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Abstract  1 

VON BORELL, E., J. LANGBEIN, G. DESPRES, S. HANSEN, C. LETERRIER, J. 2 

MARCHANT-FORDE, R. MARCHANT-FORDE, M. MINERO, E. MOHR, A. PRUNIER, 3 

D. VALANCE, AND I. VEISSIER. Heart rate variability as a measure of autonomic 4 

regulation of cardiac activity for assessing stress and welfare in farm animals – a review. 5 

PHYSIOL BEHAV xx (x) 000-000, 2006.-Measurement of heart rate variability (HRV) is a 6 

non-invasive technique that can be used to investigate the functioning of the autonomic 7 

nervous system, especially the balance between sympathetic and vagal activity. It has been 8 

proven to be very useful in humans for both research and clinical studies concerned with 9 

cardiovascular diseases, diabetic autonomic dysfunction, hypertension and psychiatric and 10 

psychological disorders. In the last 10 years, HRV has been used increasingly in animal 11 

research to analyse changes in sympathovagal balance related to diseases, psychological and 12 

environmental stressors or individual characteristics such as temperament and coping 13 

strategies. This paper summarizes the state of the art of HRV research in farm animals. First, 14 

it describes how cardiac activity is regulated and the relationships between HRV, 15 

sympathovagal balance and stress and well-being. Then it outlines the types of equipment and 16 

methodological approaches that have been adapted and developed to measure inter-beats 17 

intervals (IBI) and estimate HRV in farm animals. Finally, it briefly describes experiments 18 

and conclusions derived from the measurement of HRV in pigs, cattle, horses, sheep, goats 19 

and poultry. Emphasis has been placed on deriving recommendations for future research 20 

investigating HRV, including approaches for measuring and analysing IBI data. On the 21 

whole, data from published research demonstrate that HRV is indeed a useful tool for 22 

evaluating stress and emotional states and has the potential to contribute much to our 23 

understanding and assessment of the underlying neurophysiological processes of stress 24 

responses and welfare in farm animals. 25 

 26 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by AIR Universita degli studi di Milano

https://core.ac.uk/display/187803012?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2 

Indexing terms: Cardiac activity, heart rate variability, stress, welfare, farm animals,  1 

 2 

Title: Heart rate variability as a measure of autonomic regulation of cardiac activity for 3 

assessing stress and welfare in farm animals – a review 4 

 5 

 6 

Authors: Eberhard von Borella,*, Jan Langbeinb, Gérard Desprésc,j, Sven Hansend, Christine 7 

Leterriere, Jeremy Marchant-Fordef, Ruth Marchant-Fordef, Michela Minerog, Elmar Mohrh, 8 

Armelle Prunieri, Dorothée Valancee, Isabelle Veissierj,  9 

aInstitute of Animal Breeding and Husbandry, Agricultural Faculty, Martin-Luther-University 10 

Halle-Wittenberg, 06108 Halle, Germany 11 

bResearch Unit Behavioural Physiology, Research Institute for the Biology of Farm Animals, 12 

18196 Dummerstorf, Germany 13 

cUFR Psychologie, Sciences Sociales et Sciences de l’Education, Université Blaise Pascal, 14 

63037 Clermont-Ferrand, France 15 

dRegulatory and Clinical Affairs Department, BIOTRONIK GmbH & Co. KG, 12359 Berlin, 16 

Germany 17 

eRecherches Avicoles, I.N.R.A., 37380 Nouzilly, France 18 

fUSDA-ARS, Livestock Behavior Research Unit, West Lafayette, IN 47909, USA 19 

gInstitute of Zootechnics, Faculty of Veterinary Medicine, 20133 Milano, Italy 20 

hDepartment of Agricultural Ecology, Agricultural and Environmental Sciences Faculty, 21 

University of Rostock, 18051 Rostock, Germany 22 

iUnité Mixte de Recherche I.N.R.A.-Agrocampus SENAH, 35590 Saint-Gilles, France 23 

jUnité de Recherches sur les Herbivores, I.N.R.A., 63122 Saint Genes-Champanelle, France 24 

 25 

 26 



 3 

*Corresponding author. 1 

Tel. +49 345 5522332; fax. +49 345 5527106, email: eberhard.vonborell@landw.uni-halle.de 2 

(E. von Borell). 3 

 4 

Running head: Heart rate variability in farm animals 5 

 6 

 7 

8 

mailto:eberhard.vonborell@landw.uni-halle.de


 4 

1. Introduction   1 

 2 

The “Measuring welfare” working group of the EU concerted action on ‘Measuring and 3 

Monitoring Welfare’ (COST Action 846) has identified key areas of research that have the 4 

potential to contribute to our understanding and interpretation of stress and welfare status in 5 

farm animals. The “Heart Rate and Heart Rate Variability Task Force” has brought together 6 

experts in the fields of animal and veterinary sciences who are concerned with research on 7 

cardiac activity and heart rate variability (HRV) in farm animals. Their principle goal is to 8 

write a report on the state of the art of HRV in farm animals, similar to a task force that had 9 

been previously set up by the European Society of Cardiology (ESC) and the North American 10 

Society of Pacing and Electrophysiology [NASPE, 1]. The purpose of this review is to: 1) 11 

Collate information on the current status of HRV measurement techniques, data handling, 12 

analysis and interpretation, 2) Outline appropriate methodology for different farm animal 13 

species, and; 3) Identify areas of HRV research that warrant future attention and may improve 14 

our ability to evaluate stress and welfare status in farm animals. 15 

 16 

Some of the most remarkable non-invasive measures of the functioning of the autonomic 17 

nervous system (ANS) are indices of HRV. Detailed and sophisticated analysis of short-term 18 

fluctuations in instantaneous heart period has been widely used to indirectly assess ANS 19 

regulation of cardiovascular function [1, 2]. In humans, the last three decades have witnessed 20 

the recognition of a significant relationship between autonomic function and various diseases 21 

and mental states [3, 4], including cardiac dysfunction, sudden cardiac death [5-7], diabetic 22 

autonomic dysfunction [8, 9], hypertension [10-12] and psychiatric disorders [13-16]. 23 

Analysis of HRV has also been used as an indicator of acute and chronic stress [17, 18], 24 

mental challenges and emotional states [15, 19-23]. In the last ten years, HRV has also been 25 

applied increasingly in veterinary and behavioural research to investigate changes in 26 



 5 

sympathovagal balance related to pathological conditions [24-26], stress [27-31], behavioural 1 

dysfunction [32, 33], management practices [34-36], training régimes [37-39] as well as 2 

temperament and emotional states [40-42] in various farm and companion animal species. 3 

 4 

2. Regulation, interpretation and significance of heart rate variability (HRV) in relation 5 

to stress and well-being  6 

 7 

2.1. Regulation of heart beat activity 8 

 9 

The sinus node or sinoatrial node (SN) acts as the main pulse generator for heart beats [43, 10 

44] although other parts of the cardiac nervous system such as artrioventricular (AV) nodes 11 

are also capable of exhibiting autonomous heart beat stimulation properties. The SN, as the 12 

primary pacemaker, has the highest discharge frequency and excites other cardiac centres 13 

(such as the AV node) before they themselves initiate their own electrical impulses [43]. The 14 

SN contains two types of cells, elongated and round. The round, or pacemaker, cells are 15 

capable of spontaneous depolarisation that initiates electrical activation within the heart itself. 16 

In the absence of autonomic innervations, or under complete autonomic blockage, the 17 

discharge rate of pacemaker cells represents intrinsic heart rate (HR). In humans, the SN 18 

generates an intrinsic HR between 100 and 120 beats per minute (bpm) in the absence of any 19 

neural and hormonal influences [45].  20 

 21 

The SN is under the control of the parasympathetic (vagal, PNS) and sympathetic nervous 22 

system (SNS) [46]. Both left and right vagus nerves stimulate the SN (the right nerve is 23 

dominant and reduces HR), the AV node (left nerve is dominant and prolongs AV conductor) 24 

as well as the atrium muscle, whereas efferent control of the ventricle muscle is unclear [43, 25 

47]. In general, activity within the vagal nerves decreases HR when the stimulatory effect of 26 



 6 

the right nerve dominates [48]. Postganglionic sympathetic fibres innervate almost all centres 1 

of the heart (AV, heterotrophic centres, atrium and ventricle myocardium [43, 47]). Furnival, 2 

Linden et al. [49] demonstrated that activity within the right Ansa subclavia (right 3 

sympathetic nerve) mostly influences HR, whereas left Ansa subclavia activity increases 4 

stroke volume. In resting conditions, both branches of the ANS are tonically active in 5 

regulating cardiac activity and there is generally a dominance of vagal regulation [47]. 6 

 7 

Rapid changes in HR are always caused by shifts in vagal regulation [47, 50-52]. The SN 8 

responds to vagal activity within one or two heart beats, but its overall effects are relatively 9 

short-lived. Vagal induced changes in HR typically occur within five seconds [47] whereas 10 

cardiac responses to SNS regulation occur more slowly with initial response delays of up to 11 

five seconds, followed by a progressive change and a maximum response after 20 to 30 12 

seconds [47, 53]. These differences in response times are due in part to the relatively slow 13 

exocytotic release of noradrenaline from sympathetic nerve terminal through which the SNS 14 

regulates cardiac activity. Also, unlike PNS acetylcholine mechanisms, a secondary 15 

messenger (adenylyl cyclase) is involved in SNS regulation which further slows the process. 16 

Other anatomical disparities between the autonomic branches may also contribute to the 17 

slower response rate to SNS regulation. For instance, the preganglionic cell bodies of the PNS 18 

neurons are located within the heart itself, whereas those of the sympathetic neurons are 19 

comparatively isolated in the paravertebral ganglia. Furthermore, preganglionic fibres are also 20 

myelinated contributing to faster electrical transmission of vagal regulatory signals compared 21 

to transmission rates in unmyelinated SNS fibres. 22 

 23 

2.2. Heart rate variability (HRV) 24 

 25 
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Healthy cardiac activity is characterized by irregular intervals between consecutive heart beats 1 

[54]. This variability is a result of rhythmic oscillation of the regulatory components of 2 

cardiac activity that function to maintain cardiovascular homeostasis within a defined range 3 

[46, 55]. They also serve to orchestrate and facilitate appropriate responses to intrinsic and 4 

extrinsic challenges [55]. 5 

 6 

HRV mainly emerges primarily through the non-additive activities of the two branches of the 7 

