖∂tχd(τ)‖2V ∗0 + α‖∂tχd(τ)‖2

]
dτ ≤ c, (5.10)

uniformly with respect to α ∈ [0, 1].

Lemma 5.3. For all t ∈ [0,∞), there exists a compact set K(t) = K(t, β, γ) ⊂ Hβ,γ
such that zc(t) ∈ K(t), for all z0 ∈ B0.

5.1. Proof of Lemma 5.2. Arguing as in the proof of Theorem 4.1, we can easily
deduce the inequality (analogous to (4.19))

d

dt
Φd (t) + κd‖zd(t)‖2H ≤ 0, ∀t ∈ [0,∞) (5.11)

for some positive κd, where we have defined, for all t ∈ [0,∞) and for all α ∈ [0, 1],
the functional

Φd(t) = ‖P (ed(t)− χd(t)) ‖2 + ξ‖Pχd(t)‖2V ∗0 + ξα‖Pχd(t)‖2

+‖Pχd(t)‖2V0
+ ‖ηd(t)‖2M + 2〈Φ0(χd(t)), 1〉+ νL0(zd(t)),

with

Φ0(x) =
∫ x

0

φ0(y)dy, ∀x ∈ R,

and ξ small enough. Note that in this case the constant c̃ in inequality (4.19) is
null, as a consequence of (H10) and of (5.4), which also implies the lower bound

ωd‖zd(t)‖2H ≤ Φd(t), ∀t ∈ [0,∞) (5.12)

for some ωd > 0. Therefore, [3, Lemma A.5] applied to inequality (5.11) yields the
exponential decay provided in (5.9).

On the other hand, the integral control (5.10) follows immediately by integrating
over (t, t+ 1) the inequality

d

dt
Φd (t) +Kd‖χd(t)‖2W ≤ c, ∀t ∈ [0,∞),

with Kd > 0, which can be deduced arguing as to get (4.22), and using (5.9) and
the bounds on ∂tχd again.

5.2. Proof of Lemma 5.3. For any σ > 0 we define the product space

Hσ = Vσ × V1+σ ×Mσ,

Vσ, V1+σ and Mσ having been introduced in section 2.
In the course of the proof we shall make use the following continuous Sobolev

embeddings, which can be deduced by (2.4) and (2.5), under the limitation σ ∈
(0, 1/2):

V 1−σ
0 ↪→ V1−σ ↪→ L6/(1+2σ)(Ω) (5.13)

V 1+σ
0 ↪→ V1+σ ↪→ L6/(1−2σ)(Ω) (5.14)

W 1,6/(3+2σ)(Ω) ↪→ V1−σ. (5.15)
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Moreover (see [31])

∇ : V1+σ → (Vσ)3 is a continuous linear operator. (5.16)

In the rest of the proof σ ∈ (0, 1/2) will be fixed. Moreover, the next set of
controls, which are straightforward consequence of Theorem 4.1 and Lemma 5.2,
will play a basic role.

sup
t∈[0,∞)

[
‖e− χ‖2 + ‖ed − χd‖2 + ‖χ(t)‖2V + ‖χd(t)‖2V

]
≤ c, (5.17)

and ∫ t

0

Θc(τ)dτ ≤ ct, ∀t ∈ [0,∞), (5.18)

where we define

Θc(t) = 1 + ‖χ(t)‖2W + ‖∂tχ(t)‖2V ∗0 + ‖χd(t)‖2W + ‖∂tχd(t)‖2V ∗0 . (5.19)

Observe also that, on account of the definition of Vσ and bound (5.17), we have

‖χc‖Vσ ≤ c+ ‖Pχc‖V σ0 , ∀σ > 0. (5.20)

We stress out the fact that the above estimates hold uniformly with respect to
z0 ∈ B0 and α ∈ [0, 1].

We now consider the product of (5.7) by ηc in Mσ. As a consequence of (K4)
we get

1
2
d

dt
‖ηc‖2Mσ

≤
∫ ∞

0

µ(s)〈Bσ/20 P (ec − χc) , Bσ/20 ηc(s)〉ds. (5.21)

Consider the product of equation (5.5) by Bσ0P (ec − χc); keeping (5.21) into
account, we get

1
2
d

dt

[
‖P (ec − χc)‖2V σ0 + ‖ηc‖2Mσ

]
≤ −〈Bσ/20 ∂tχc, B

σ/2
0 P (ec − χc)〉. (5.22)

Now we perform the following products of equation (5.6).

• By B−1+σ
0 ∂tχc, to get

1
2
d

dt

[
‖Pχc‖2V 1+σ

0
+ 2〈P (φ(χ)− φ(χd) + φ1(χd)) , Bσ0Pχc〉

]
(5.23)

+‖∂tχc‖2V −1+σ
0

+ α‖∂tχc‖2V σ0 − 〈B
σ/2
0 ∂tχc, B

σ/2
0 P (ec − χc)〉 = I1 + I2 + I3,

having set

I1 = 〈φ′(χ)Bσ0Pχc, ∂tχc〉, (5.24)

I2 = 〈(φ′(χ)− φ′(χd))Bσ0Pχc, ∂tχd〉, (5.25)

I3 = 〈φ′1(χd)Bσ0Pχc, ∂tχd〉. (5.26)

• By Bσ0Pχc, to get

1
2
d

dt

[
‖Pχc‖2V σ0 + α‖Pχc‖2V 1+σ

0

]
+ ‖Pχc‖2V 2+σ

0
(5.27)

= 〈Bσ/20 P (ec − χc), B(2+σ)/2
0 χc〉+ I4 + I5,
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having set

I4 = −〈Bσ/20 P (φ(χ)− φ(χd)) , B
(2+σ)/2
0 Pχc〉, (5.28)

I5 = −〈Bσ/20 Pφ1(χd), B
(2+σ)/2
0 Pχc〉; (5.29)

We need to estimate the nonlinear terms Ii (i = 1, .., 5), defined by (5.24)-(5.26)
and (5.28)-(5.29). Details appear to be rather cumbersome and therefore will be
outlined in the appendix. More precisely, we will prove

I1 + I2 + I3 ≤ cΘc + cΘc‖χc‖2V1+σ
+ c∗‖Pχc‖2V 2+σ

0
+

1
2
‖∂tχc‖2V −1+σ

0
,(5.30)

I4 + I5 ≤ cΘc +
1
4
‖Pχc‖2V 2+σ

0
, (5.31)

for some (generic) constant c∗ > 0, Θc being defined in (5.19).
Adding together inequalities (5.22) and (5.23), and exploiting (5.30), we have

that
1
2
d

dt

[
‖P (ec − χc) ‖2V σ0 + ‖Pχc‖2V 1+σ

0
+ ‖ηc‖2Mσ

+ 〈P (φ(χ)− φ(χd)) , Bσ0Pχc〉
]

≤ cΘc + cΘc‖χc‖2V1+σ
+ c∗‖Pχc‖2V 2+σ

0
. (5.32)

By (5.31) and owing to the immediate inequality

〈Bσ/20 P (ec − χc), B(2+σ)/2
0 χc〉 ≤ ‖P (ec − χc)‖2V σ0 +

1
4
‖Pχc‖2V 2+σ

0
,

equation (5.27) implies

1
2
d

dt

[
‖Pχc‖2V σ0 + α‖Pχc‖2V 1+σ

0

]
+

1
2
‖Pχc‖2V 2+σ

0
≤ cΘc + c‖ec − χc‖2Vσ .(5.33)

