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Abstract

We investigate injectivity in a comma-category C/B using the no-
tion of the “object of sections” S(f) of a given morphism f : X → B
in C. We first obtain that f : X → B is injective in C/B if and only
if the morphism 〈1X , f〉 : X → X × B is a section in C/B and the
object S(f) of sections of f is injective in C. Using this approach,
we study injective objects f with respect to the class of embeddings
in the categories ContL/B (AlgL/B) of continuous (algebraic) lat-
tices over B. As a result, we obtain both topological (every fiber of f
has maximum and minimum elements and f is open and closed) and
algebraic (f is a complete lattice homomorphism) characterizations.

Mathematics Subject Classifications (2000): 18G05, 18A25,
06B35, 54B30.

Key words: injective object, section, cartesian object, continuous
lattice.

Introduction

The relevance in various fields of mathematics of the notion of injectivity
is well known and injective objects, with respect to a class H of morphisms,
have been investigated for a long time in different categories. For instance, in
the category Pos of partial ordered sets and monotone mappings, injective
objects, with respect to the class of regular monomorphisms, coincide with
the complete lattices, while, in the category SLat of (meet) semilattices
and semilattice homomorphisms, injective objects are precisely the locales
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(see [5]) and in the category Boo of boolean algebras and boolean homo-
morphisms, they coincide with complete boolean algebras. In the category
Top0 of T0 topological spaces and continuous functions, injective objects
have an algebraic characterization, given by Scott in [11], as continuous lat-
tices (viewed as topological spaces with the so-called Scott topology). Using
a result of Wyler in [15], it turns out that, in the category Top of topological
spaces, injective spaces are exactly those with a T0-reflection given by a con-
tinuous lattice. Since any continuous lattice is then injective in Top, every
object in the category ContL of continuous lattices and Scott-continuous
functions (i.e. functions preserving directed sups, see e.g. [8]) is injective
in ContL with respect to the class H of topological embeddings between
continuous lattices. (The same happens for the category AlgL of algebraic
lattices (see e.g. [8]) and Scott-continuous functions.)

Recently, new investigations on injective objects have been developed in
comma-categories C/B (whose objects are C-morphisms with fixed codomain
B) (see [13], [14], [3], [6], [7]). “Sliced” injectivity is related to weak factor-
ization systems, a concept used in homotopy theory, particularly for model
categories. In fact, H-injective objects in C/B, for any B in C, form the right
part of a weak factorization system that has morphisms of H as the left part.
So it may be useful to know the nature of H-injectives in C/B and in this
direction there are results in the category Pos (by Tholen, Adámek, Herrlich,
Rosicky), for H given by the class of regular monomorphisms. In this case
(and in the more general case of the category Cat of small categories and
functors, where H is given by the class of full functors) for a morphism to
be injective is equivalent to be (if viewed as a functor) topological, a notion
introduced in the sixties (for a systematic treatment see [2]).

In this paper, we approach the study of “sliced” injectivity in a category C
with products by using the notion of the “object of sections” S(f) of a given
morphism f : X → B in C, where S is a right adjoint to the functor ΠB :
C → C/B, which assigns to B the second projection πX

B : X×B → B. (If C
has also equalizers, the existence of S is equivalent to say that B is cartesian
in C, that is to the existence of a right adjoint for the functor “product with
B” (−) × B.) When such a functor S exists, we find that f : X → B is
injective in C/B if and only if the morphism 〈1X , f〉 : X → X × B is a
section in C/B and the object S(f) of sections of f is injective in C.

Using this result, we first find a new characterization of injective mor-
phisms in the category Pos (see Proposition 2.1). In the cartesian closed
categories Dcpo (ωCpo) of directed complete (ω-complete) posets and con-
tinuous maps (see e.g. [8] and [9]), our theorem shows that injective mor-
phisms with respect to the class of regular monomorphisms are necessarily
isomorphisms, since injective objects (with respect to the same class) are

2



trivial.
The main result is obtained by the application of our Theorem 1.2 to the

category of ContL (and to its subcategory AlgL). In this way we get charac-
terizations of injective morphisms (with respects to topological embeddings)
f between continuous (algebraic) lattices, both topological (every fiber of f
has maximum and minimum elements and f is open and closed) and alge-
braic (f is a complete lattice homomorphism, i.e. f preserves arbitrary sups
and arbitrary infs).