ANS [56-59] (Fig. 1), which in turn is influenced by neuronal, humoral and other 8 

physiological control and feedback mechanisms [60, 55]. The central nervous system (CNS), 9 

in particular the formatio reticularis of the medulla oblongata (medullar circulation centre), 10 

the hypothalamus, and neocortical and paleocortical areas, participate in all levels of 11 

cardiovascular regulation (Fig. 2) [61-64].  12 

 13 

An oscillatory curve (tachogram) is produced when consecutive IBIs are plotted on a time 14 

scale [55]. The “mixed oscillation” of this curve results from the rhythmic undulations of the 15 

different regulatory components, where rhythmic activities originating from the PNS exhibit 16 

greater frequency than those of the SNS (see Fig. 1). Fluctuations in vagal tone are linked to 17 

variations in activity of the vagal nuclei which are influenced by baroreceptors since vagal 18 

receptivity for baroreceptor input varies with the breathing cycle [52].  19 

Fig. 1 20 

Fig. 2 21 

HRV was first documented in the 18th century by Hales who did the first quantitative 22 

measurements on arterial blood pressure (BP) [cited by 65]. This work demonstrated a 23 

relationship between breathing cycles, BP and the interval between two consecutive heart 24 

beats. Since then, indices of HRV have been reported in a large body of research assessing 25 

different physical, pathologcial and psychological conditions and have been applied very 26 
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successfully to the understanding and diagnosis of cardiovascular diseases and autonomic 1 

dysfunction in humans and animal [66]. In comparison to the many publications in human 2 

research, the application of HRV in animal studies is still very much in its infancy and 3 

published work is mainly very basic in nature [60, 67]. Nevertheless, HRV in applied farm 4 

animal research is progressively emerging as an indicator of stress and welfare under different 5 

housing and management conditions in a variety of species. 6 

 7 

2.3. Interpretation and significance 8 

 9 

HR, at any point in time in healthy subjects, represents the net interactions between vagal 10 

(which reduces HR) and SNS (which increases HR) regulatory activity [47, 68]. At rest, vagal 11 

regulation dominates but a change in physical activity is sometimes characterised by 12 

decreasing vagal and increasing sympathetic influences. An increase in HR generated by the 13 

SN is mainly caused by an increase in sympathetic activity [47] but it may also result from a 14 

decrease in vagal regulation or simultaneous changes in both branches.  15 

 16 

Separate effects of the two branches of the nervous systems cannot be determined by simple 17 

addition or subtraction of the relative components [47]. The branches do not necessarily 18 

function on a continuum when regulating cardiac activity, where an increase in one branch 19 

results in a decrease in the other. Rather, they have the ability to behave either synchronously 20 

or independently of each other, giving rise to the potential of multiple patterns of activation 21 

[see 69]. It is therefore difficult to assess the functional regulatory characteristics of the ANS 22 

with simple HR measurements as both systems may influence HR differently [70]. The PNS 23 

and SNS interact continuously at both central and peripheral levels as well as on pre- and 24 

postsynaptic neurotransmission [53]. An increase in HR, therefore, could result from reduced 25 

vagal activity as well as from increased sympathetic activity or, in most cases, from a 26 
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combination of changes in activity within both branches. In reality, however, the interplay 1 

between the branches is quite complex and not yet fully appreciated. Mean HR parameters 2 

provide information on the net effects of all components inputting into cardiac activity and are 3 

of limited use for accurately assessing sympathovagal regulation [71]. 4 

 5 

HRV analysis, on the other hand, allow a much more accurate and detailed determination of 6 

the functional regulatory characteristics of the ANS. HRV is a particularly good indicator for 7 

the non-invasive assessment of ANS activity in response to psychophysiological stress [55]. 8 

Psychological states may have an impact on sympathovagal balance in the absence of any 9 

palpable changes in heart and/or respiration rates [72]. For example, Sleigh, Henderson [73] 10 

failed to demonstrate any relationship between mean HR and anxiety during pre-surgery 11 

stress but found a reduction in the relative intensity of the HF-component in the power 12 

spectrum of the HRV (representing a decrease in vagal activity) which was positively 13 

correlated with pre-surgery anxiety levels. Furthermore, McCraty, Atkinson et al. [74] found a 14 

significant decrease in HRV in relation to reduced well-being, particularly in the frequencies 15 

of the power spectrum that are sensitive to PNS modulations, whereas no effect was seen on 16 

overall mean HR. Catipovic-Veselica et al. [75] reported interactions between basic emotions, 17 

such as fear and aggression, and HRV that were not evident in HR responses. Numerous 18 

studies on social behaviour in children have employed measures of HR and HRV. Porges, 19 

Doussard-Roosevelt et al. [76] compared HR and HRV in 9-month-old children with their 20 

social behaviour at 3 years of age and found a negative relationship between HRV (vagal 21 

tone, both basal levels and magnitude of change) and behavioural problems, contact 22 

problems, aggressiveness, depression, and sleep disorders when no significant correlations 23 

with HR parameters were evident. 24 

 25 
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Although most papers in the published literature on emotional states and HRV relate to 1 

humans, there are strong arguments that the same principles can be applied to non-human 2 

mammals since: (1) the phylogenetic ‘old’ limbic system is considered as the neural substrate 3 

for emotions and is similarly present in both humans and other mammals [77]; (2) electrical 4 

stimulation of the hypothalamus and the limbic system in animal models leads to similar 5 

emotional responses to those seen in humans [63], (3) the endogenous impact of emotions is 6 

transmitted via the vegetative nervous system in both humans and other mammals, and; (4) 7 

the functional control of vagal tone is similar in all mammals [78]. For a broader discussion of 8 

this topic see also the review on positive emotions in farm animal in this issue. 9 

 10 

2.4. Vagal tone as a stress indicator  11 

 12 

Since the time of researchers such as Walter Cannon [79], stress research has mainly focused 13 

on the role the SNS plays in orchestrating stress responses. Studies involving pharmacological 14 

activation or blockade of ANS activity suggest that sympathetic tone may not be simply or 15 

directly derived from HRV parameters [80, 81]. There are, however, many studies that have 16 

demonstrated the usefulness of the LF/HF ratio of the power spectrum as an indicator of 17 

sympathetic activity during a number of physical and psychological stresses [e.g. 82] with an 18 

increase in the LF/HF ratio being interpreted as a regulatory shift towards sympathetic 19 

dominance (see details in 3.3). Although there is ongoing debate regarding the suitability of 20 

using HRV parameters to estimate SNS activity, it has however proven to be a reliable 21 

measure of vagal tone during conditions of stress and homeostasis [83, 84]. Porges defines 22 

homeostasis as an autonomous state which enhances visceral functions and is characterised by 23 

increased vagal activity. Stress responses can therefore be quantified on this physiological 24 

level with relative changes in vagal activity serving as the measurable parameter. In addition, 25 

basal autonomic states could also be considered as an index for an individual’s susceptibility 26 
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to stress with individuals with low vagal tone potentially being more vulnerable to stress. 1 

High vagal tone has been linked to efficient autonomic regulatory activity which enables an 2 

organism to increase its sensitivity and responsivity to physiological and environmental 3 

challenges [37, 59, 76]. For instance, Doussard-Roosevelt et al. [85] reported that high vagal 4 

tone in newborn humans was related to greater mental, motor and social abilities at 3 years of 5 

age.  6 

 7 

Positive emotions may significantly increase the HF-component of a power spectrum [72, 74] 8 

whereas the opposite occurs with negative emotions. Indeed, Friedman and Thayer [86] 9 

examined HRV (time and frequency analysis) in people who suffered from panic attacks or 10 

blood phobia and found that subjects who experienced panic attacks has lower vagal tone than 11 

those with a blood phobia, whereas normal controls exhibited the highest tone. In another 12 

study, the extent to which the vagal tone of small children changes in test situations 86 has 13 

been correlated to their subsequent behaviour. Those that exhibited greater flexibility in vagal 14 

tone in response to social and attention tasks also had fewer behavioural problems at a later 15 

age [76]. It seems apparent, therefore, that vagal tone is a useful indicator for determining the 16 

physiological and psychological flexibility of an organism and for measuring their 17 

susceptibility to, and ability to respond, to stress [86]. 18 

 19 

2.5. HRV and behaviour 20 

 21 

Changes in cardiac activity are strongly influenced by behaviour, in particular behaviours that 22 

are related to physical activity [39, 40, 87-92]. This motor or physical component is often 23 

inappropriately compared with non-motor or psychological components [87, 89, 93]. For 24 

comparisons of non-motor 17 components of cardiac activity, only measures made during 25 

similar behavioural patterns should be compared [67]. This highlights a potential 26 
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methodological difficulty in stress and welfare research since treatments often induce 1 

behavioural reactions that are not seen under normal control conditions.  2 

 3 

Another potential problem is the fact that change in cardiac function often occurs outside of 4 

the interval during which particular behaviour patterns are expressed. Anticipatory changes in 5 

cardiac activity has been observed in various species immediately before a change in 6 

behaviour which can, for example, induce tachycardia before a flight reaction occurs [93-96]. 7 

On the other hand, cardio-physiological responses linked to specific behaviour patterns can 8 

persist even when another behaviour pattern has been initiated. In order to accurately analyse 9 

the complex oscillatory characteristics of HRV, longer measurement periods are needed than 10 

for simpler HR indices for which, theoretically, a single IBI may be sufficient. The TASK 11 

FORCE of the ESC and NASPE [1] recommends that IBI dataset undergoing HRV analyses 12 

should contain at least 5-min of consecutive IBIs measured during stationary conditions.  13 

 14 

3. Methodology of measurement and analysis of HRV in farm animals 15 

3.1. Equipment for recording cardiac activity 16 

 17 

Various portable equipment is commercially available for detecting and storing the whole 18 

electrocardiogram (ECG) for later detection of IBIs. Some of these systems are designed for 19 

ambulatory long-term recording of ECG (mostly up to 24 hours), like Holter systems (Del 20 

Mar Reynolds Medical, Hertford, UK; Schiller, Switzerland; Rozinn Electronics, Inc. USA) 21 

and are widely used in human medicine. They are often combined with specific algorithms for 22 

the detection of IBIs and analysis of HRV (Biopac, Po-Ne-Mah or Cardiopro). However, 23 

these systems are very expensive and especially adapted for the study of human cardiac 24 

activity. An affordable alternative is to use commercially available monitors that detect the R-25 
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peaks of the ECG during recording and then store IBI data in digital form. To our knowledge, 1 

there is currently only one commercial manufacturer (Polar Electro Öy, Finland) who has 2 

developed such devices that are primarily marketed for sport and research in sport medicine. 3 

There are two different models available on the market that record cardiac activity and detect 4 

IBIs at a sampling rate 1000 Hz. The storage capacity of the first model (S810i) can 5 

continuously record up to 16,000 IBIs. Postulating a mean HR of around 70 beats per minute 6 

(bpm), its maximum recording time is therefore about 4 hours. The S810i, and its predecessor 7 

the Vantage NV (stores 4,000 IBIs), have been widely applied in veterinary and behavioural 8 

research [30, 35, 36, 67, 97]. Another model, the Polar R-R Recorder, is a digital 24-h 9 

ambulatory monitor that can record IBI data over much longer periods [98, 99]. Moreover, 10 

this device can also store short (20 sec) epochs of ECG which is not possible with the other 11 

model. These devices use an electrode belt containing two coated electrodes that fits around 12 

the thorax of the wearer. Detection of the IBIs is carried out during recording and the 13 

resulting IBI data are transmitted wirelessly and stored in a data logger. These data may then 14 

be downloaded onto a PC for later analysis of HRV. There are two different types of electrode 15 

chest belts available to use with these monitors. For smaller animals like goats, sheep, pigs, 16 

and calves, a standard belt with an elastic strap can easily be adapted to fix around the thorax 17 

of the animal. For large animals, like cattle or horses, a specific transmitter with two separated 18 

electrodes should be used to optimise electrode positioning. All can transmit detected IBIs as 19 

coded signals to avoid any cross talk between different devices recording at the same time 20 

within a given area. Beside the Polar system, various non-commercial mobile systems have 21 

also been developed to record not only IBI data but also the ECG in unrestrained animals [28, 22 