For all t ∈ [0,∞), for all α ∈ [0, 1] and for all fixed σ ∈ (0, 1/2), we define the
functional

Φc(t) =
1

2c∗
‖P (ec(t)− χc(t)) ‖2V σ0 + ‖Pχc(t)‖2V σ0 +

(
1

2c∗
+ α

)
‖Pχc(t)‖2V 1+σ

0

+‖ηtc‖2Mσ
+

1
2c∗
〈P (φ(χ(t))− φ(χd(t))) , Bσ0Pχc(t)〉+ kc,

where kc is some positive constant to be properly chosen. Indeed, since σ ∈ (0, 1/2),
then the continuous embedding V0 ↪→ V 2σ

0 holds. Therefore, by means of assump-
tion (H2) and bound (5.17), we have

〈P (φ(χ)− φ(χd)) , Bσ0Pχc(t)〉 ≤ c
(
‖χ‖3V + ‖χd‖3V

)
(‖χc‖V + ‖χd‖V ) ≤ c,

so that it is possible to choose kc large enough to ensure that Φc(t) ≥ 0, for all
t ∈ [0,∞). In addition, it is easy to realize that there exists a constant κc > 1,
independent of α ∈ [0, 1], such that

1
κc
‖zc(t)‖2Hσ ≤ Φc(t) ≤ κc‖zc(t)‖2Hσ + c, ∀t ∈ [0,∞). (5.34)

Adding together 1/2c∗ times (5.32) to (5.33), by means of (5.34), we obtain the
following differential inequality

d

dt
Φc(t) ≤ cΘc(t) + cΘc(t)Φc(t), ∀t ∈ [0,∞). (5.35)
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Recall that, by means of (5.8), there holds

Φc(0) = 0.

Then, applying a Gronwall-type lemma (see, e.g., [36]), and using (5.18), we find

Φc(t) ≤ 2ce
R t
0 Θ(τ)dτ

∫ t

0

Θ(τ)dτ ≤ cect, ∀t ∈ [0,∞),

which yields (cf. (5.34))

‖zc(t)‖2Hσ ≤ ce
ct, ∀t ∈ [0,∞). (5.36)

Compactness of the past history variable. We now need to overcome the problem
rising from the lack of compactness of the embedding Mσ ↪→ M. Exploiting the
assumptions of Lemma 2.1, we prove that the set

C(t) =
⋃

z0∈B0

ηtc ⊂Mσ, (5.37)

is relatively compact in M, for any fixed nonnegative time. Let also cσ denote a
constant depending on the structural data of the problem and on t, but independent
of α ∈ [0, 1].

Concerning the first condition, note that, by the representation formula (2.7) and
(5.8)

Tηc(s) = B0P (ec(t− s)− χc(t− s)) +B0P (ec(t)− χc(t))

so that, by means of (4.1)

‖Tηc‖2M−1
≤

∫ ∞
0

µ(s)
[
‖P (ec(t− s)− χc(t− s))‖2 + ‖P (ec(t)− χc(t))‖2

]
ds

≤ c

∫ ∞
0

µ(s)ds ≤ c,

where the constant appearing on the right-hand side does not depend on ηc. Thus,
invoking also (5.36), we have

sup
ηtc∈C(t)

[
‖ηtc‖Mσ

+ ‖Tηtc‖M−1

]
<∞,

which is the first condition of Lemma 2.1.
In order to control the tails, let us fix x ≥ 1. We first observe that, by interpo-

lation, there holds

‖f‖2V0
≤ ‖f‖2(1−ϑ)

V 1+σ
0

‖f‖2ϑV σ0 , ∀f ∈ V 1+σ
0 ,

where ϑ = σ/(1 + 2σ). The above inequality, with f = B−1
0 ηc(s), yields

‖ηc(s)‖2V ∗0 ≤ ‖ηc(s)‖
2(1−ϑ)

V −1+σ
0

‖ηc(s)‖2ϑV −2+σ
0

. (5.38)

By means of the representation formula (2.7), and inequality (5.36), we have

‖ηc(s)‖V −2+σ
0

≤
∫ s

0

‖P (ec(t− τ)− χc(t− τ)) ‖V σ0 dτ ≤ ϕ(s), ∀s ∈ [0,∞),
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having set ϕ(s) = cσ(1 + s). Here we used also the null initial condition (5.8), so
that, integrating (5.38) over (0, 1/x) ∪ (x,∞) with respect to µ(s)ds, we obtain

Tηc(x) =
∫

(0,1/x)∪(x,∞)

µ(s)1−ϑ‖ηc(s)‖2(1−ϑ)

V −1+σ
0

µ(s)ϑ‖ηc(s)‖2ϑV −2+σ
0

ds

≤
∫

(0,1/x)∪(x,∞)

(
µ(s)‖ηc(s)‖2V −1+σ

0

)1−ϑ (
µ(s)ϕ(s)2

)ϑ
ds.

The Hölder inequality, with exponents 1/(1− ϑ) and 1/ϑ, respectively, implies

Tηc(x) ≤ ‖ηc‖2(1−ϑ)
Mσ

(∫
(0,1/x)∪(x,∞)

µ(s)ϕ(s)2ds

)ϑ
(5.39)

≤ cσ

(∫
(0,1/x)∪(x,∞)

µ(s)ϕ(s)2ds

)ϑ
.

By (K3) and (2.6), we infer the immediate inequalities∫ 1/x

0

µ(s)ϕ(s)2ds ≤ ϕ(1)2‖µ‖L1(0,∞) ≤ cσk0,∫ ∞
x

µ(s)ϕ(s)2ds ≤ µ(s0)eλs0
∫ ∞
x

e−λsϕ(s)2ds,

for all x ≥ 1. Than we go back to (5.39) and we obtain

lim
x→∞

[
sup

ηtc∈C(t)
Tηtc(x)

]
= 0

is proven. Thus the thesis follows by Lemma 2.1.

Conclusion of the proof of Lemma 5.3. Define BσK(t) as the ball of Vσ × V1+σ of
radius K(t) = cect, centered at zero, and set

K(t) =
(
BσK(t) × C(t)

)
∩Hβ,γ , ∀t ∈ [0,∞),

where the closure is taken with respect to the H-norm. Since Vσ×V1+σ is compactly
embedded into H × V , then, by (5.36), it turns out that K(t) is relatively compact
in H. Moreover, as a consequence of (5.36), it is apparent that zc(t) ∈ K(t). The
proof of Lemma 5.3 is thus complete.

5.3. Proof of Theorem 5.1. Collecting lemmas 5.2 and 5.3, it is readily seen that

lim
t→∞

δH [Sα(t)B0] = 0,

δH being the Kuratowski measure of noncompactness in H. The thesis of Theo-
rem 5.1 is thus proven by invoking standard arguments of the theory of dynamical
systems (cf., for instance, [25]).
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6. Fractal dimension in the viscous case. In this section we prove that in the
viscous case (i.e., more precisely, there holds α > 0), the fractal dimension of the
global attractor Aα ⊂ Hσ, σ ∈ (0, σ0], is finite. Here we take σ0 = (3 − θ)/2, θ
being defined in assumption (H21) (see the appendix for details). More precisely,
there holds

Theorem 6.1. For any fixed α > 0, the fractal dimension of the global attractor
Aα is finite.