1 Injective morphisms via sections

We recall that, given a class H of morphisms in a category C, an object I is
H-injective if, for any h : U → V in H and any u : U → I, there exists an
arrow s : V → I

U
u //

h
��

I

V

s

??�
�

�
�

such that sh = u.
In particular, this means that, in the comma-category C/B (whose ob-

jects are C-morphisms with fixed codomain B), f is H-injective if, for any
commutative diagram in C

U
u //

h
��

X

f
��

V v
// B

with h ∈ H, there exists an arrow s : V → X

U
u //

h
��

X

f

��
V

s~~~~

>>~~~~

v
// B

such that sh = u and fs = v.

Notation. From now on, injective will denote H-injective for H the class
of regular monomorphisms in C.

If a category C has finite products, we can state that an object B is carte-
sian (or exponentiable) in C if the functor (−) × B : C → C has a right
adjoint (−)B.
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Let us now consider the functor ΠB : C → C/B, which assigns the second
projection πX

B : X × B → B to any object X and the forgetful functor
ΣB : C/B → C, which assigns to any f its domain. If C also has equalizers
(that is, C has all finite limits), by Prop. 1.1 in [10], ΠB has a right adjoint
if and only if the functor ΣB ◦ΠB has a right adjoint. But ΣB ◦ΠB coincides
with the functor (−)×B, which by definition has a right adjoint when B is
cartesian in C. In conclusion we have that

Proposition 1.1 B is cartesian in a category C with finite limits if and
only if the functor ΠB : C → C/B has a right adjoint S : C/B → C.

Following the proof of Prop. 1.1 in [10] in the case B cartesian, given the
morphism α := πXB

B : XB×B → B, by adjunction we obtain α̂ := XB → BB,
which represents a constant morphism of value 1B. Then, for any f : X → B,
the object S(f) is obtained as the equalizer in C of the two morphisms α̂, fB,
where the latter is the “composition with f”. This means that S(f) can be
interpreted as the object of sections of f in C. This object turns out to be
very useful to obtain a characterization of those f injective in C/B. In fact:

Theorem 1.2 Let ΠB a S : C/B → C.
f : X → B is injective in C/B if and only if the following two conditions

are satisfied:
1. 〈1X , f〉 : X → X ×B is a section in C/B;
2. the object S(f) of sections of f is injective in C.

Proof. Let f be injective in C/B. Since 〈1, f〉 is a regular monomorphism,
corresponding to the commutative diagram

X
1X //

� _

〈1,f〉
��

X

f

��
X ×B

πX
B

// B

there exists an arrow r : X ×B → X such that r〈1, f〉 = 1x and fr = πX
B .

This means that 〈1, f〉 is a section in C/B.
We now have to show that S(f) is injective in C. Given v : U → V and

u : U → S(f), by adjunction there exists a morphism ũ : U × B → X such
that fũ = πU

B . We can the consider the following commutative diagram:

U ×B
ũ //

� _

v×1B

��

X

f

��
V ×B

πV
B

// B
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By injectivity of f there exists an arrow w : V ×B → X such that
w(v× 1B) = ũ and fw = πV

B . By naturality, ŵv = u, where ŵ : V → S(f) is
the right adjunct of w.

Now, let f fulfill the conditions 1 and 2. Since S(f) is injective in C, π
S(f)
B

is injective in C/B (see e.g. Cor. 1.6 in [6], but it follows directly from the
definition). Furthermore, since 〈1, f〉 : X → X × B is a section in C/B,
there exists a corresponding retraction r in C/B with r〈1X , f〉 = 1X , and its
right adjunct r̂ : X → S(f). If e : S(f)× B → X denotes the counit of the
adjunction, we have the following commutative diagram:

X ×B

r̂×1B

��

r

""FFFFFFFFFFFFFFFFFFF

X

〈1X ,f〉

<<xxxxxxxxxxxxxxxxxxx 〈r̂,f〉 //

f

""FFFFFFFFFFFFFFFFFFF S(f)×B
e //

π
S(f)
B

��

X

f

||xxxxxxxxxxxxxxxxxxx

B

We deduce that e〈r̂, f〉 = r〈1X , f〉 = 1X , then f is a retract (by e) of the

injective π
S(f)
B in C/B. This means that f is injective in C/B.