100].  23 

 24 

A general concern with cardiac monitors that only record IBI data is testing their reliability 25 

and identifying true errors in the data. As the ECG signal itself is not recorded, there is no 26 
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absolute way to identify errors in IBI measurements after data collection [99, 100]. Several 1 

studies have been carried out in cattle and horses, investigating the reliability of these 2 

monitors for measuring HR relative to a standard ECG [101, 102]. In humans, Kingsley and 3 

colleagues [103] recently compared the Polar S 810i to an ambulatory ECG system 4 

(Reynolds, UK) and did not find any differences in IBI data series measured by the two 5 

systems. Similarly, good reproducibility was observed both in time- and in frequency-domain 6 

measures of HRV in healthy subjects comparing the 24h R-R recorder with a high-quality 7 

Holter recorder [104]. 8 

 9 

Various approaches, from simple visual correction to more sophisticated algorithms, have 10 

been developed to correct IBI data for artefact that occur due to the misidentification of R-11 

peaks and ectopic beats. Artefacts may occur as a result of poor electrode-skin conductance, 12 

equipment malfunction, noise from muscle action potentials and environmental 13 

electromagnetic interference [105-110]. In any case, the editing of the IBI data should be 14 

performed to a very high standard ensuring correct identification and correction of IBIs. 15 

Marchant-Forde et al. [99] recently identified five (Type 1 – 5) distinct types of errors in IBI 16 

data series recorded by the Polar R-R Recorder in pigs (see Fig 3). Type 1 errors were 17 

characterised as single point discrepancies, either positive or negative, between the Polar data 18 

and IBIs derived conventional ECG data. Type 2 errors were identified as a long IBI 19 

immediately followed by a short IBI. In contrast, with type 3 errors, where a short IBI was 20 

followed by a compensatory long IBI. Type 4 errors were characterized by a large peak 21 

representing more than one IBI, and in type 5 errors, the recorder generated two or more short 22 

IBIs in the place of a single IBI. As one can see in Fig. 3, none of these artefacts had ectopic 23 

origins, as they were not present in the IBIs derived from the conventional ECG. Type 2 – 5 24 

errors were successfully corrected using an algorithm for recovering IBIs from the 25 

information available within the anomalous IBIs themselves [108]. In type 1 errors, the 26 
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anomalous IBI could reliably be replaced with the mean of the nearest normal neighbouring 1 

IBIs. 2 

Fig. 3 3 

The importance of identifying and correcting artefacts and ectopic beats in IBI data has been 4 

demonstrated by a number of authors in both humans and animals alike. The computation of 5 

many HRV indices is based upon the amount and type of variability within the data and the 6 

presence of even a single error in short duration recordings can significantly bias the outcome 7 

of time, and especially, frequency domain analysis [99, 105, 106, 111]. Geometric and non-8 

linear analytical methods seem more resistance to the present of spurious beats and these are 9 

discussed in greater detail later on. 10 

 11 

3.2. General recommendations for recording of IBIs 12 

 13 

When using HRV to measure changes in the sympathovagal balance a general concern 14 

is the amount of IBI data necessary for informative analysis of the different indices that 15 

accurately represent autonomic function. For a number of rather simple parameters in the time 16 

domain (e.g. SDNNindex, HRVindex, see 3.3.), 24-h recording are certainly adequate for 17 

determine overall variability. These parameters are useful for detecting tendencies in HRV 18 

related to autonomic dysfunction [112], but cannot be reliably used to quantify specific 19 

changes in sympathetic or vagal activity. Similarly, frequency-domain analysis has also been 20 

applied to human, pig and heifer 24-h ambulatory cardiac data. Although the information 21 

obtained has value in general risk assessment, it can be impaired by the occurrence of high 22 

numbers of artefacts, ectopic beats and influences of physical activity as well as a lack of 23 

stationarity in the data making results difficult to interpret or reproduce at times [2, 113]. 24 

Multiple studies have demonstrated that short-term measures of HRV rapidly return to 25 

baseline after transient perturbations induced by manipulations such as mild exercise, 26 

administration of short acting vasodilators, transient coronary occlusion, etc. For reasons of 27 
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standardisation across different studies incorporating HRV, 5-min recordings have been 1 

suggested as a recommended recording length unless the nature of the study dictates another 2 

design [82]. When analysing longer IBI sequences, averaging the results obtained from 5-min 3 

overlapping periods can sometimes minimise some of the difficulties (e.g., non-stationary 4 

data) encountered with longer segments of data [1]. This is especially important in the case of 5 

spectral analysis of HRV by FFT which is strongly influenced by any non-stationarity 6 

inherent in biological data such as cardiac activity. Various studies have demonstrated that 7 

analysing 5-min segments of IBI data in the time-, frequency- and non-linear domains deliver 8 

results comparable to, or even better than, analysing 24 h of data [1, 68, 114, 115].  9 

 10 

As HRV in humans and animals, like many other physiological parameters, is influenced by a 11 

variety of factors like sex, age, diurnal rhythms, respiration, fitness levels, posture and 12 

physical activity, beside others, it is very important to standardise and control the 13 

circumstances under which data are recorded [39, 98, 116-118]. When investigating chronic 14 

states, it is recommended that only data relating to time periods when the subjects are supine 15 

and calm and undisturbed are analysed to minimise the effects of changing physical activity 16 

or arousal on HRV parameters [35, 36]. However, in studies where this is not achievable, any 17 

physical activity should be taken into account when analysing and interpreting HRV [40].  18 

 19 

IBI data that contain more than 5% anomalies, or segments of IBI data containing 3 or more 20 

consecutive error IBIs, should not be included in HRV analysis. Finally, splicing different of 21 

segments of data together is also not recommended as it interrupts the underlying time series 22 

of the data upon which frequency-domain analysis is based.   23 

 24 

3.3. Methods of HRV analysis 25 

 26 



 17 

Early on, HRV analysis primarily focused on time and frequency domain analysis [1, 55, 68, 1 

119]. However, cardiac activity is an integrated signal that is influenced not only by the two 2 

branches of the ANS, but also by a number of other underlying physiological mechanisms and 3 

various extrinsic factors. More recent research reports that cardiac signals also contain non-4 

linear components in the dimension of deterministic or non-deterministic chaos [120, 121]. 5 

Nowadays, investigation of non-linear components of HRV has been established as a further 6 

important field of analysis of HRV [122-124].  7 

 8 

Time Domain Analysis 9 

Time-domain measures are the simplest parameters used to analyse HRV. All these measures 10 

reflect various aspects of statistical variability in the IBI data series. They are broadly divided 11 

into two classes: (a) measures of variability derived from IBI data themselves; (b) measures of 12 

variability derived from differences between adjacent IBIs. Prominent indices within each 13 

class are described in Table 1. 14 

 15 

In the first subclass of time-domain measures, mean IBI and HR are the easiest to calculate 16 

but are also the least informative. The standard deviation of all IBIs over a 24-h period or the 17 

standard deviation of IBIs of a single 5-min period (SDNN, msec) are good predictors of 18 

overall variability present at the time of recording. As the total variance of HRV increases 19 

with the length of analysed recording, in practice, it is inappropriate to compare SDNN 20 

measures obtained from IBI data series of varying durations. If the SDNN is reported for a 21 

24-h recording it is sometimes referred to as cycle length variability (CLV). The SDANN is 22 

the standard deviation of the mean IBI of all 5-min segments in the data. It is also measured 23 

and reported in milliseconds and is highly correlated with SDNN. Finally, SDNNindex is the 24 

mean of the standard deviation of all 5-min segments of a 24-h recording. All these 25 



 18 

parameters reflect long-term variability of cardiac activity and are influenced by both 1 

sympathetic and parasympathetic nervous activity. 2 

 3 

In the second subclass of time-domain measurements, the most informative parameter is 4 

undoubtedly the RMSSD (root mean square of successive differences). This is determined by 5 

calculating the difference between consecutive IBIs before squaring and summing them, the 6 

values are then averaged and the square root obtained. The RMSSD reflects the short-term 7 

variability in overall cardiac activity and is the primary time-domain measure used to estimate 8 

the high frequency (fast) beat-to-beat variations that represent vagal regulatory activity. Other 9 

parameters used to assess beat-to-beat variations include the NN50, the number of 10 

neighbouring IBIs that differ by greater than 50 ms, and the pNN50, the proportion of beats 11 

differing by 50 ms (NN50/total number of IBIs). As these parameters are highly correlated 12 

with RMSSD, they too are also good estimators of vagal activity.  13 

 14 

Geometric analyses 15 

Geometric measures metamorphoses sequences of IBIs into geometrical forms and the 16 

assessment of HRV is extracted from these forms. Some geometric measures are based on the 17 

density distribution (histogram) of IBIs where IBIs are converted into a discrete scale. Most 18 

previously published studies have used a scale with bins of approximately 8 ms long (1/128 19 

sec). By deriving information from this density distribution, the effects of anomalous data 20 

points are reduced since they are usually substantially shorter or longer than normal IBIs and 21 

fall way outside the normal range of the density distribution of the normal data. The most 22 

prominent geometrical measures of this type are the HRVindex and the TINNindex (Table 1). 23 