A well known condition to ensure the finite fractal dimension of the global at-
tractor of a dynamical system, namely, the α-contractivity, can be found in [6] (see
also [25, Theorem 2.8.1]), that is,

Theorem 6.2. Let X be a Banach space and let S(t) to be a strongly continuous
semigroup on X which possesses a bounded absorbing set B. Assume that there
exists η < 1 and a time t∗ > 0 such that

‖S(t∗)z1 − S(t∗)z2‖ ≤ η‖z1 − z2‖+ ρ (z1, z2) , ∀ z1, z2 ∈ B,

where ρ(·, ·) is a compact pseudometric on X . Then S(t) possesses a global attractor
A = ω(B) of finite fractal dimension.

Recall that a pseudometric ρ on X is said to be compact if and only if, for any
bounded set B ⊂ X , there exists a sequence {xn}n∈N ⊂ B such that ρ(xn, xm)→ 0
as n,m→∞ (cf. [25]).

Remark 8. We point out that Theorem 6.1 also yields the existence of the global
attractor already proven in Section 5.

If we set
z(t) = (e(t), χ(t), ηt) = Sα(t)z0

with z0 ∈ H, then the following preliminary result can be established

Lemma 6.3. For any given T > 0, the function

ρTσ : C ([0,∞);H)× C ([0,∞);H)→ [0,∞)

defined by

ρTσ (z1, z2) = sup
t∈[0,T ]

‖χ1(t)− χ2(t)‖V1−σ + |me1−e2 | , ∀ z1, z2 ∈ C([0,∞);H),

is a precompact pseudometric both on the space C([0, T ];H), and on the space H.

Proof. It is apparent that ρTσ defines a pseudometric on H. To prove the precom-
pactness, let us set

z0,n = (e0,n, χ0,n, η0,n) ∈ H s.t. ‖ (e0,n, χ0,n, η0,n) ‖H ≤ c,

for some c > 0 independent of n ∈ N, and define

zn(t) = Sα(t)z0,n = (en(t), χn(t), ηtn), ∀n ∈ N.

In this proof, cT shall denote a positive constant independent of n, but possibly
depending on T . Consider now the product of equation (3.2) by B−1

0 ∂tχn. We have

1
2
d

dt
‖Pχn‖2V0

+‖∂tχn‖2V ∗0 +α‖∂tχn‖2 = −〈φ(χn), ∂tχn〉+〈P (en−χn), ∂tχn〉. (6.1)



26 G. MOLA

So that, by (H2) and the bound on the H-norm on z0,n, we have

− 〈φ(χn), ∂tχn〉 ≤
1
α
‖φ(χn)‖2 +

α

4
‖∂tχn‖2 ≤

1
α

(
1 + c‖χn‖2V

)
+
α

4
‖∂tχn‖2

≤ c

α
+
α

2
‖∂tχn‖2

〈P (en − χn), ∂tχn〉 ≤
1
α
‖en − χn‖2 +

α

4
‖∂tχn‖2 ≤

c

α
+
α

4
‖∂tχn‖2.

Therefore (6.1) yields

d

dt
‖Pχn‖2V0

+ ‖∂tχn‖2V ∗0 +
α

2
‖∂tχn‖2 ≤

c

α
. (6.2)

Applying [3, Lemma A.5] to (6.2), we infer

‖Pχn(t)‖2V0
≤ cT

α
, ∀t ∈ [0, T ].

Therefore, since we have
mχn ≤ ‖χn‖V ≤ c,

we deduce
‖χn‖L∞(0,T ;V ) ≤

cT
α
.

Then, integrating (6.2) over [0, T ]

‖∂tχn‖L2(0,T ;V ∗0 ) ≤
cT
α
.

On account of a well-known compactness result (see [39, Corollary 4]), we conclude
that there exists a subsequence of χn which converges in C ([0, T ];V1−σ), for any
σ ≤ σ0. This proves the precompactness of the first summand, ρTσ being constant
on the first and the third components. Concerning the second summand, the thesis
follows easily, since it belongs to a finite dimensional space.

Remark 9. It is worth noting that, by slightly modifying the above proof, it is
possible to remove the assumption α > 0.

The following lemma is crucial to prove Theorem 6.1.

Lemma 6.4. For any fixed α > 0, there exist two nonnegative continuous functions

f ∈ L1(0,∞) ∩ C([0,∞)) and gα ∈ L∞loc(0,∞),

such that

‖Sα(t)z0,1 − Sα(t)z0,2‖2H ≤ f(t)‖z0,1 − z0,2‖2H + gα(t)ρtσ(z0,1, z0,2)2 (6.3)

for any t ∈ [0,∞) and any z0,1, z0,2 ∈ B0.

Proof. The proof of this lemma will be carried out by sharply refining the continuous
dependence estimates provided by Section 3.2. Once again, for z0,1, z0,2 ∈ B0, we
set

z̃0 = (ẽ0, χ̃0, η̃0) = (e0,1, χ0,1, η0,1)− (e0,2, χ0,2, η0,2),

z1(t) = (e1(t), χ1(t), ηt1) = Sα(t)z0,1 and z2(t) = (e2(t), χ2(t), ηt2) = Sα(t)z0,2.

Then the difference of trajectories, defined by

z̃(t) = (ẽ(t), χ̃(t), η̃t) = Sα(t)z0,1 − Sα(t)z0,2,

fulfills system (3.6)-(3.9).
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By linearity, inequality (4.10) can be extended to the difference of trajectories.
This yields

d

dt
L0(z̃)+

k0

2
‖P (ẽ− χ̃) ‖2 ≤ 2k0‖η̃‖2M+‖∂tχ̃‖2V ∗0 −c

∫ ∞
0

µ′(s)‖η̃(s)‖2V ∗0 ds. (6.4)

We now consider the product of (3.8) by η̃ in M. As a consequence of (K4) we
get

1
2
d

dt
‖η̃‖2M +

λ

2
‖η̃‖2M −

1
2

∫ ∞
0

µ′(s)‖η̃(s)‖2V ∗0 ds

≤
∫ ∞

0

µ(s)〈P (ẽ− χ̃) , η̃(s)〉ds. (6.5)

Take the product of equation (3.6) by P (ẽ − χ̃). Keeping (6.5) into account, we
obtain

1
2
d

dt

[
‖P (ẽ− χ̃) ‖2 + ‖η̃‖2M

]
+
λ

2
‖η̃‖2M (6.6)

−1
2

∫ ∞
0

µ′(s)‖η̃(s)‖2V ∗0 ds+ 〈∂tχ, P (ẽ− χ̃)〉 ≤ 0.

We now perform the following products of equation (3.7) by suitable test func-
tions.

• By B−1
0 ∂tχ̃, to get

1
2
d

dt
‖Pχ̃‖2V0

+ ‖∂tχ̃‖2V ∗0 + α‖∂tχ̃‖2 − 〈∂tχ̃, P (ẽ− χ̃)〉 = −〈φ(χ1)− φ(χ2), ∂tχ̃〉.