2 Injective objects in Pos/B

Let Pos denote the category of partially ordered sets and monotone map-
pings. In such a category injective objects, with respect to the class of regular
monomorphisms=order embeddings (maps h with x < y iff h(x) < h(y)), co-
incide with the complete lattices (see e.g. [2]). In Pos/B, injectivity (again
with respect to order embeddings) has been studied and various characteri-
zations of such injective objects are known (see, for example, [13] and [3]). In
this case (and in the more general case of the category Cat of small categories
and functors, where H is given by the class of full functors) for a morphism
to be injective is equivalent to be (if viewed as a functor) topological, a no-
tion introduced in the sixties (for a systematic treatment see [2]). Since the
category Pos is cartesian closed, that is every object B is cartesian, we can
apply Theorem 1.2 to Pos/B and find a new characterization:
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Theorem 2.1 f : X → B is injective in Pos/B if and only if the following
two conditions are satisfied:

a) 〈1X , f〉 : X → X ×B is a section in Pos/B;

b) fibers of f are injective in Pos, that is any f−1(b) (as a sub-poset of X)
is a complete lattice (in its own right).

Proof. The necessary conditions are trivial. Viceversa, if condition a) holds
and r : X × B → X is a retraction of πX

B over f , for any b ∈ B, r(x, b) ∈
f−1(b), since f(r(x, b)) = b, and r(x, b) = x, whenever b = f(x). Since any
f−1(b) is a complete lattice, we can define a map sm : B → X by sm(b) =
minimum of f−1(b). This map is trivially a section of f and is monotone. In
fact, if b1 ≤ b2,

sm(b1) ≤ r(sm(b2), b1), since r(sm(b2), b1) ∈ f−1(b1).

By monotony of r, r(sm(b2), b1) ≤ r(sm(b2), b2) = sm(b2), since b2 =
f(sm(b2)).

This allows us to say that sm is the minimum of the pointwise ordered poset
S(f), given by the monotone sections of f . In order to prove the injectivity
of S(f) in Pos, all we need to show is that in S(f) there exists a supremum
of any non-empty family (si)i∈I . For any b ∈ B, we define (

∨
S(f) si)(b) =∨

f−1(b) si(b). This function is trivially a section and is monotone. In fact,

if b1 ≤ b2, ∀i ∈ I, si(b1) ≤ si(b2) ≤
∨

f−1(b2) si(b2) := s2

But si(b1) = r(si(b1), b1) ≤ r(s2, b1), by monotony of r. Then s1 :=∨
f−1(b1) si(b1) ≤ r(s2, b1) ≤ r(s2, b2) = s2.

This suffices to prove that S(f) is a complete lattice, that is an injective
object in Pos. The conditions 1 and 2 of Theorem 1.2 are therefore satisfied
and we can conclude that f is injective in Pos/B.

3 Injective objects in Dcpo/B and ωCpo/B

In this section we are going to consider the categories Dcpo (ωCpo) of
directed complete (ω-complete) posets and continuous maps (see e.g. [8] and
[9]). We shall need some definitions and standard results about them (for
which see [8]).

Definition 3.1 A poset B in which every directed subset (ω-chain) has a
supremum is called a directed complete (ω-complete) poset or dcpo (ω-cpo)
for short.
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Dcpo’s (ω-cpo’s) are usually considered as topological spaces when endowed
with the Scott topology (ω-Scott topology), where C is closed in B if it is
a lower set closed under suprema of directed subsets (ω-chains). A map
f : A → B between dcpo’s (ω-cpo’s) is

1. continuous with respect to the Scott topologies (ω-Scott topologies) if
and only if f preserves directed sups (sups of ω-chains);

2. a regular monomorphism if and only if it is a continuous order embed-
ding;

3. a topological homeomorphism if and only if it is an order isomorphism
(f and f−1 are monotone).

It is known that in Dcpo (and in ωCpo) there are regular monomorphisms
that are not topological embeddings (see e.g. the example due to Moggi in
[12]). This fact enables us to say that the Sierpinski space is not injective
with respect to the class of regular monomorphisms. But any topological
embedding is a regular monomorphism in Dcpo (and in ωCpo), so that
any object injective with respect to the class of regular monomorphisms is
a continuous lattice, since continuous lattices are the injective objects with
respect to the class of topological embeddings in Dcpo and in ωCpo (the
proof is the same that the one in [11] for the category Top of topological
spaces). It follows that the injective objects with respect to the class of reg-
ular monomorphisms in Dcpo and in ωCpo are trivial, since any continuous
lattices with at least two elements has the Sierpinski space as a retract.