These measures have been preferentially used in commercial systems for analysing 24-h ECG 24 

data [1]. 25 

Table 1 26 
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The Poincaré plot, also referred to as the Lorenz or Scatter plot, is a map of dots in a XY-1 

diagram (Fig. 4). Each dot represents the duration of an IBI plotted against the duration of its 2 

preceding IBI. Poincaré plots can be analysed qualitatively by visual inspection whereby the 3 

shape of the plot is classified into functional classes that can then be used to interpret the 4 

nature of the cardiac signal from which the plot was generated [125-127]. Woo [128] 5 

constructed Poincaré plots from 24-hour Holter recordings in healthy subjects and patients 6 

with heart failure and found that healthy subjects exhibited comet shaped plots whereas in 7 

plots from the heart failure group, three distinctive patterns were identified: (a) a torpedo 8 

shaped pattern; (b) a fan-shaped pattern and; (c) a complex, almost erratic, pattern. Visual 9 

inspection of Poincaré plots reveals a complexity in cardiac patterns that are not otherwise 10 

detected in other HRV measures.  11 

 12 

Quantitative analyses of a Poincaré plot entails fitting an ellipse to the plot, with the centre of 13 

the ellipse coinciding with the centre point of the scatter plot itself (Fig. 4). In order to do this, 14 

the plot is first turned 45° clockwise, and the standard deviation (SD) of the scatter-plot is 15 

computed around the horizontal axis, which passes through the data (SD1). This SD1 16 

represents the instantaneous, short-term HRV. The plot is then rotated 45° counter-clockwise, 17 

and again the SD of the scatter-plot is computed around the horizontal axis to get the SD of 18 

long-term variability of the IBI data (SD2). The absolute values of SD1 and SD2 can then be 19 

normalised (SD1n and SD2n, respectively), by dividing them by the average IBI value and 20 

then multiplying this by 1,000 [71, 129-132]. Quantitative Poincaré measures have been 21 

found to provide useful information on the vagal regulation of cardiac dynamics that is not 22 

easily detected by other domains of HRV analysis [133 ]. 23 

Fig. 4 24 

 25 

Spectral analysis of HRV by FFT – basic requirements and limits 26 



 20 

Fast Fourier Transformation (FFT) is a widespread approach used decrypt and analyse 1 

dynamical changes in signals in general. The fundamental principle of this method is based on 2 

the fact that every curve can be described by a set of harmonic waves which when added to 3 

one another make up the complete waveform. FFT can be used to ‘decompose’ a waveform 4 

into its sine and cosine constituents. There are some prerequisite factors which should be 5 

taken into account before using FFT, namely: (a) the time difference between the values of 6 

the time series has to be equidistant. In the case of cardiac signals, this means that before 7 

analysing IBI data, the tachogram has to be converted into an equidistant time-series by 8 

interpolating (preferably using cubic spline functions) and resampling the data. In other 9 

words, an instantaneous IBI data series (e.g. for every second of the measuring time) has to be 10 

constructed; (b) the FFT-function works on data sets of 2n numbers. If the data set is not 2n in 11 

length, some programs pad “0” at the beginning and end of the data range to reach the length 12 

2n. This leads to substantial alterations of the power-spectrum (see Fig. 5.) so it is strongly 13 

recommended to extend, or shorten, the data sets by interpolation to get a data set size of 2n; 14 

(c) the level of accuracy achieved in describing the fluctuations of time series depends 15 

considerably on the number of points used in the FFT (see Fig. 6). According to published 16 

recommendations, a minimum of 512 points should be used for FFT analyses of IBI data [1] 17 

(e.g. let us suppose a mean HR of 80 bpm results in an IBI series of 400 values in 5-minutes. 18 

This time series has to be lengthened to 512 values by interpolation prior to analysis.). The 19 

number of points used for FFT influences the highest frequency (Nyquist frequency) as well 20 

as the amount of power in the different frequency bands (Fig. 5).  21 

Fig. 5 22 

Because FFT applies “folding” of the original time series for calculating the power of the 23 

various harmonics, the highest oscillation corresponds to ½ of the number of points used for 24 

FFT, e.g. the highest frequency in a data set which contains 512 points (representing a time-25 

series of 300 s) is the 256-harmonic with a wavelength of 1.17 s (= 300 s/ 256) that has a 26 
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frequency of 0.85 Hz. The spectrum calculated in this way is made up of 256 discrete 1 

spectral-lines. The absolute power of the different bands is limited by the number of spectral-2 

lines within the given ranges for the different bands. Using 1024 points (instead of 512) when 3 

analysing the same 300 s time series, would result in 512 spectral-lines which means a higher 4 

number of spectral-lines and absolute power in the different bands (Fig. 6). 5 

Fig. 6 6 

In spite of all these considerations, one of the great benefits of FFT is the ability to assign the 7 

power in different bands to different underlying physiological functions. It is widely accepted 8 

that the power in the high frequency (HF) band (0.15 – 0.4 Hz in humans) represents vagal 9 

activity [46, 134-136]. The low frequency (LF) band (0.04 – 0.15 Hz) and the very low 10 

frequency (VLF) band (≤ 0.04 Hz) are associated with sympathetic [55] or sympathetic plus 11 

vagal activity, and their physiological meaning has been much debated [137-139]. Therefore, 12 

when calculating the LF/HF ratio as a measure of sympathovagal balance, one has to 13 

appreciate that this measure may also be influenced by other physiological functions like 14 

thermoregulation or myogenic activity of vessels. The location of vagal power in the HF band 15 

of the spectrum is influenced by the respiratory rate of the species [140]. It is, therefore, 16 

important to consider respiration rate when locating the HF power for assessment of HRV. 17 

 18 

To account for inter-individual differences, LF and HF power may also be expressed in 19 

normalised units where the absolute value of each power component is expressed as a 20 

proportion of either total power (e.g. LF/total power) or total power minus the VLF 21 

component (e.g., LF/(total power-VLF power)) [141, 142]. 22 

 23 

Recommendations for the FFT analysis of HRV 24 

To increase the inter-study comparability of FFT analysis of HRV, the following 25 

recommendations should be taken into consideration: 26 
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 Use data-sets of approximately 5-min in length 1 

 Use at least 512 points from the resampled equidistant time series derived from the 2 

original IBI data to calculate the power spectrum 3 

 Use species appropriate frequency bands widths such as the HF ranges following:  4 

horse: 0.13 to 0.26 Hz (corresponds to a respiratory rate of 8 – 16 /min) 5 

foal: 0.25 to 0.33 Hz (corresponds to a respiratory rate of 15 – 20 /min) 6 

cattle: 0.20 to 0.58 Hz (corresponds to a respiratory rate of 12 – 35 /min) 7 

calf: 0.50 to 0.83 Hz (corresponds to a respiratory rate of 30 – 50 /min) 8 

swine (100 kg)  0.13 to 0.41 Hz (corresponds to a respiratory rate of 8 – 25 /min) 9 

piglet: 0.33 to 0.83 Hz (corresponds to a respiratory rate of 20 – 50 /min) 10 

goat/sheep: 0.20 to 0.40 Hz (corresponds to a respiratory rate of 12 – 24 /min) 11 

lamb: 0.33 to 0.58 Hz (corresponds to a respiratory rate of 20 – 35 /min) 12 

rabbit: 0.67 to 1.00 Hz (corresponds to a respiratory rate of 40 – 60 /min) 13 

chicken: 0.33 to 0.67 Hz (corresponds to a respiratory rate of 20 – 40 /min) 14 

duck: 0.83 to 1.17 Hz (corresponds to a respiratory rate of 50 – 70 /min) 15 

Data should be expressed in normalised units as a percentage or proportion of total power 16 

(LF/total power x 100 or HF/total power x 100). 17 

 18 

Non-linear analysis of HRV by Recurrence Quantification Analysis  19 

Parameters derived from various non-linear time-series analyses have been found to be 20 

sensitive indicators of changes in sympathovagal balance under both healthy and pathological 21 

conditions [143-146]. HRV can be influenced by a number of different feedback or feed-22 

forward mechanisms and coupling of two or more oscillators can produce non-linear chaotic 23 

behaviour as non-linearity is a hallmark of complex dynamic systems [147, 148]. Such non-24 

linear oscillations have been shown to be an integral part of HRV and a number of authors 25 

advocate that these processes are related to deterministic or non-deterministic chaos [149-26 
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153]. Nevertheless, others studies have failed to find evidence of low-dimensional chaos in 1 

IBI data [154-156]. These contradictory findings could be partly explained by the fact that IBI 2 

data contains a periodic component originating from the basal frequency of the sinus node 3 

[157]. Furthermore, some non-linear time-series analyses require that data meet some a priori 4 

restrictive mathematical assumptions. One method to test whether time-series IBI data really 5 

contains non-linear dynamics or just linear relationships in the time and frequency domain is 6 

surrogate data analysis [158].  7 

 8 

Recurrence Quantification Analysis (RQA) may be applied to IBI data to detect hidden 9 

rhythms and non-linear deterministic structures of HRV in higher dimensional space [159, 10 

160]. This mathematical approach has already been applied successfully for estimation of 11 

non-linear processes in various physiological time series data [148, 157, 161, 162]. Since 12 

RQA is independent of limiting constraints such as data set size, stationarity, and assumptions 13 

regarding the statistical distributions of data, it seems ideally suited for investigating 14 

physiological systems characterised by non-homeostatic transients and state changes, such as 15 

cardiac activity. Validation of RQA of true non-linear components in HRV time series has 16 

been performed using surrogate data analysis [163, 164]. 17 

 18 

Recurrence plots were introduced by Eckman, Kamphorst and Ruelle [165] as a purely 19 

graphical tool to uncover non-linear properties in time series. Since then, six parameters have 20 

been introduced that may be used to quantitatively assess recurrence plots1 [159, 160].To 21 

perform RQA, the time series is first embedded in a suitable n-dimensional Euclidean space 22 

(e.g. n=10, leaving room for up to ten operators to act on HRV) at unitary time lags. The 23 

outcome is a specific embedding matrix with a single N-dimensional vector for each point of 24 

the time series. From the embedding matrix, a distance matrix is computed determining the 25 

                                                 
1 http://homepages.luc.edu/~cwebber/ 
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Euclidean distances between all pairs of vectors (Fig. 7). The distance between each pair of 1 

vectors is defined as a recurrence point whenever it is below a predefined cut off value. 2 

Fig.7 3 

All recurrence points are plotted as black points at corresponding X,Y coordinates in the 4 

recurrence plot (Fig. 8). In other words, the recurrence plot visualises the distance matrix of 5 

all vectors of the N-dimensional embedded HRV-tachogram. According to Giuliani et al. 6 

[157] the recurrence plot represents the autocorrelation of a given signal at all possible time 7 

scales. Whereas the plot itself already gives an impressive picture of the regularity/irregularity 8 

of the tachogram, the parameters defined by Trulla, Webber and Zbilut [160, 163, 166] enable 9 

quantitative estimation of the recurrence structure of embedded time series.  10 

 11 

Using RQA, a number of quantitative parameters can be derived from the recurrence plots 12 

that are useful in assessing HRV (Table 2). The PERCENTAGE OF RECURRENCE (% REC) 13 

quantifies the percentage of the plot occupied by recurrence points. It corresponds to the 14 

proportion of pair-wise vector distances below a predetermined radius or, equivalently, to 15 

repetition of single vectors in the multidimensional space. The PERCENTAGE OF DETERMINISM 16 

(DET) is the percentage of recurrence points forming upward diagonal lines in the plot i.e. 17 

recurrence points in consecutive sequences, where a line is defined as a sequence that is 18 

longer than a preset threshold length. Both %REC and %DET are both parameters of the 19 

regularity of HRV in multidimensional space that cannot be proven in the original time series. 20 

However, single point recurrence can be observed by chance whenever the system explores 21 

two nearby points of its state space. On the other hand, recurrence points that appear in a row, 22 

forming diagonal lines, are an important signature of deterministic structuring.  23 

The ENTROPY (ENT) is computed as the Shannon entropy of the deterministic line segment 24 

length distributed in a histogram. It corresponds to the richness of deterministic structuring of 25 

the series. The MAXLINE (LMAX) is the length of the longest line of recurrence points in a 26 
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continuous row within the plot. It is inversely related to the largest positive Lyapunov 1 

exponent. The Lyapunov exponent is a quantitative measure of the sensitive dependence of a 2 

time series on the initial conditions. A positive largest Lyapunov exponent indicates chaos 3 

[165]. A small LMAX corresponds to a high Lyapunov exponent, meaning a large amount of 4 