Since
− 〈φ(χ1)− φ(χ2), ∂tχ̃〉 ≤

1
2α
‖φ(χ1)− φ(χ2)‖2 +

α

2
‖∂tχ̃‖2,

then
1
2
d

dt
‖Pχ̃‖2V0

+ ‖∂tχ̃‖2V ∗0 +
α

2
‖∂tχ̃‖2 + 〈∂tχ̃, P (ẽ− χ̃)〉 ≤ 1

α
‖φ(χ1)− φ(χ2)‖2. (6.7)

• By v = B−1
0 Pχ̃, to get

1
2
d

dt

[
‖Pχ̃‖2V ∗0 + α‖Pχ̃‖2

]
+ ‖Pχ̃‖2V0

= 〈P (ẽ− χ̃), P χ̃〉 − 〈P (φ(χ1)− φ(χ2)) , P χ̃〉.
As a consequence of the immediate inequalities

〈P (ẽ− χ̃), P χ̃〉 ≤ ‖P (ẽ− χ̃)‖‖Pχ̃‖ ≤ c‖ẽ− χ̃‖‖χ̃‖V1−σ

−〈P (φ(χ1)− φ(χ2)) , P χ̃〉 ≤ c‖φ(χ1)− φ(χ2)‖2 +
1
2
‖Pχ̃‖2V0

,

we infer
1
2
d

dt

[
‖Pχ̃‖2V ∗0 + α‖Pχ̃‖2

]
+

1
2
‖Pχ̃‖2V0

(6.8)

≤ c‖ẽ− χ̃‖‖χ̃‖V1−σ + c‖φ(χ1)− φ(χ2)‖2.
The term to be controlled is

J = c‖φ(χ1)− φ(χ2)‖2.
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First note that, for all σ ∈ (0, 1/2), the following embeddings hold

L6/(1−2σ)(Ω) ↪→ L12/(2−σ)(Ω),

V1−σ/2 ↪→ L6/(1+σ)(Ω).

Now we use assumption (H2) and then apply the Hölder inequality choosing the
exponents 3

2−σ and 3
1+σ , respectively

J ≤ c‖(1 + |χ1|2 + |χ2|2)χ̃‖2

≤ c
(

1 + ‖χ1‖4L12/(2−σ)(Ω) + ‖χ2‖4L12/(2−σ)(Ω)

)
‖χ̃‖2L6/(1+σ)(Ω)

≤ c
(

1 + ‖χ1‖4L6/(1−2σ)(Ω) + ‖χ2‖4L6/(1−2σ)(Ω)

)
‖χ̃‖2V1−σ/2

≤ c
(

1 + ‖χ1‖4V1+σ
+ ‖χ2‖4V1+σ

)
‖χ̃‖2V1−σ/2

.

Moreover, since, by interpolation

‖f‖V1+σ ≤ ‖f‖
1/2
V1+2σ

‖f‖1/2V ≤ c‖f‖1/2W ‖f‖
1/2
V , ∀f ∈W,

and
‖g‖V1−σ/2 ≤ ‖g‖

1/2
V ‖g‖

1/2
V1−σ

, ∀g ∈ V,
then we deduce

J ≤ c
(
‖χ1‖2W + ‖χ2‖2W

)
‖χ̃‖V ‖χ̃‖V1−σ . (6.9)

Combining (6.6) with (6.7) and taking (6.9) into account, we obtain the inequality
1
2
d

dt

[
‖P (ẽ− χ̃) ‖2 + ‖η̃‖2M + ‖χ̃‖2V0

]
+
λ

2
‖η̃‖2M (6.10)

−1
2

∫ ∞
0

µ′(s)‖η̃(s)‖2V ∗0 ds+ ‖∂tχ‖2V ∗0 ≤
c

α

(
‖χ1‖2W + ‖χ2‖2W

)
‖χ̃‖V ‖χ̃‖V1−σ .

Let ν > 0 be a small constant, and add together inequalities ν times (6.6) to
(6.10). By choosing

ν < min
{

λ

2k0
,

1
2c

}
,

we get
1
2
d

dt

[
‖P (ẽ− χ̃) ‖2 + ‖η̃‖2M + ‖Pχ‖2V0

+ νL0(z)
]

(6.11)

+c
[
‖P (ẽ− χ̃) ‖2 + ‖η̃‖2M

]
≤ c

α

(
‖χ1‖2W + ‖χ2‖2W

)
‖χ̃‖V ‖χ̃‖V1−σ .

Let us introduce the following functional, defined for all t ∈ [0,∞)

Φ̃0(t) = ‖P (ẽ(t)− χ̃(t)) ‖2 + ‖Pχ̃(t)‖2V ∗0 + α‖Pχ̃(t)‖2 + ‖Pχ̃(t)‖2V0

+‖η̃t‖2M + νL0(z̃(t)) + k̃0,

for a positive constant k̃0 to be properly chosen. Observe that

‖ẽ− χ̃‖2 + ‖χ‖2V ≤ ‖P (ẽ− χ̃) ‖2 + ‖Pχ‖2V0
+ c

(
m2ee−eχ +m2eχ) , (6.12)

so that we can find k̃0 large enough to have

ω̃0‖z̃(t)‖2H ≤ Φ̃0(t) ≤ c‖z̃(t)‖2H + c
(
m2ee−eχ +m2eχ) , ∀t ∈ [0,+∞), (6.13)
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for some positive ω̃0.
We now add (6.8) to (6.11). By (6.12) and (6.13), there exists κ̃0 > 0 such that

d

dt
Φ̃0 (t) + κ̃0‖z̃(t)‖2H ≤ c

α

(
‖χ1(t)‖2W + ‖χ2(t)‖2W

)√
Φ̃0 (t)‖χ̃(t)‖V1−σ

+c
(
m2ee−eχ +m2eχ) , ∀t ∈ [0,∞).

Since
meχ ≤ c‖χ̃‖V1−σ ,

then [3, Lemma A.5] yields

Φ̃0 (t) ≤ 2e−eκ0tΦ̃0 (z̃0) + Cα(t)

[
sup
τ∈[0,t]

‖χ̃(τ)‖2V1−σ
+m2ee

]
, ∀t ∈ [0,∞),

having set (see (4.2))

Cα(t) =
c

α

[∫ t

0

(
‖χ1(τ)‖2W + ‖χ2(τ)‖2W

)
dτ

]2

≤ c

α
(1 + t2).

Therefore, recalling (6.13), Lemma 6.4 is proven, provided that we choose

f(t) = ce−eκt and gα(t) =
c

α
(1 + t2).

7. Smoothness of the attractor in the viscous case. In this section we aim
to investigate the regularity properties of Aα in the viscous case. Under a further
assumption on the nonlinearity φ that reads, namely,

(H3) φ′(r) ≥ −`, ∀r ∈ R,
for some ` ≥ 0, we shall prove the following

Theorem 7.1. For any fixed α > 0, Aα is a bounded subset of the higher order
phase space

Vβ,γ = Hβ,γ ∩ (V ×W ×N ) .

Remark 10. We immediately stress out that the inclusion V = V ×W ×N ⊂ H
is clearly continuous but not compact. Nevertheless, we know already that Aα is
compact by definition.