Both Dcpo and ωCpo are cartesian closed, so we can apply Theorem
1.2, obtaining that any injective morphism with respect to the class of reg-
ular monomorphisms has exactly one section and then it is necessarily an
isomorphism.

4 Injective objects in ContL/B

Now we turn our attention to the category ContL of continuous lattices and
continuous maps (see e.g. [8] and [9]). We first need to recall some definitions
and standard results (for which see [8]).

Definition 4.1 Let B be a dcpo. We recall that, for a, b ∈ B, a � b (read:
way below) if, whenever b ≤

∨
D for D directed subset, we already have

a ≤ d for some d ∈ D.
A dcpo is continuous if every element is �-approximated , i.e.

∀b ∈ B, b =
∨
↓↓ b, where ↓↓ b = {b′ ∈ B : b′ � b}.

7



If B is a continuous dcpo and a complete lattice, then it is called a continuous
lattice.

Proposition 4.2 Let B be a continuous lattice.

1. Each point b has a neighborhood basis consisting of the sets ↑↑ b′, with
b′ � b.

2. b =
∨
{
∧

U,U open in B, b ∈ U}

3. b =
∨
{
∧

U ′, U ′ in a neighborhood basis of b}

It is well known that ContL is a cartesian closed category (see [8]). If
we want to apply Theorem 1.2 to ContL, we need to know injective objects
with respect to the class of regular monomorphisms. But, as in the previous
section, these injectives are trivial, since also in ContL there are regular
monomorphisms that are not topological embeddings, as the following ex-
ample (suggested by M. Escardó) shows:

Example 4.3 Let Q = [0, 1]2 be the square with the componentwise order.
Q is a continuous lattice, where (x, y) � (x′, y′) ⇔ x < x′ and y < y′. U ⊆ Q
is Scott open iff it is an upper set open in the ordinary topology induced by
the plane. Let L = {(x, y) ∈ Q | y = 1 − x} ∪ {(0, 0), (1, 1)}. The induced
order is the discrete one on the diagonal and (0, 0) ≤ (x, y) ≤ (1, 1). Then
L is trivially a continuous lattice and the sets (x, y) ∪ (1, 1) are open in the
Scott topology on L, while they are not open in the topology induced by Q.
This means that the inclusion i : L → Q is a regular monomorphism that is
not a topological embedding.

Consequently, as in Dcpo, injective morphisms with respect to the class
of regular monomorphisms in ContL are only the isomorphisms. We can
then consider in ContL injectivity with respect the class H of topological
embeddings between continuous lattices. As far as objects are concerned,
continuous lattices are the injectives in the category Top with respect to H
(see [11]) and this implies that every object in ContL is injective in ContL.

Now we state some properties of injective objects (with respect to the above
class H) in the categories ContL/B.

Proposition 4.4 Let f : X → B be injective in ContL/B. Then

1. every fiber of f (as a sub-poset of X) is a continuous lattice (in its own
right).

2. f has a maximal section and a minimal section.
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Proof. Since f is injective, there exists a retraction r : X × B → X in
ContL/B of πX

B over f . For any b ∈ B, the restriction rb of r to X×{b} gives
rise to a retraction of X over f−1(b). Therefore, also f−1(b) is a continuous
lattice. Furthermore, if we denote with max C and min C the maximum
and minimum elements of a complete lattice C, r(max X, b) = rb(max X) =
max f−1(b) and r(min X, b) = rb(min X) = min f−1(b). This means that the
restrictions of r respectively to {max X} × B and to {min X} × B give rise
to a maximal section and to a minimal section of f.

Remark 4.5 The above proposition remains valid for f injective in AlgL/B,
where AlgL denotes the full subcategory of ContL given by algebraic lat-
tices (a complete lattice is said to be algebraic when any element is a directed
sup of compact elements, where an element x is compact when x � x, see
e.g. [8]).

In order to apply Theorem 1.2, we use that ContL is a full subcategory of
Top closed under the formation of function spaces, that is: every continuous
lattice B is cartesian in Top and any space AB is in ContL, when A and B
are in ContL.

Now we are ready to characterize injective objects in ContL/B.