"chaos" and vice versa. Finally, TREND describes how stationary the system is during the 5 

period of measurement. Systems showing a drift may have positive or negative TREND 6 

values, whereas systems without drift have values close to zero. For a more detailed 7 

description of the mathematical background of RQA, several detailed methodological papers 8 

have been previously published [157, 159, 160, 166]. However, as these authors emphasis, 9 

implementation of RQA is far simpler than its actual interpretation.  10 

Table 2 11 

Beside the calculation of “non-linear indexes” of the time series, of particular importance is 12 

the physiological meaning of these parameters. Studies in rats have shown that administration 13 

of atropine significantly increases %REC, %DET and LMAX [161]. However, administration 14 

of atenolol (β1-adrenergic antagonist, sympathetic inhibitor) only increases %REC, whereas 15 

prazosin (α1- adrenergic antagonist) does not affect non-linear indexes of HRV data. In 16 

contrast, α1-sympathetic blockade increased the non-linear parameters of systolic BP [161, 17 

167]. In human diabetic subjects with autonomic dysfunction, no relationship has been found 18 

between linear frequency-domain HRV parameters and the results from the Ewing test (which 19 

is a standard test to diagnose diabetic autonomic dysfunction), whereas the non-linear index 20 

LMAX was strongly correlated to the Ewing score [164]. Theses studies concluded that the non-21 

linear indexes of HRV were more reliable markers of sympathetic and parasympathetic 22 

activation compared to parameters generated from time- and frequency-domain analysis. 23 

 24 

Research in ruminents indicates that combinations of linear and non-linear parametersof HRV 25 

are most promising estimates of the influence of sub-clinical or clinical stress. Results in 26 
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calves, cattle and dwarf goats indicated a loss of complexity in HRV and a more deterministic 1 

control in response to extrinsic, physiological, or pathological loads (Fig. 8) [28, 35, 36]. 2 

Further positive correlations have also been demonstrated among measures of short-term 3 

variability in the time and frequency domains (RMSSD and HF) and many non-linear 4 

parameters [35, 161, 167]. 5 

 6 

4. HRV in applied animal research: methodology and interpretation of HRV in pigs, 7 

cattle, horses, sheep, goats and poultry 8 

 9 

4.1. Heart rate variability in pigs  10 

 11 

A review of the literature on HRV in pigs identifies two main themes of research activity, 12 

albeit with a certain degrees of overlap: 1) use in biomedical models of human disease, and; 13 

2) use as an indicator of stress in applied studies allied to animal well-being. Each set of 14 

literature is small in number but demonstrates an increasing interest in the area of HRV within 15 

the last 10 years.  16 

 17 

Issues researched 18 

In terms of biomedical research, much focus has been on Yucatan [168, 169] or Göttingen 19 

[31, 170] miniature swine, but other studies have also used commercial type pigs [171, 172]. 20 

There has been some basic research carried out into data acquisition system design for 21 

minipigs [173] and studies into circadian patterns of HRV [170] and the effects of pair 22 

housing on HRV parameters [31]. Miniature pigs have also been used as subjects for research 23 

into cardiovascular autonomic neuropathy [168] and the effects of testosterone modulation on 24 

HRV [169]. HRV of commercial piglets has been studied to elucidate asymmetric innervation 25 
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of the myocardium [171] and during research using piglets as a model for Sudden Infant 1 

Death syndrome [172]. 2 

 3 

In terms of studies allied to animal well-being, again there has been some more basic research 4 

into methodology of analysis and data acquisition system design [99], the effects of gestation 5 

on HRV parameters [97] and circadian rhythmicity in HRV. [174]. Applied studies have 6 

looked at the effects of social stress [27, 32, 67], restraint stress [32] and the effects of 7 

grooming [67] on HRV.  8 

 9 

Methodologies used 10 

The major aspects of methodology relate to the physical data acquisition equipment used and 11 

issues surrounding the editing and analysis of data once they have been collected. Firstly, for 12 

data acquisition, there is the choice of either implantable transmitters or externally-mounted 13 

non-invasive transmitters. The commonly-used implantable telemetric devices are 14 

manufactured by Data Sciences International (St. Paul, Minnesota, USA), and both the 15 

TA10CTA-D70 [27] and the TL11M2-D70-PCT [168] have been used successfully, 16 

transmitting to RLA receivers (DSI, St. Paul, USA) (Table 3). The major advantage of the 17 

telemetric system is that potentially, pigs can be housed with pen-mates as the recording 18 

equipment is internalized and thus protected from damage by conspecifics. Furthermore with 19 

appropriate electrode placement there is a substantial reduction in the signal to noise ratio that 20 

is at times an inhibitory factor with non-invasive monitors. However, the transmission range 21 

is currently limited to around 1 metre and thus, if the pig is housed in a larger pen, multiple 22 

receivers are needed to acquire the signal. Also, the transmitters transmit on a single 23 

frequency so only one animal can be recorded per pen at any one time.  24 

 25 
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With externally-mounted equipment, the most commonly used have been ambulatory 1 

monitors, modified for use in pigs [e.g., 31, 99, 169, 170], or various types of Polar HR 2 

monitors, including the SportTester [32], the Vantage NV [67, 99] and the R-R Recorder [99]. 3 

Other equipment used has included a telemetric ECG system [99] and static ECG systems 4 

[171, 172]. The later Polar products have the advantage that they transmit on multiple coded 5 

frequencies, thus allowing several pen-mates to be recorded simultaneously once each is 6 

locked into a different transmitter frequency. Also, if the receiver is attached to the transmitter 7 

belt, the size of pen does not present a problem as the receiver is never out of range of the 8 

transmitter. However, the external nature of the equipment means that it can become the focus 9 

of investigatory attention from pen-mates, resulting in signal disruption from physical 10 

movement of the electrode belt either directly by the rooting or chewing activity of the 11 

investigating pig, or indirectly by the physical exertion of the monitored pig trying to avoid 12 

unwanted attention.  13 

 14 

Analysis and Indices 15 

A summary of the most frequently reported analysis and indices is reported in Table 3. 16 

Preliminary analysis typically begins with the identification and correction of spurious beats 17 

that are a common occurrence in recording from unrestrained pigs. For the most part, data has 18 

been analysed and express in the time (e.g. mean HR, mean IBI, Q-T interval, SDNN, 19 

Variance (σ2), pNN50, RMSSD) and frequency domain (total power, LF, HF, LF:HF ratio, 20 

SNSI (LF/HF) or PNSI (HF/Total) [e.g., 27, 67, 99] as well as geometrically (e.g. Lorenz or 21 

Poincaré plots [e.g., 171]) to determine overall variability and the amount of variability and 22 

power relating to sympathetic and vagal activities. Fast fourier transforms are the common 23 

most method applied to analyse data in the frequency domain [31, 168, 170]. Frequency 24 

bands are expressed in either cycles per beat or hertz (Hz) with the VLF frequency typically 25 

reported as 0 to 0.01 Hz, the LF frequency from 0.01 to 0.07 Hz and the HF frequency 26 
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extending from 0.01 to 1 Hz. Individual frequency bands are sometimes normalised by 1 

expressing the individual bands as a function of the total power. Moreover, the LF to HF 2 

ratio, also referred to as the SNS indicator (SNSI) is determined to reflect activity due to 3 

sympathetic activity whereas the PNS indicator (PNSI, HF/total power) is used to enumerate 4 

vagal activity (see Table 3). 5 

 6 

Recommendations for Future Studies 7 

Considerably work is still necessary to elucidate the regulatory mechanisms contributing to 8 

HRV in pigs. For the most part, in applied studies assumptions have been made about the 9 

location and contributing factors (e.g., respiratory sinus arrhythmia, thermoregulation, etc) of 10 

individual frequency bands based on the human literature. Simple modelling work using ANS 11 

activity inhibitors such as atropine and propranolol is still outstanding and recommended to 12 

standardise methodology and analysis prior to embarking on further controlled stress and 13 

welfare studies. More longitudinal studies looking at the effects of age and disease on HRV 14 

are also of interest together with the effects of genetics, environment, and subjective states 15 

such as fear and anxiety, pain, and general welfare status. The existing data, however, is 16 

sufficient to indicate that HRV is indeed a promising indicator of pig welfare with the ideal 17 

being that in the future appropriate research will continue in this area so that we may be able 18 

to identify specificity in magnitude and/or direction of ANS activity for different subjective 19 

and welfare states. 20 

Table 3 21 

 22 

4.2. Heart rate variability in cattle  23 

 24 

A review of the current literature identifies only a small number of studies addressing HRV in 25 

cattle. This is in contrast to a relatively huge body of research reporting on the measurement 26 
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of HR alone. HR is often used as an index for stress or emotional reactivity in cattle but it 1 

provides little information on the underlying physiological mechanisms that govern its 2 

modification [136, 175, 176]. As in other species, analysis of HRV is a tool used to non-3 

invasively determine changes in PNS and SNS activity [177].  4 

 5 

Methodological aspects 6 

Different types of Holter recorders or fixed systems [24, 25, 101, 136] as well as portable HR 7 

monitors (mostly from Polar Electro Öy, Finland) have been used to investigate HRV in cattle [28, 8 

35, 176, 178]. In some cases, electrode sites were shaved prior to attaching electrodes [28] and in 9 

others not [35]. In either case, it is strongly recommended that ample electrode gel is applied to 10 

optimise electrode-skin contact. With HR monitors, electrodes and transmitters were usually 11 

secured in place by attaching them to a horse girth or similar [28, 35, 178]. A sufficiently long 12 

acclimatisation period (min.1 h) is recommended to allow the animals enough time to become 13 

accustomed to wearing the equipment even when visible reactions after fixing the belt generally 14 

only occur for about 5 to 10 minutes after fitting [28]. The general advantages, disadvantages or 15 

problems concerning accuracy of measurements and correction of artefacts and ectopic beats 16 

discussed earlier in this review are also applicable to HRV analysis in cattle. 17 

 18 

Factors affecting HRV in cattle  19 

As in other species, the relationship between HRV and underlying sympathovagal balance in 20 

cattle was confirmed using pharmacological blockade of the autonomic nervous system [136, 21 

175, 177]. HRV gives insight into the regulatory processes of the cardiovascular system and 22 

various parameters describing HRV in cattle have been used to detect irregularities in the 23 

operational sequences of sympathovagal balance. Several authors have used HRV to detect 24 

alterations in the brainstem caused by bovine spongiform encephalopathy (BSE). In addition 25 

to bradycardia, these studies report an increase in vagal tone, marked by a drastic increase in 26 
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HF spectral power [25]. LF power, on the other hand, shifted between phases of high power 1 

to phases of lower power. This effect of switching between low and high spectral frequencies 2 

seemed to be quite characteristic for BSE and was not comparable to changes in HRV 3 

described after brainstem stroke [24]. Furthermore, elevated HF power was present 9 months 4 

before the animals developed any clinical signs of BSE itself [24]. Bradycardia and increased 5 