In order to prove Theorem 7.1 we shall exploit the decomposition technique
devised in [38]. As a consequence of the assumption (H3) and bound (4.1), we can
choose θ ≥ ` large enough such that the inequality holds

1
2
‖z‖2V + (θ − 2`)‖z‖2 − 〈φ′(χ(t))z, z〉 ≥ 0 (7.1)

holds for every z ∈ V and every t ∈ [0,∞). Then we define

ψ(r) = φ(r) + θr, ∀r ∈ R.
To this purpose we consider the further decomposition

z(t) = zd(t) + zc(t),

where
zd(t) = (ed(t), χd(t), ηd,t) and zc(t) = (ec(t), χc(t), ηc,t)
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are the solutions at time t ∈ [0,∞) to the following problems, respectively,

∂te
d +

∫ ∞
0

µ(s)ηd(s)ds = 0, (7.2)

∂tχ
d +B0

(
B0χ

d + α∂tχ
d + P (ψ(χ)− ψ(χc))− (ηd − χd)

)
= 0, (7.3)

∂tη
d = Tηd +B0(ηd − χd), (7.4)

zd(0) = (Pe0, Pχ0, η0), (7.5)

and

∂te
c +

∫ ∞
0

µ(s)ηc(s)ds = 0, (7.6)

∂tχ
c +B0

(
B0Pχ

c + α∂tχ
c + Pψ(χc)− P (ec − χc)

)
= θB0Pχ, (7.7)

∂tη
c = Tηc +B0P (ηc − χc), (7.8)

zc(0) = (me0 ,mχ0 , 0). (7.9)

The next technical lemmas provide asymptotic properties of zc and zd.

Lemma 7.2. There holds

sup
z0∈B0

sup
t∈[0,∞)

‖zc‖H <∞. (7.10)

Moreover, the following integral bound holds

sup
z0∈B0

sup
t∈[0,∞)

∫ t

s

[
‖∂tχc‖2V ∗0 + α‖∂tχc‖2

]
dτ ≤ ω(t− s) +

c

ω
, (7.11)

for all t ≥ s ≥ 0 and all ω > 0.

Proof. The proof of inequality (7.10) goes exactly like the one of (4.1) (cf. Section
4.1), noticing that B0Pχ ∈ L∞(0,∞;V ∗0 ). In order to prove (7.11), we consider the
product of equation (7.8) byηc in M, equation (7.6) with P (ec − χc) and equation
(7.7) by B−1

0 ∂tχ
c. Summing up the resulting equalities, and exploiting assumption

(K4) once again, we end up with

1
2
d

dt

[
‖P (ec − χc) ‖2 + ‖Pχc‖2V0

+ ‖ηc‖2M + 2〈Ψ(χ), 1〉
]

(7.12)

+‖∂tχc‖2V ∗0 + α‖∂tχc‖2 ≤ θ〈χ, ∂tχc〉,

where we have defined

Ψ(x) =
∫ x

0

ψ(y)dy, ∀x ∈ R.

Since

〈χ, ∂tχc〉 =
d

dt
〈χ, χc〉 − 〈∂tχ, χc〉,

and, by means of (7.10), we have, for all ω > 0,

− θ〈∂tχ, χc〉 ≤
ω

2
‖χc‖2V0

+
c

ω
‖∂tχ‖2V ∗0 ≤

ω

2
+
c

ω
‖∂tχ‖2V ∗0 ,



CONSERVED PHASE-FIELD SYSTEM WITH MEMORY 31

then we get from (7.12)
d

dt
Φc0(t) + ‖∂tχc‖2V ∗0 + α‖∂tχc‖2 ≤

ω

2
+
c

ω
‖∂tχ‖2V ∗0 , (7.13)

having set, for all t ∈ [0,∞),

Φc0(t) = ‖P (ec(t)− χc(t)) ‖2 +‖ηc,t‖2M+‖Pχc(t)‖2V0
+2〈Ψ(χ(t)), 1〉+θ〈χ(t), χc(t)〉.

Thanks to assumption (H2) and to bounds (4.1) and (7.10), we infer Φc0(t) ≤ c
for all t ∈ [0,∞). Therefore the thesis is reached by integrating (7.13) on the
time-interval (s, t), and by invoking integral bound (4.2).

Theorem 7.1 is a consequence of the following

Lemma 7.3. There exist κ > 0, independent of α ∈ (0, 1], and cα > 0, such that

‖zd(t)‖H ≤ cαe−κt‖z0‖H, ∀t ∈ [0,∞), (7.14)

for all z0 ∈ B0.

Lemma 7.4. There exists Cα > 0 such that

sup
z0∈B0

sup
t∈[0,∞)

‖zc‖V ≤ Cα. (7.15)

In fact, Lemma 7.3 and 7.4 yield the existence of an exponentially attracting (closed
and bounded) set in Vβ,γ . This entails the thesis of Theorem 7.1, since Aα is, by
definition, the minimal (closed) attracting set in Hβ,γ .

7.1. Proof of Lemma 7.3. First notice that, by linearity, the functional L0 defined
in Section 4.1 fulfills the estimates

|L0(zd)| ≤ c
(
‖ed − χd‖2 + ‖ηd‖2M

)
(7.16)

and
d

dt
L0(zd) +

k0

4
‖ed − χd‖2 ≤ c

(
‖ηd‖2M + ‖∂tχd‖2V ∗0

)
. (7.17)

Now multiply equation (7.3) by B−1
0 χd, to get

1
2
d

dt

[
‖χd‖2V ∗0 + α‖χd‖2

]
+ ‖χd‖2V0

+ 〈ψ(χ)− ψ(χc), χd〉 = 〈ed − χd, χd〉.

Since assumption (H3) entails ψ′(r) ≥ 0 for any r ∈ R, then

〈ψ(χ)− ψ(χc), χd〉 =
∫

Ω

ψ′(ξ)|χd|2dΩ ≥ 0,

where, for all t ∈ [0,∞), we have set

min{χ(t), χd(t)} ≤ ξ(t) ≤ max{χ(t), χd(t)}.
By the immediate inequality

〈ed − χd, χd〉 ≤ 1
2
‖χd‖2V0

+ ‖ed − χd‖2,

we get
d

dt

[
‖χd‖2V ∗0 + α‖χd‖2

]
+ ‖χd‖2V0

≤ 2‖ed − χd‖2. (7.18)

Next, we multiply equation (7.4) by ηd in M, equation (7.2) by ed − χd and
equation (7.3) by B−1

0 ∂tχ
d. Analogously the the previous cases, adding together



32 G. MOLA

the resulting equalities, and exploiting assumption (K4) once again, we end up
with the following inequality

d

dt

[
‖ed − χd‖2 + ‖χd‖2V0

+ ‖ηd‖2M
]

+ 2λ‖ηd‖2M + 2〈ψ(χ)− ψ(χc), ∂tχd〉 ≤ 0. (7.19)

Concerning the nonlinear term, observe that

2〈ψ(χ)− ψ(χc), ∂tχd〉 =
d

dt

[
2〈ψ(χ)− ψ(χc), χd〉 − 〈ψ′(χ), |χd|2〉

]
+2〈[ψ′(χ)− ψ′(χc)]χd, ∂tχc〉 − 〈ψ′′(χ)|χd|2, ∂tχd〉.