Theorem 4.6 Let f : X → B be a continuous map between continuous
lattices. TFAE:

1. f : X → B is injective in ContL/B;

2. 〈1X , f〉 : X → X ×B is a section in ContL/B;

3. every fiber of f has maximum max f−1(b) and minimum min f−1(b)
elements and the functions s

M
, sm : B → X, defined by s

M
(b) =

max f−1(b) and sm(b) = min f−1(b) respectively, are sections of f in
ContL;

4. f is a complete lattice homomorphism, i.e. f preserves arbitrary sups
and arbitrary infs.

5. every fiber of f has maximum max f−1(b) and minimum min f−1(b)
elements and the restrictions f|Mf

and f|mf
of f respectively to Mf =

{max f−1(b)| b ∈ B} and to mf = {min f−1(b)| b ∈ B} are order iso-
morphisms, i.e. topological homeomorphisms ;

6. every fiber of f has maximum max f−1(b) and minimum min f−1(b)
elements and f is open and closed.
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Proof. In order to prove the equivalence between conditions 1 and 2, since
any B in ContL is cartesian in Top, we can apply Proposition 1.1 to Top,
proving the existence of S(f) in Top. Under the assumption of condition
2, it is routine to show that S(f) is a retract of the continuous lattice XB.
Hence S(f) is injective in Top and then it is in ContL. This means that
ΠB a S holds also in ContL. Now we can apply Theorem 1.2 to ContL,
having the equivalence between 1 and 2.

Let now condition 3 hold. s
M

, sm are monotone functions if and only
if, for any b ∈ B, max f−1(b) = max f−1{b′ | b′ ≤ b} and min f−1(b) =
min f−1{b′ | b′ ≥ b}. But the existence of such maximum and minimum el-
ements for any b ∈ B is equivalent to say that f has right and left adjoint
(see, for example, [1], Prop. 3.1.10). This last condition, being X and B
complete lattices, is equivalent (by the Adjoint functor theorem for posets)
to say that f is a complete lattice homomorphism, i.e. f preserves arbitrary
sups and arbitrary infs. If f preserves arbitrary sups and arbitrary infs, sup
and inf in X of any fiber f−1(b) belong to it, then any fiber has maximum
and minimum elements. Now let x1 and x2 belong to Mf with f(x1) < f(x2).
Therefore f(x1 ∨ x2) = f(x1) ∨ f(x2) = f(x2), so that x1 ∨ x2 is in the same
fiber of which x2 is the maximum element, then x1∨x2 = x2. In an analogous
way we can prove that also f|mf

is an order isomorphism, so that condition
5 holds. But condition 5 is equivalent to condition 3, since f|Mf

and f|mf
are

respectively the inverse maps of s
M

and sm , restricted to their images.
Now suppose f injective. By Proposition 4.4, condition 3 holds and f−1(b)

is a continuous lattice. Then, if U is an open set of X, Ub = U
⋂

f−1(b) is
open in f−1(b), hence an upper set. This means that b ∈ f(U) if and only
if max f−1(b) ∈ U , so f is open if and only if f|Mf

is open. In an analogous
way, it can be proved that f is closed if and only if f|mf

is closed. Obviously,
if f is open and closed, its bijective restrictions f|Mf

and f|mf
are topological

homeomorphisms, corresponding to order isomorphisms.
We have then proved till now that

2© ⇔ 1© ⇒ 3© ⇔ 4© ⇔ 5© ⇔ 6©

In conclusion, it is sufficient to show that 3© ⇒ 2©.
We then need to prove the existence of a retraction r : X × B −→ X

of πX
B over f in ContL/B. Let us consider (x, b) ∈ X × B, the fam-

ily V = {V |V open in X, x ∈ V and V
⋂

f−1(b) 6= ∅} and the family U =
{U |U open in B, b ∈ U}.

In correspondence of any (x, b), we can then define the familyW = {W |W =
〈idX , f〉−1(V × U), for V ∈ V and U ∈ U}.
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Any W is an open subset of X, but not empty, since V
⋂

f−1(b) 6= ∅, for
any V ∈ V . If x̃ ∈ W , f(x̃) ∈ U and then f(W ) ⊆ U . It follows that∧

f(W ) ≥
∧

U and then, by condition (4) equivalent to (3)

f
(∨ ∧

W
)

=
∨

f
(∧

W
)

=
∨ ∧

f(W ) ≥
∨ ∧

U = b,

by Proposition 4.2 (2).
On the other hand, b ∈ f(W ), for any W ∈ W , so that b ≥ f (

∨ ∧
W ).