HF power, due to an increase in vagal tone has also described in fasting steers. The 6 

connection between these two effects (bradycardia and emptying of the rumen) was explained 7 

by a reduction of ruminal tensor receptor input into the medullary gastric centre that 8 

influences the nearby cardiovascular centre [177]. These observations highlight the fact that 9 

because of the multivalent input into cardiac activity, irregularities and changes in activity 10 

levels can be caused by a multitude of intrinsic and extrinsic environmental factors. From this 11 

perspective, it is not surprising that it seems possible to detect emotional or physical stress by 12 

analysing HRV [178]. It has been reported that, as in other species, cattle also exhibit 13 

anticipatory changes in HR and cardiac activity when they are about to acquire a cognitive 14 

task [176]. Other research has demonstrated that in calves, short-term variability (RMSSD), 15 

as well as long-term variability (SDNN), of HRV decreased significantly with increasing 16 

levels of stress load (from high ambient temperature combined with insect harassment to 17 

clinical signs of diarrhoea) [28]. The decrease in RMSSD in response to external stressors and 18 

pathological loads is indicative of a considerable reduction in vagal tone during stress. In 19 

contrast, SDNN, and strongly correlated parameters SDANN and HRVindex, are more complex 20 

parameters reflecting, at least, both vagal as well as sympathetic influences on cardiac 21 

activity. These parameters are better indicators of overall sympathovagal balance than for 22 

distinguishing between the regulatory activities of the two branches of the ANS [179]. 23 

Reduced cardiac vagal tone in response to external stress has not been reflected in SDNN, 24 

SDANN or HRVindex parameters, possibly due to the slight delay that occurs in sympathetic 25 

regulation of cardiac activity [28]. However, a pathological challenge, like diarrhoea, causes a 26 
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considerable decrease in both vagal and sympathetic tone, as shown by simultaneous 1 

decreases in RMSSD, SDNN, SDANN and HRVindex. Results in the frequency domain exhibit 2 

similar patterns to time domain parameters. Changes in the HF component to varying levels 3 

of stress were similar to those found in RMSSD. A significant decrease occurred following 4 

external stress and an even stronger decline happened in response to pathological load. 5 

Simultaneously changes in the LF component were not observed, but the absence of changes 6 

in the LF component could have been a result of masking effects or interchanges between all 7 

the loops mentioned above. In summary, results in both the time domain and frequency 8 

domain indicated a reduction of vagal tone as stress level increases. No significant difference 9 

in either time or frequency domain parameters of HRV have been found to exist between 10 

lactating and non-lactating cows [28]. All cows showed similar values for all parameters 11 

within the two groups, so it seems that lactation and late pregnancy are comparable 12 

pathological loads for the animals. Cardiac activity in mammals is an integrated signal which 13 

is influenced not only by the two branches of the ANS, but also by other physiological control 14 

circuits and external influences [180]. HRV is influenced by several feedback or feed forward 15 

mechanisms [159]. In recent years, some studies have shown that IBI time series contain non-16 

linear components in the sense of deterministic or non-deterministic chaos that is described in 17 

detail earlier in this review [121, 150, 152, 153,]. In calves, all non-linear parameters of HRV 18 

have been demonstrated to rise significantly in response to external stress, and even more to 19 

pathological load. The most obvious increment was observed for LMAX, which increased 20 

significantly in all three thermal, insect and pathological stress groups [28]. In lactating cattle, 21 

%DET was the only non-linear parameter which increased significantly from non-lactating to 22 

lactating cows [28]. The results in both calves and cattle studies indicate a loss of complexity 23 

in cardiac activity and a more deterministic control of HRV in reaction to external, 24 

physiological or pathological loads. In other words, when an organism’s biological systems 25 

need to focus on specific challenges, a loss in the general freedom of cardiovascular dynamics 26 
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results. Furthermore, both calves and cattle do show differences in their non-linear cardiac 1 

dynamics depending on type of stress load experienced. Both moderate physiological stress in 2 

lactating cows compared to non-lactating animals and moderate external stress in calves, 3 

cause an increase of %DET that is indicative of an increase of recurrence sequences in the 4 

time series. This is interpreted as a more quantitative growth of deterministic processes in 5 

HRV. In contrast to that, %DET did not further expand in response to pathological load in 6 

calves. However, higher values of LMAX, indicate that under such circumstances, HRV 7 

persists under stringent control for much longer periods [161, 181]. It is suggested that %DET 8 

indicates quantitative changes in the level of stress load, while higher values of LMAX, are 9 

signs of a qualitative different stress level.  10 

 11 

These results were very recently confirmed by other authors who evaluated the influences of a 12 

conventional milking system versus an automatic one on non-liner dynamics of HRV [35]. 13 

Beside differences in breed, body weight and time of day, this study also reports an increase 14 

in %DET, LMAX, and LF/HF ratio and a reduction in RMSSD and HFnorm in animals which 15 

were confronted with an automatic milking system, suggestive of higher levels of stress.  16 

Specific conclusions and recommendations 17 

Measuring HRV in cattle can be used to measure stress from physical, pathological and 18 

emotional origins. In addition to the general methodological recommendations given in the 19 

review the following points should be considered when measuring HRV in cattle to evaluate 20 

stress and welfare: 21 

 Electrodes should be positioned on the left side of the chest with one electrode placed 22 

close to the sternum and the other over the right scapula 23 

 Shaving the skin is useful but not necessary 24 

 Ample electrode gel should be used  25 
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 1 

Table 4 2 

 3 

4.3. Heart rate variability in horses 4 

 5 

A search of the literature reveals 19 studies published in peer reviewed scientific journals 6 

where HRV has been evaluated in horses with different techniques and objectives. The 7 

following section discusses methodological aspects of measuring HRV in horses during a 8 

range of different conditions. The descriptions of the different general recording techniques 9 

described earlier in this review also encompass the different approaches to record IBIs in 10 

horses. This section, therefore, focuses on the major constraints of the different techniques, 11 

reports basal HRV values found in horses, and also reports on the effects of different clinical, 12 

behavioural and physiological conditions on sympathovagal regulation of cardiac activity. 13 

 14 

By far the majority of equine HRV studies have used Holter type recordings [37, 39, 58, 100, 15 

92, 182-191]. A smaller number have used the Polar Vantage [40, 192] or the Polar R-R [30, 16 

33, 193]. Practical difficulties are often encountered when trying to document reliable 17 

measures of HRV in field like conditions. Published techniques have some limitations 18 

associated with them that should be considered when designing any study. Holter systems 19 

provide precise and long-term recordings but they are expensive and could be damaged when 20 

used on farms where several horses can interact during experiments. Heart rate monitors are 21 

more affordable telemetric systems that have the benefit of not requiring invasive surgery 22 

associated with them. However, they also have inherent limitations associated with them, 23 

namely that they automatically detect the R-peak of the ECG but not the ECG itself. In 24 

horses, the steepness of the t-wave can be very pronounced and systems only detecting R 25 

peaks, by looking for sharp increase in voltage, can often register false values. These artefacts 26 
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are easily identified because two false IBI values will be separated only by some milliseconds 1 

as the system triggers first on the t-wave then very soon afterwards on the R-wave. In some 2 

cases, the problem can be avoided by changing the site of the electrodes to reduce the 3 

perceptible size of t-waves. In some recording systems, the presence of artefacts caused by 4 

movements of electrodes on the skin or by muscle contractions can be detected and corrected 5 

automatically by software algorithms. Using such automatic correction tools has to be 6 

considered with due care and attention. Arrhythmias at rest are physiologically normal in the 7 

horse because of their very high basal vagal tone. In this case, normal successive IBIs may 8 

have large differences that are hardly differentiable from artefacts without reference to the 9 

original ECG. It is hard to perform an appropriate automatic identification and correction of 10 

errors that can considerably affect the interpretation of HRV.  11 

 12 

Factors affecting HRV in horses 13 

Previously published research has documented good stability in inter-individual levels of 14 

HRV across age [40] and high degrees of repeatability when recordings are analysed over 15 

subsequent days [30, 184]. Horses also exhibit an increase in HF spectral power at night, 16 

indicating that time of the day is an important factor that should be controlled for in equine 17 

HRV studies [38, 184]. Some studies also report gender-related differences in ANS regulation 18 

of cardiac activity, with females appearing to have higher vagal tone which is consistent with 19 

the gender differences reported in humans [182, 194]. In contrast, an unrelated study using 20 

twenty horses failed to observe any gender based differences [30]. Basal values of HRV in 21 

horses appear to contain large inter-individual variations (Table 5). The exact origin of this 22 

variation is unknown but is likely due in part to a multitude of factors including genotype, 23 

behaviour, temperament, and nutritional status. 24 

 25 
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Clinical conditions, temperament and training have been the most commonly investigated 1 

factors affecting HRV in horses. A significant change in HRV has been demonstrated in 2 

several diseases such as grass sickness [190], laminitis [193], and atrial fibrillation [188]. The 3 

effect of pain, in horses suffering from laminitis has also been investigated [193]. In this 4 

particular work, treatment with non-steroidal anti-inflammatory drugs results in changes in LF 5 

and HF power, along side simultaneous changes in adrenalin and weight shifting behaviours, 6 

leading the authors to conclude that HRV may be used to reliably assess pain in horses. 7 

 8 

Several horse studies have shown an effect of physical effort and training on cardiac activity 9 

and sympathovagal balance [37-40, 92, 185]. In general, resting HR in horses is significantly 10 

decreased by training but one study has failed to find any training related changes in the vagal 11 

tone when HRV was recorded at rest [187]. Other work found that in challenging conditions 12 

(behaviour tests), untrained horses showed more pronounced, although not significant, 13 

increases in HR alongside associated decreases in HRV parameters 40. Exercise on aqua-14 

treadmill is associated with significantly higher sympathetic tone and decreased vagal tone 15 

92], although immersion in warm spring water, without any physical effort, results in an 16 

enhancement in vagal activity, that is purportedly linked to a mental and physical state of 17 

relaxation 185. Many studies found negative correlations between the intensity of exercise 18 

and the overall HRV due to a progressive rise in sympathetic tone [37, 39, 92]. 19 

 20 

HRV appears to be a promising indicator of temperament and coping strategies in horses also. 21 

Several studies report a relationship between behavioural reactivity and HRV in horses 22 

undergoing behavioural testing [33, 40, 184, 192]. Exposure to a novel object, as well as 23 

handling, induces a physiological state characterised by an increase in mean HR and a 24 

decrease in SDNN and RMSSD indicating that there is a reduction in PNS influence during 25 

testing [40]. Clement and Barrey [182] and Thayer et al. [37] described reduced HRV for 26 



 37 

more reactive horses, young subjects and hot-blooded breeds. Eager et al. [184] found 1 

positive correlations between the scores of six horses to a water spray test, handler scorings 2 

on a visual analogue scale and HRV with more fearful horses showing increased total and LF 3 

power. Another study by Visser et al. [40] report a relationship between HRV parameters and 4 

riders’ rating scores with respect to ten temperamental traits. Additionally, HRV analysis has 5 

also been used to assess stress and susceptibility to stress in horses. In humans, is has been 6 

reported that vagal tone is a reliable indicator of individual stress vulnerability and the 7 

magnitude of a stress response [83]. In horses, baseline resting levels of LF, HF and their ratio 8 

has been found to differ between habitual crib-biting and normal control horses [33]. Other 9 

research reports on a relationship between indices of HRV (increased mean HR, LF and 10 