Moreover, by means of assumption (H2), (4.1) and (7.10), we have

2〈[ψ′(χ)− ψ′(χc)]χd, ∂tχc〉 − 〈ψ′′(χ)|χd|2, ∂tχd〉

≤ c‖(|χ|2 + |χc|2)|∂tχc||χd|2‖+ c‖|χ|2|∂tχd||χd|2‖

≤ c(‖χ‖2V + ‖χc‖2V )‖∂tχc‖‖χd‖2V0

≤ ε‖χd‖2V0
+ c(‖∂tχ‖2 + ‖∂tχd‖2)‖‖χd‖2V0

,

being ε > 0 to be chosen small enough in the sequel. Therefore, from (7.19), we
infer

d

dt

[
‖ed − χd‖2 + ‖χd‖2V0

+ ‖ηd‖2M + 2〈ψ(χ)− ψ(χc), χd〉

−〈ψ′(χ), |χd|2〉
]
≤ a‖χd‖2V0

+ c(‖∂tχ‖2 + ‖∂tχd‖2)‖χd‖2V0
. (7.20)

Adding together γ times (7.17), δ times (7.18) and (7.20), for some γ, δ > 0 to
be chosen in the sequel, there holds

d

dt
Φd(t) +

(
γk0

4
− 2δ

)
‖ed − χd‖2 +

(
δ

2
− ε
)
‖χd‖2V0

(7.21)

+ (2λ− γc) ‖ηd‖2M + (1− γ) ‖∂tχd‖2V ∗0 ≤ c
(
‖∂tχd‖2V ∗0 + ‖∂tχd‖2

)
‖χd‖2V0

,

having set, for all t ∈ [0,∞),

Φd(t) = ‖ed(t)− χd(t)‖2 + ‖χd(t)‖2V0
+ ‖ηd,t‖2M + δ‖χd(t)‖2V ∗0 + δα‖χd(t)‖2

+2〈[ψ′(χ)− ψ′(χc)]χd, ∂tχc〉 − 〈ψ′′(χ)|χd|2, ∂tχd〉+ γL0(zd(t)).

Since assumption (H3) and (7.1) entail

2〈ψ(χ)− ψ(χc), χd〉 − 〈ψ′(χ), |χd|2〉 ≥ (θ − 2`)‖χd‖2 − 〈φ′(χ)χd, χd〉 ≥ −1
2
‖χd‖2V0

,

by choosing

γ < min {2λ/c, 1/c, 1} , δ < k0/8 and ε < δ/2,

we deduce the inequality

1
2
‖zd(t)‖2H ≤ Φd(t) ≤ c‖zd(t)‖2H. (7.22)
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Therefore, for some κ > 0

d

dt
Φd(t) + 2κΦd(t) ≤ Λ(t)Φd(t),

being

Λ(t) = c
(
‖∂tχ(t)‖2V ∗0 + ‖∂tχ(t)‖2 + ‖∂tχc(t)‖2V ∗0 + ‖∂tχc(t)‖2

)
.

Since, on account of (4.17), we easily deduce∫ ∞
0

(
‖∂tχ(t)‖2V ∗0 + α‖∂tχ(t)‖2

)
dτ ≤ c,

keeping in mind (7.11), and choosing ω small enough, we are led to∫ t

s

Λ(τ)dτ ≤ κ(t− s) +
c

α
,

for all t ≥ s ≥ 0 and all ω > 0. We are now in a position to apply [38, Lemma 5],
which yields

Φd(t) ≤ Φd(0)ec/αe−κt, ∀t ∈ [0,∞).

The thesis is then achieved by invoking (7.22) and setting cα = ec/2α.

7.2. Proof of Lemma 7.4. We first derive a further integral bound for χc. Let
us multiply equation (7.7) by Pχc. Arguing as in Subsection 4.2, we easily deduce
the inequality (analogous to (4.21))

d

dt

[
‖Pχc‖2 + α‖Pχc‖2V0

]
+ ‖Pχc‖2W0

≤ θ〈B1/2
0 Pχ,B

1/2
0 Pχc〉+ c (7.23)

≤ ‖χ‖V ‖χc‖V + c ≤ c,

where in the last inequality we have used bounds (4.1) and (7.10). Integrating (7.23)
on the time-interval (t, t+ r) and using (7.10) once again, we have

sup
z0∈B0

sup
t∈[0,∞)

∫ t+r

t

‖χc(τ)‖2W dτ ≤ c. (7.24)

Let us now introduce, for all z = (e, χ, η) ∈ Vβ,γ , the functional

L1(z) = −
∫ ∞

0

ψ(s)〈ηc(s), ec − χc〉ds,

where ψ is the truncated kernel defined in Subsection 4.1. Using inequality (4.3)
and (4.4) and bound (7.10) we get at once

|L1(zc)| ≤ ‖P (ec − χc)‖2V0
+ c. (7.25)

Taking the time derivative of L1(zc) and using (7.8) we obtain

d

dt
L1(zc) +

k0

2
‖P (ec − χc)‖2V0

=
∫ ∞

0

ψ(s)〈ηc(s), ∂tχc〉ds (7.26)

+
∫ ∞

0

ψ(s)µ(s)‖ηc(s)‖2ds+
∫ ∞

0

ψ(s)〈P (ec − χc), Tηc(s)〉ds,
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Using once more (4.3), (4.4) and (7.10), we deduce∫ ∞
0

ψ(s)〈ηc(s), ∂tχc〉ds ≤
(∫ ∞

0

ψ(s)ds
)
‖∂tχc‖2 +

∫ ∞
0

ψ(s)‖ηc(s)‖2ds

≤ c‖∂tχ‖2 + ‖η‖2N , (7.27)∫ ∞
0

ψ(s)µ(s)‖ηc(s)‖2ds ≤ µ(s0)‖ηc‖2N ≤ ‖ηc‖2N . (7.28)

Observe now that

lim
s→0

ψ(s)〈P (ec − χc), ηc(s)〉 = lim
s→∞

ψ(s)〈P (ec − χc), ηc(s)〉 = 0.