If we then define
r(x, b) =

∨ ∧
W,

f(r(x, b)) = b. We are going to show that such an r is a retraction.
Since any open neighborhood of x has a non-empty intersection with f−1(f(x)),

(x, f(x)) has V ×U as a neighborhood basis. Therefore W is a neighborhood
basis for x ∈ X. Hence, by Proposition 4.2 (2),

x =
∨ ∧

W = r(x, f(x)),

that is 〈1X , f〉r = 1X .

Let now (x1, b1) ≤ (x2, b2). If V 1 is an open neighborhood of x1 with
V 1

⋂
f−1(b1) 6= ∅, then V 1 is an upper set and so max f−1(b1) ∈ V 1. But also

max f−1(b2) ∈ V 1, since max f−1(b1) ≤ max f−1(b2), because the maximum
section s

M
is monotone. Consequently V 1

⋂
f−1(b2) 6= ∅. Furthermore, any

open neighborhood U1 of b1 is an upper set, hence an open neighborhood of
b2. This means that the family W1 (defined as above for (x1, b1)) is contained
in the analogous family W2 (defined for (x2, b2)). Consequently

r(x1, b1) =
∨ ∧

W 1 ≤
∨ ∧

W 2 = r(x2, b2),

that is, r is monotone.

Let (x, b) =
∨

(xλ, bλ), where (xλ, bλ)Λ is a direct subset of X ×B.
Since r(xλ, bλ) ≤ r(x, b),

∨
r(xλ, bλ) ≤ r(x, b). Suppose

∨
r(xλ, bλ) < r(x, b).

Then there should exist an open subset O of X with r(x, b) ∈ O and∨
r(xλ, bλ) /∈ O. By definition of Scott topology, it should exist W ∈ W

such that
∧

W ∈ O. But W = 〈idX , f〉−1(V ×U), with V an open neighbor-
hood of x, such that V

⋂
f−1(b) 6= ∅ (and then max f−1(b) is in V ) and U an

open neighborhood of b. Since (x, b) =
∨

(xλ, bλ),∃λ1 with (xλ1 , bλ1) ∈ V ×U .
But the maximum section s

M
: B → X preserves directed sups. Then

V 3 max f−1(b) = s
M

(b) = s
M

(∨
bλ

)
=

∨
s

M
(bλ) =

∨
max f−1(bλ),

so there exists λ2 ∈ Λ such that max f−1(bλ2) ∈ V .
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Let now (xλ3 , bλ3) ≥ (xλ1 , bλ1), (xλ2 , bλ2). Then max f−1(bλ3) ∈ V. There-
fore V

⋂
f−1(bλ3) 6= ∅. Consequently, V × U is an open neighborhood of

(xλ3 , bλ3) in X ×B and∧
W ≤ r(xλ3 , bλ3) ≤

∨
r(xλ, bλ).

But this is impossible, since
∧

W ∈ O,
∨

r(xλ, bλ) /∈ O, with O upwards
closed. This means that

∨
r(xλ, bλ) = r(x, b). In conclusion, we have proved

that r is a retraction of ΠB over f in ContL/B.

Corollary 4.7 Let f : X → B be a continuous map between algebraic lat-
tices. TFAE:

1. f : X → B is injective in AlgL/B

2. 〈1X , f〉 : X → X ×B is a section in AlgL/B;

3. every fiber of f has maximum max f−1(b) and minimum min f−1(b) ele-
ments and the functions s

M
, sm : B → X defined by s

M
(b) = max f−1(b)

and sm(b) = min f−1(b) respectively, are sections of f in AlgL.

4. f is a complete lattice homomorphism, i.e. f preserves arbitrary sups
and arbitrary infs.

5. every fiber of f has maximum max f−1(b) and minimum min f−1(b)
elements and the restrictions f|Mf

and f|mf
of f respectively to Mf =

{max f−1(b)| b ∈ B} and to mf = {min f−1(b)| b ∈ B} are topological
homeomorphisms, i.e. order isomorphisms;

6. every fiber of f has maximum max f−1(b) and minimum min f−1(b)
elements and f is open and closed.

Proof. Condition 1 implies condition 3, by Remark 4.5. If condition 3
holds, f is an object of AlgL/B injective in ContL/B, so f is injective in
AlgL/B.
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