HF/LF and decreased HF) and stress related behaviour exhibited as a result of enforced 11 

backward movement in horses [30].  12 

Specific conclusions and recommendations 13 

HRV analysis in horses appears to be a sensitive measure of both physical and emotional 14 

stress responses. Beside the general methodological recommendations given earlier in this 15 

review, the following points are recommended when measuring and analysing HRV in horses: 16 

 Physical soundness with special attention to the cardiovascular system and atrio-17 

ventricular blocks.  18 

 Using a system that records ECG is preferably to one storing only IBI data due the 19 

relatively pronounced t-waves in horses. 20 

  Shaving the electrode sites is unnecessary with certain systems but electrode gel 21 

should be applied in all instances to enhance signal transmission.  22 

 23 

Table 5 24 

 25 
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4.4. HRV in sheep and goat 1 

 2 

Several laboratories have undertaken extensive cardiac and HRV studies in sheep because the 3 

sheep heart is similar to that of the human in many ways, including dimensions of the 4 

chambers, coronary anatomy, and magnitude of haemodynamic variables such as BP, HR, and 5 

cardiac output [195]. Moreover, autonomic innervations of the heart in sheep are also similar 6 

to that of the human [196]. 7 

 8 

These similarities explain why a large number of studies on foetal cardiovascular regulation 9 

have been performed in the ovine foetus. Several studies [reviewed in 197] support the 10 

existence of autonomic control of circulatory function early in the development of the foetus. 11 

In the immature foetus, basal sympathetic tone is important in the maintenance of foetal 12 

arterial pressure [198, 199] and is reflected by the LF variability in the HRV power spectrum 13 

[200, 201]. Monitoring the variability in the LF range has been used in estimating the level of 14 

foetal sympathetic activation during high-risk pregnancies, foetal distress after haemorrhage 15 

[202] and hypoxia [203]. The PNS is reported to have little influence on basal foetal 16 

cardiovascular function in the immature foetus, with its influence on resting HR increases 17 

progressively during post-natal maturation [198, 204]. Although neurohumoral control is 18 

important in neonatal period, the sympathetic system appears to be the major regulator of 19 

vascular function up to 8 weeks of life [198, 205]. By 3 months age, vagal regulation 20 

dominates and the best indicies of this dominance are RMSSD and HF power [175]. 21 

 22 

Studies involving HRV and behaviour in sheep and goats are sparse. Desire, Veissier et al 23 

[41] investigated the ability of lambs to react to suddenness and novelty of an event, 24 

according to appraisal theories. They found that lambs responded to a sudden event by a 25 

startle response coupled with a transient increase in HR that did not appear to be vagally 26 
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mediated as there were no associative modifications in RMSSD levels. They responded to a 1 

novel event by orientating towards the novelty coupled with a transient increase in RMSSD.  2 

 3 

Langbein, Nürnberg et al. [36] studied HRV and visual discrimination learning in Nigerian 4 

dwarf goats using Polar S810 monitors. To minimize the influence of physical activity, and to 5 

study the long-term effects of visual operant conditioning learning on HRV only IBI data 6 

corresponding to resting behaviour (lying, calm and undisturbed) were incorporated into the 7 

analyses in this particular research. Whereas HR increased throughout the course of a first 8 

learning task, this relationship was the opposite in two proximate tasks, indicating different 9 

effects of different learning challenge on HR that may have been related to how familiar the 10 

goats were with the function of the learning device. Moreover, this work also found 11 

significant relationships between the time taken to perform particular tasks and several HRV 12 

indices representing vagal tone. Overall, results from this research suggest that learning 13 

related changes in HR were predominantly caused by a withdrawal of vagal tone. To 14 

investigate non-linear processes in cardiac regulation, this study used RQA. Increased 15 

deterministic shares of HRV throughout task 1 and 2 indicated that the goats did not really 16 

relax until the end of task 3.  17 

 18 

Recommendations for HRV studies in sheep and goat 19 

Several types of equipment designed for monitoring cardiac activity in humans are also 20 

suitable for use in sheep and goats. Data loggers are useful for short-term measurements but 21 

generally do not allow for specific event marking. Radio-telemetric equipment (e.g. Life 22 

Scope System, Nihon Kohden, Japan), that transmit to data acquisition system are more useful 23 

for long-term studies and multiple events marking. Some of them permit the acquisition of 24 

behaviour recording and are equipped with HRV analysis software packages (e.g. QuickTime 25 

capture Module for Chart software, PowerLab System, ADInstruments, UK). When 26 
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measuring HRV in free ranging animals, the belt with the electrodes needs to be protected to 1 

avoid movement of the electrodes and loss of signal. The electrodes should be positioned on 2 

shaved skin on the left side of the chest corresponding to the cardiac electrical axis. To 3 

achieve this one electrode is generally placed close to the sternum and the other over the right 4 

scapula.  5 

 6 

ECG signals should ideally be recorded at a sampling rate of 1000 Hz. Time- and frequency-7 

domain analysis should be conducted following the procedures recommended earlier in this 8 

review. Frequency domain analysis is critical to determine the contributions of both branches 9 

of the ANS. Stationary data should be used and this is easiest to obtain in sheep and goats 10 

when they are lying undisturbed.  11 

 12 

Since experimental conditions, such as temperature or animal metabolism, may vary greatly, 13 

the respiratory frequency of the animals should be simultaneously recorded to allow for 14 

accurate determination of the upper limit of the spectrum defined by Nyquist frequency. In 15 

warm environment, HR in sheep can reach 200 bpm and their respiratory frequency 72 bpm 16 

(1.2 Hz). In this example, if the resampling frequency of the IBI data is 3 Hz, the Nyquist 17 

frequency is 1.5 Hz and the following frequency-domain ranges are advised: total power in 18 

the range 0-1.5 Hz, LF in the range 0.04-0.15 Hz, and HF in the range 0.15-1.5 Hz, including 19 

the respiratory peak at 1.2 Hz. The limits of LF wavebands include the oscillation of the 20 

baroreflex region (0.1 Hz) as shown by pharmacological blockades studies in sheep [205]. 21 

 22 

4.5. Heart rate variability in poultry 23 

 24 

The analysis of HRV has been used in very few studies in birds. Two main reasons can be 25 

identified: firstly, HRV analysis requires high quality data that can be difficult to obtain in 26 
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birds, particularly when using non-invasive equipment; secondly, a lack of fundamental 1 

research evaluating the physiological meaning of HRV indices in avian species inhibits the 2 

development of further research in this area. 3 

 4 

Several studies have been carried out on HR fluctuation, rather than variability itself, in 5 

chicks, emus and quail, both before and after hatching, and most of these studies have focused 6 

on the development of the cardiac rhythms [206-211]. These experiments were not designed 7 

to evaluate welfare problems but the methods are interesting and are a useful source of HRV 8 

information in normal and non-normal chicks both during and after hatching. Cardiac activity 9 

can be measured pre-hatching by inserting specially designed electrodes through a hole in the 10 

egg in three locations. Recording in hatched chicks can be achieved using flexible Ag/AgCl 11 

gel electrodes that are attached to the skin at the lateral thoracic wall under both wings and at 12 

the ventral abdomen. The electrode wires are then fixed on the back so that the bird could 13 

move freely within a small cage. The authors [207-211] did not use the usual indices to 14 

analyse HRV and their analysis led to the identification of three types of HR fluctuations 15 

according to their frequency (high: type I HRV; low: type II HRV) and to irregularities (type 16 

III HRV). Ultradian and circadian rhythms in HR have also been reported in embryos and 17 

hatchlings, respectively, and the distinctive patterns of HR fluctuations in embryos and 18 

hatched chicks are assumed to be partly related to ANS activity. 19 

 20 

Another innovative study on the chick embryo used time- and frequency-domain indices and 21 

demonstrated that cardiovascular function in the chick embryo was modulated by the ANS as 22 

early as day 19 of incubation and that both SNS and vagal activities have reached a ’mature’ 23 

level by this stage [212]. 24 

 25 
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HRV has also been used to better understand the relationship between coping style and 1 

feather pecking [29]. Time domain analysis of HRV identified different autonomic responses 2 

in chicks from high- and low-feather pecking lines of laying hens during a stressful challenge 3 

29. This response was assumed to be related to the different coping style of the birds as 4 

reflected in higher vagal activity in the low-feather pecking line that was perhaps related to 5 

more passive coping strategies. 6 

 7 

HRV analysis has been used to obtain physiological information about broilers at risk of 8 

sudden death syndrome which can lead to the death of 2 to 4 % of male broiler chickens in a 9 

flock [213]. In this research, birds were equipped with telemetric transmitters when they were 10 

15-days old. The transmitters were implanted subcutaneously at the base of the neck with one 11 

electrode placed over the right shoulder and the other one over the left groin area. The freely 12 

moving chicks could then be monitored in their home cage. Unfortunately, although only 13 

SDANN was used to evaluate HRV, the study clearly demonstrated that telemetric devices are 14 

powerful tools for accurately measuring cardiac activity and HRV at rest. 15 

 16 

Biotelemetric devices have also been used for HRV analysis in quail [214]. The purpose of 17 

this research was to understand how the ANS responded to emotional stress in strains 18 

differentially selected for fear. ANS regulation of the quail heart has also been assessed using 19 

HRV analysis and pharmacological blockades [215]. Genetic lines of quail selected for either 20 

long or short duration of tonic immobility were compared to their controls. The transmitters 21 

were fixed to the back of the quail using a harness type setup. The positive electrode was 22 

fixed to the muscular fibres of the quail’s back at the wing base and the negative one was 23 

fixed to the right Pectoralis major muscle. HRV analysis, in time and frequency domains, 24 

showed that the two lines did not differ in their intrinsic heart rate, i.e. heart rate during total 25 

ANS blockade. However, parameters of HRV did differ between the two strains. Vagal 26 
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activity was the highest in the line with short-tonic immobility duration while sympathetic 1 

activity was the highest in the quail from the long-tonic immobility duration line. It seems 2 

therefore that responses to tonic immobility in quail appear to be related to underlying 3 

sympathovagal control of the heart.  4 

 5 

In conclusion, the use of HRV analysis is increasing in birds and appears to be a useful tool to 6 

study stress and welfare, especially when telemetric equipment is used. In general, equipment 7 

that has been developed for use in laboratory rodents is also appropriate for use in poultry. 8 

Future research should involve establishing the exact physiological meaning of the various 9 