Then, integrating by parts with respect to s the third summand in (7.26), we obtain∫ ∞
0

ψ(s)〈P (ec − χc), Tηc(s)〉ds = −
∫ ∞

0

ψ′(s)〈P (ec − χc), ηc(s)〉ds

≤ k0

4
µ(s0)‖P (ec − χc)‖2V0

− 1
k0

∫ ∞
0

µ′(s)‖ηc(s)‖2V ∗0 ds

≤ k0

4
‖P (ec − χc)‖2V0

+
λ

k0
‖ηc‖2M ≤

k0

4
‖P (ec − χc)‖2V0

+ c. (7.29)

Substituting (7.27)-(7.29) into (7.26), we deduce

d

dt
L1(zc) +

k0

4
‖P (ec − χc)‖2V0

≤ c‖∂tχc‖2 + 2‖ηc‖2N + c. (7.30)

Next, we multiply equation (7.8) by ηc in N , equation (7.6) by B0P (ec − χc) and
equation (7.7) by ∂tχc. Analogously to the previous cases, summing up the resulting
equalities, and exploiting assumption (K4) once again, we end up with the following
inequality

1
2
d

dt

[
‖P (ec − χc)‖2V0

+ ‖Pχc‖2W0
+ ‖ηc‖2N

]
+ λ‖ηc‖2N (7.31)

+‖∂tχc‖2 + α‖∂tχc‖2V0
≤ −〈B0Pψ(χc), ∂tχc〉+ θ〈B0Pχ, ∂tχ

c〉.
By means of assumption (H2) and bounds (4.1) and (7.10), we see that

〈B0Pψ(χc), ∂tχc〉+ θ〈B0Pχ, ∂tχ
c〉 ≤ c

α
‖ψ′(χc)∇χc‖2 +

c

α
‖χ‖2V + α‖∂tχc‖2V0

≤ c

α
+
c

α

(
1 + ‖χc‖2V

)
‖∇χc‖2V + α‖∂tχc‖2V0

≤ c

α

(
1 + ‖χc‖2W

)
+ α‖∂tχc‖2V0

,

so that, in (7.31),

d

dt

[
‖P (ec − χc)‖2V0

+ ‖Pχc‖2W0
+ ‖ηc‖2N

]
+ 2λ‖ηc‖2N+ ≤ c

α

(
1 + ‖χc‖2W

)
. (7.32)

Now we add together equation (7.23), δ times equation (7.30) and (7.32), to get

d

dt
Φc(t) +

k0

2
‖P (ec − χc)‖2V0

+ ‖Pχc‖2W0
+ 2(λ− δ)‖ηc‖2N (7.33)

≤ c

α

(
1 + ‖χc‖2W + α‖∂tχc‖2

)
,
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having set, for all t ∈ [0,∞),

Φc(t) = ‖P (ec(t)− χc(t)) ‖2V0
+ ‖ηc,t‖2N + ‖Pχc(t)‖2W0

+ α‖Pχc‖2V0

+δL1(zc(t)) + k,

being k a positive constant. Indeed, due to (7.25), it is possible to choose k large
enough so as to ensure Φc(t) ≥ 0. Moreover, as a consequence of the bound on the
averages, we realize that

1
2
‖zc(t)‖2V ≤ Φc(t) ≤ c‖zc(t)‖2V + c. (7.34)

Therefore, for some κ > 0,

d

dt
Φc(t) + 2κΦc(t) ≤ c

α

(
1 + ‖χc‖2W + α‖∂tχc‖2

)
.

Thanks to (7.11) and (7.24), it is possible to apply [3, Lemma A.5], which yields

Φc(t) ≤ Φc(0)e−κt +
c

α

∫ t

0

(
1 + ‖χc(τ)‖2W + α‖∂tχc(τ)‖2

)
e−κ(t−τ)dτ ≤ c

α
.

The thesis is then reached, by invoking (7.34) and setting Cα =
√
c/α.

8. Appendix: control of the nonlinear terms (5.24)-(5.26) and (5.28)-(5.29).
In the sequel we shall indicate by c∗ ≥ 0 a generic constant, independent of α ∈ [0, 1],
while Θc is defined by (5.19).

Control of I1 (cf. (5.24)). We have

I1 ≤ ‖φ′(χ)Bσ0Pχc‖V1−σ‖∂tχc‖V −1+σ
0

. (8.1)

By means of embedding (5.15), we get

‖φ′(χ)Bσ0Pχc‖V1−σ ≤ c‖φ′(χ)Bσ0Pχc‖L6/(3+2σ)(Ω)

+c‖φ′(χ)∇Bσ0Pχc‖L6/(3+2σ)(Ω) + c‖φ′′(χ)∇χBσ0Pχc‖L6/(3+2σ)(Ω).

In order to estimate the terms appearing on the right-hand side of the above in-
equality, we use embeddings (5.14)-(5.16), controls (5.17)-(5.20) and assumption
(H2). Applying the generalized Hölder inequality with exponents 3+2σ

2 and 3+2σ
1+2σ ,

respectively, we obtain

‖φ′(χ)Bσ0Pχc‖L6/(3+2σ)(Ω) ≤ c
(

1 + ‖χ‖2L6(Ω)

)
‖Bσ0Pχc‖L6/(1+2σ)(Ω)

≤ c
(
1 + ‖χ‖2V

)
‖Bσ0Pχc‖V1−σ ≤ c‖χc‖V1+σ ,

‖φ′(χ)∇Bσ0Pχc‖L6/(3+2σ)(Ω) ≤ c
(

1 + ‖χ‖2L6(Ω)

)
‖∇Bσ0Pχc‖L6/(1+2σ)(Ω)

≤ c
(
1 + ‖χ‖2V

)
‖∇Bσ0Pχc‖V1−σ ≤ c‖∇Bσ0Pχc‖V1−σ

≤ c‖Bσ0Pχc‖V2−σ ≤ c‖χc‖V2+σ ≤ c+ c‖Pχc‖V 2+σ
0

.
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By choosing the Hölder exponents 3 + 2σ, 3 + 2σ and 3+2σ
1+2σ , respectively, we get

‖φ′′(χ)∇χBσ0Pχc‖L6/(3+2σ)(Ω)

≤ c
(
1 + ‖χ‖L6(Ω)

)
‖∇χ‖L6(Ω)‖Bσ0Pχc‖L6/(1+2σ)(Ω)

≤ c (1 + ‖χ‖V ) ‖∇χ‖V ‖Bσ0Pχc‖V1−σ

≤ c‖χ‖W ‖χc‖V1+σ .

Back to (8.1), a further application of the Young inequality yields

I1 ≤ c+ cΘc‖χc‖2V1+σ
+ c∗‖Pχc‖2V 2+σ

0
+

1
2
‖∂tχc‖2V −1+σ

0
.

Control of I2 (cf. (5.25)). We have

I2 ≤ ‖ (φ′(χ)− φ′(χd))Bσ0Pχc‖V ‖∂tχd‖V ∗0 , (8.2)

with

‖ (φ′(χ)− φ′(χd))Bσ0Pχc‖V

≤ c‖ (φ′(χ)− φ′(χd))Bσ0Pχc‖+ c‖ (φ′(χ)− φ′(χd))∇Bσ0Pχc‖

+c‖φ′′(χ)∇χcBσ0Pχc‖+ c‖ (φ′′(χ)− φ′′(χd))∇χdBσ0Pχc‖.

Invoking embeddings (5.14)-(5.16) and controls (5.17)-(5.20), we use again the gen-
eralized Hölder inequality. On account of assumption (H2), we now set the Hölder
exponents equal to 3, 3

1−2σ and 3
1+2σ , respectively. We find

‖ (φ′(χ)− φ′(χd))Bσ0Pχc‖ ≤ c‖ (1 + |χ|+ |χd|)χcBσ0Pχc‖

≤ c
(
1 + ‖χ‖L6(Ω) + ‖χd‖L6(Ω)

)
‖χc‖L6/(1−2σ)(Ω)‖Bσ0Pχc‖L6/(1+2σ)(Ω)

≤ c (1 + ‖χ‖V + ‖χd‖V ) ‖χc‖V1+σ‖Bσ0Pχc‖V1−σ ≤ c‖χc‖2V1+σ
.

Then, we have

‖ (φ′(χ)− φ′(χd))∇Bσ0Pχc‖ ≤ c‖ (1 + |χ|+ |χd|)χc∇Bσ0Pχc‖

≤ c
(
1 + ‖χ‖L6(Ω) + ‖χd‖L6(Ω)

)
‖χc‖L6/(1−2σ)(Ω)‖∇Bσ0Pχc‖L6/(1+2σ)(Ω)

≤ c (1 + ‖χ‖V + ‖χd‖V ) ‖χc‖V1+σ‖∇Bσ0Pχc‖V1−σ

≤ c‖χc‖V1+σ‖Bσ0Pχc‖V2−σ ≤ c‖χc‖V1+σ‖χc‖V2+σ

≤ c‖χc‖V1+σ + c‖χc‖V1+σ‖Pχc‖V 2+σ
0

,

and

‖φ′′(χ)∇χcBσ0Pχc‖ ≤ c‖ (1 + |χ|)∇χcBσ0Pχc‖

≤ c
(
1 + ‖χ‖L6(Ω)

)
‖∇χc‖L6/(1−2σ)(Ω)‖Bσ0Pχc‖L6/(1+2σ)(Ω)

≤ c (1 + ‖χ‖V ) ‖∇χc‖V1+σ‖Bσ0Pχc‖V1−σ

≤ c‖∇χc‖V1+σ‖Bσ0Pχc‖V1−σ ≤ c‖χc‖V2+σ‖χc‖V1+σ

≤ c‖χc‖V1+σ + c‖χc‖V1+σ‖Pχc‖V 2+σ
0

.
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Moreover, there holds

‖ (φ′′(χ)− φ′′(χd))∇χdBσ0Pχc‖ ≤ c‖∇χdχcBσ0Pχc‖

≤ c‖∇χd‖L3/2(Ω)‖χc‖L6/(1−2σ)(Ω)‖Bσ0Pχc‖L6/(1+2σ)(Ω)

≤ c‖∇χd‖L6(Ω)‖χc‖V1+σ‖Bσ0Pχc‖V1−σ ≤ c‖∇χd‖V ‖χc‖V1+σ‖Bσ0Pχc‖V1−σ

≤ c‖χd‖W ‖χc‖V1+σ‖Bσ0Pχc‖V1−σ ≤ c‖χd‖W ‖χc‖2V1+σ
.

Summing up, we get

‖ (φ′(χ)− φ′(χd))Bσ0Pχc‖V ≤ c (1 + ‖χd‖W ) ‖χc‖2V1+σ
+ c‖χc‖V1+σ‖Pχc‖V 2+σ

0
.

Thus, from (8.2) we infer

I2 ≤ cΘc + cΘc‖χc‖2V1+σ
+ c∗‖Pχc‖2V 2+σ

0
.

Control of I3 (cf. (5.28)). We have

I3 ≤ ‖φ′1(χd)Bσ0Pχc‖V ‖∂tχd‖V ∗0 . (8.3)

Observe that

‖φ′1(χd)Bσ0Pχc‖V ≤ c‖φ′1(χd)Bσ0Pχc‖+ c‖φ′1(χd)∇Bσ0Pχc‖

+c‖φ′′1(χd)∇χdBσ0Pχc‖.

Applying assumption (H21), and subsequently the generalized Hölder inequality
with exponents, 3

2 and 3, respectively, we obtain

‖φ′1(χd)Bσ0Pχc‖

≤ c‖(1 + |χd|θ−1)Bσ0Pχc‖ ≤ c
(

1 + ‖χd‖θ−1
L3(θ−1)(Ω)

)
‖Bσ0Pχc‖L6(Ω)

≤ c
(

1 + ‖χd‖θ−1
L3(θ−1)(Ω)

)
‖Bσ0Pχc‖L6(Ω) ≤ c(1 + ‖χd‖θ−1

V )‖Bσ0Pχc‖V

≤ c‖χc‖V1+2σ ≤ c‖χc‖V2+σ ≤ c+ c‖χc‖V 2+σ
0

.

Similarly, by choosing the Hölder exponents 3
2−2σ and 3

1+2σ , we deduce

‖φ′1(χd)∇Bσ0Pχc‖

≤ c‖(1 + |χd|θ−1)∇Bσ0Pχc‖

≤ c
(

1 + ‖χd‖θ−1
L3(θ−1)/(1−σ)(Ω)

)
‖∇Bσ0Pχc‖L6/(1+2σ)(Ω)

≤ c
(

1 + ‖χd‖θ−1
L6(Ω)

)
‖∇Bσ0Pχc‖V1−σ

≤ c
(
1 + ‖χd‖θ−1

V

)
‖Bσ0Pχc‖V2−σ ≤ c‖χc‖V2+σ ≤ c+ c‖χc‖V 2+σ

0
;
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Then, choosing the Hölder exponents as 3
1−2σ , 3 and 3

1+2σ , we infer

‖φ′′1(χd)∇χdBσ0Pχc‖

≤ c‖(1 + |χd|θ−2)∇χdBσ0Pχc‖

≤ c
(

1 + ‖χd‖θ−2
L6(θ−2)/(1−2σ)(Ω)

)
‖∇χd‖L6(Ω)‖Bσ0Pχc‖L6/(1+2σ)(Ω)

≤ c
(

1 + ‖χd‖θ−2
L6(Ω)

)
‖∇χd‖V ‖Bσ0Pχc‖V1−σ

≤ c
(
1 + ‖χd‖θ−2

V

)
‖χd‖W ‖χc‖V1+σ ≤ c‖χd‖W ‖χc‖V1+σ .

Notice that in the estimates of the last two terms we have used the embeddings

L6(Ω) ↪→ L3(θ−1)/(1−σ)(Ω),

L6(Ω) ↪→ L6(θ−2)/(1−2σ)(Ω),

which hold provided that σ ≤ σ0 = (3− θ)/2.
Therefore, on account of the above controls, (8.3) yields

I3 ≤ cΘc + cΘc‖χc‖2V1+σ
+ c∗‖Pχc‖2V 2+σ

0
,

and adding together the controls on Ii (i = 1, .., 3), we eventually get inequality
(5.30).

Control of I4 (cf. (5.28)). To obtain the desired control note first that, by assump-
tion (H2), there holds

‖Bσ/20 Pφ(χ)‖2 + ‖Bσ/20 Pφ(χd)‖2 ≤ c
(
1 + ‖χ‖2W + ‖χd‖2W

)
,

for all σ ∈ (0, 1/2). Hence we find

I4 ≤ cΘc +
1
8
‖Pχc‖2V 2+σ

0
.

Control of I5 (cf. (5.29)). Similarly to the control provided for I4, by (H21), it is
readily seen that

‖Bσ/20 Pφ1(χd)‖2 ≤ c
(
1 + ‖χd‖2W

)
,

which entails

I4 ≤ cΘc +
1
8
‖Pχc‖2V 2+σ

0
.

Adding together the controls on I4 and I5, we infer inequality (5.31).

Note. The paper originated from a part of the author’s Ph.D. thesis ”Global and
exponential attractors for a conserved phase-field system with Gurtin-Pipkin heat
conduction law”, Politecnico di Milano, Milano, 2006.
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