HRV parameters in avian species and determining what relationship exists between these 10 

parameters and stress and welfare. 11 

 12 

5. General conclusions and recommendations for future research 13 

 14 

During the last decade, HRV has been successfully used as a measure of autonomic regulation 15 

of cardiac activity in farm and companion animals : (i) to assess stress and well-being under 16 

various housing and management conditions on the farm or under laboratory conditions; (ii) 17 

to study basic cardiovascular regulation in various test situations, including animal based 18 

model studies that enhance our understanding of human diseases; (iii) to evaluate pathological 19 

conditions, behavioural disorders, management and housing problems, training and fitness 20 

level (mainly horses); (iv) to characterise and understand individual traits such as 21 

temperament and coping strategies. In most studies, non-invasive ambulatory Holter monitors 22 

or telemetric HR monitors have been used for data sampling. Data are commonly analysed 23 

and expressed in the time and frequency domain as well as geometrically, although some 24 

recent studies in domestic animals and humans indicate that the non-linear indices of HRV are 25 

also reliable markers of sympathetic and vagal activation. Chronic changes (such as housing 26 



 44 

conditions) in HRV parameters should only be measured during stationary condition with 1 

minimal, or unvarying, motor activity. In order to analyse the complex oscillatory of HRV, 2 

analyses from at least 5-min of consecutive IBI data are recommended. Age, sex and time of 3 

the day should be standardised and mentioned. Animals need to be well accustomed to the 4 

recording device before starting data collection. A within-individual change in HRV, recorded 5 

before and after a treatment is applied, is more meaningful than between groups comparisons. 6 

Recordings of IBIs should contain less than 5% of artefacts before editing and the subsequent 7 

manual editing of the data should be done to a very high standard. 8 

This TASK FORCE has identified the following areas that warrant further study in order to 9 

improve methodology and to enhance our understanding of HRV and underlying 10 

sympathovagal balance in relation to stress and welfare of farm animals: 11 

 12 

1. Study ranges of variation for HRV in different animal species and 13 

populations in order to estimate animal numbers needed for studies on a 14 

group level 15 

2. Study individual traits (coping styles, temperament) in relation to HRV and 16 

physiological correlates, and use these traits as possible criteria for selection 17 

purposes 18 

3. Measure diurnal variation and effects of season, age and metabolic state on 19 

HRV 20 

4. Assess HRV in relation to chronic diseases and pain 21 

5. Develop techniques for remote controlled telemetric devices for monitoring 22 

HRV as a tool for precision livestock farming  23 

6. Improve ease of analysis by means of automatic elimination of artefacts 24 

from tachograms 25 
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7. Study regulatory mechanisms contributing to HRV by means of 1 

pharmacological inhibition or stimulation of the ANS activity   2 

3 
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 1 

Appendix A 2 

Abbreviations and main definitions 3 

ANS: Autonomic Nervous System. Portion of the nervous system that controls visceral 4 

functions of the body. It is traditionally partitioned into the sympathetic (= SNS) and 5 

parasympathetic (PNS) branches in reference to the neurotransmitters released at the nerve 6 

terminals (noradrenaline for the SNS, acetylcholine for the PNS) and to the region in which 7 

the nerves have their origin (the thoracic and lumbar segments of the spinal cord for the SNS, 8 

the brainstem via the cranial nerves or the sacral segments of the spinal cord for the PNS). 9 

The vagus (= vagal nerve = 10th cranial nerve) is a major component of the ANS. 10 

AV: Atrioventricular. The AV node has autonomous heart beat stimulation properties. It is 11 

under the control of the sinus node and both sympathetic and parasympathetic (vagal) nerves. 12 

BP: Blood pressure. 13 

Bpm: Beats per minute. Number of heart beats in one minute. 14 

CLV: Cycle length variability. Standard deviation of IBIs calculated over 24 h. 15 

ECG: Electrocardiogram. 16 

ENT: Entropy. One of the quantitative parameters derived from a non-linear mathematical 17 

analysis of HRV (see RQA). See exact definition in part III. 18 

FFT: Fast Fourrier transformation. 19 

HF: High frequency. The component of HRV determined by spectral analysis whose usual 20 

range of variation in human is between 0.15 and 0.4 Hz. In other species, it could differ 21 

depending on the respiratory frequency. It depends mainly on vagal (parasympathetic) 22 

influences.  23 

HR: Heart rate. Frequency of heart beats usually expressed as number of beats per min. 24 

HRV: Heart rate variability. Usually determined by analysing the time series of normal inter-25 

beat intervals determined by ECG or arterial pressure tracings. Various measures of heart rate 26 

variability have been proposed. 27 

IBI: Inter-beat interval. Time interval between two consecutive heart beats in ms. 28 

LF: Low frequency. Component of HRV determined by spectral analysis whose usual range 29 

of variation in humans is between 0.04 and 0.15 Hz. It integrates both vagal 30 

(parasympathetic) and sympathetic influences. 31 
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LMAX: Maxline. One of the quantitative parameters derived from a non-linear mathematical 1 

analysis of HRV (see RQA). See exact definition in part III. 2 

Lorenz plot. See Poincaré plot. 3 

NN interval: Normal-to-Normal interval = IBI. 4 

NN50: Normal-to-normal intervals greater than 50 ms. Number of differences between two 5 

successive IBIs greater than 50 ms. 6 

pNN50: Percentage of normal-to-normal intervals greater than 50 ms. Percentage of 7 

differences between two successive IBIs greater than 50 ms. 8 

%DET: percentage of determination. One of the quantitative parameters derived from a non-9 

linear mathematical analysis of HRV (see RQA). See exact definition in part III. 10 

%REC: percentage of recurrence. One of the quantitative parameters derived from a non-11 

linear mathematical analysis of HRV (see RQA). See exact definition in part III. 12 

Poincaré plot = Lorenz plot. Scatter plot where each dot represents an IBI plotted against the 13 

previous one. 14 

PNS: Parasympathetic Nervous System. One of the two main branches of the ANS (see 15 

above).  16 

PSD: Power spectral density. PSD analysis describes the variation of an IBI data series as a 17 

set of sine and cosine constituents. One method to calculate PSD is based on FFT. 18 

RMSSD: Square root of the mean of the sum of the squares of differences between 19 

consecutive IBIs. It is the standard deviation of differences between successive IBIs. 20 

RQA: Recurrence quantification analysis. A non-linear mathematical analysis of HRV. 21 

RR: R wave to R wave. R waves are identified by electrocardiogram. RR interval = IBI =NN 22 

interval. 23 

SD1: Standard deviation 1. It represents the short-term component of HRV derived from a 24 

quantitative analysis of Poincaré plot. See exact definition in part III. 25 

SD2: Stantard deviation 2. It represents the long-term component of HRV derived from a 26 

quantitative analysis of Poincaré plot. See exact definition in part III. 27 

SDANN: Standard deviation of the average normal-to-normal intervals. It is the standard 28 

deviation of the IBIs averages calculated on 5-min segments during the 24-h cycle. 29 
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SDNN: Standard deviation of normal-to-normal intervals. It is the standard deviation of all 1 

IBI measured. 2 

SDNNindex: mean of standard deviation of normal-to-normal intervals. It is the mean of the 3 

IBI standard deviations calculated on 5-min segments. 4 

SN: Sinus node = nodus sinu-atrialis. The heart’s pacemaker that generates an intrinsic heart 5 

rate. It is under the control of both parasympathetic and sympathetic nerves. 6 

SNS: Sympathetic Nervous System. One of the two main branches of the ANS (see above). 7 

Tachogram: a graphical record representing the variation of IBIs as a function of the interval 8 

number. 9 

TINN: Triangular interpolation of NN interval histogram. One of the quantitative parameters 10 

derived from a geometrical analysis of HRV. 11 

Trend: One of the quantitative parameters derived from a non-linear mathematical analysis of 12 

HRV (see RQA). See exact definition in part III. 13 

VLF: Very low frequency. It is the component of HRV determined by spectral analysis 14 

whose usual range of variation in humans is between 0.0033 and 0.04 Hz. Its physiological 15 

significance is not fully clear. 16 

17 
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Table 1 1 

 Time-domain measures of HRV  (adapted from (Task Force, 1996 396 /id))  2 

Variable  Units  Description 3 

Statistical measures 4 

 5 

SDNN  ms  Standard deviation of all IBIs of the dataset. 6 

SDANN  ms  Standard deviation of the mean of IBIs in all 5-min segments 7 

of the entire dataset. 8 

SDNNindex  ms  Mean of the standard deviations of all IBIs for all 5-min 9 

segments of the entire dataset (24h). 10 

RMSSD  ms  The square root of the mean of the sum of the squares of 11 

differences between successive IBIs. 12 

NN50 count   Number of pairs of successive IBIs differing by more than 50 13 

ms.  14 

pNN50  %  NN50 count divided by the total number of all IBI's. 15 

 16 

Geometric measures 17 

 18 

HRVindex   Total number of all IBIs divided by the height of the 19 

histogram of all IBIs measured on a discrete scale with bins of 20 

7.8125 ms (1/128 s). 21 

TINNindex  ms  Baseline width of the minimum square difference triangular 22 

interpolation of the highest peak of the histogram of all IBIs. 23 

Poincaré (Lorenz) plot  XY-diagram of each IBI of the dataset plotted as a function of 24 

the previous IBI. 25 

26 
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Table 2 1 

Quantitative parameters derived from the recurrence plot by applying the RQA. 2 

PERCENTAGE OF Percentage of recurrence points in the plot; single vector repetition 3 

RECURRENCE 127(%REC) in n-dimensional space. 4 

PERCENTAGE OF Percentage of recurrence points forming upward diagonal lines i.e. 5 

DETERMINISM (%DET) recurrence points in consecutive sequences. 6 

 7 

ENTROPY (ENT) Shannon information entropy of the line length distribution 8 

MAXLINE (LMAX) The longest diagonal line segment of consecutive recurrence 9 

 points in the plot. 10 

TREND  Drifting of the recurrence points away from the central diagonal 11 

 line of identity. 12 
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Table 3 1 

Summary of selected research on HRV research in pigs 2 

Publication Study Objective Equipment Used Time Domain Frequency Domain 3 

   Indices Reported Indices Reported 4 

Mesangeau et al., 2000 Diabetes research Data Science Mean HR, SDRR Total Power 5 

[168]  TL11M2-D70-DCT 6 

Olmstead et al., 2005 Effects of testosterone  Holter Mean HR, SDRR, LF, 0.01 - 0.07 Hz 7 

[169] on HRV  SDANN, RMSSD HF, 0.07 - 1.0 Hz 8 

Kuwahara et al., 1999  Circadian rhythms Holter Mean RR, SDRR, LF, 0.01 - 0.07 Hz 9 

Kuwuhara et al., 2004 Pair housing  CVRR HF, 0.07 - 1.0 Hz 10 

[170]    Total Power 11 

[31]    Normalised LF & HF 12 

Voss et al., 2004 Effects of endotoxins  Hook Electrodes & SDRR, SDΔRR LF, 0.02 - 0.15 Hz 13 

[172] on HRV Grass Recorder  HF, 0.15 - 2.0 Hz 14 

Marchant-Forde et al., 2004 Validation of equipment  Polar RR, Mean HR, RR Max,  VLF, 0.003 - 0.01 Hz 15 

[99] and identification &  Telemetric ECG RR Min, SD, LF, 0.01 - 0.07 Hz 16 

 correction of artefacts  σ2, RMSSD HF, 0.01 - 0.5 Hz 17 

    Total Power 18 

    SNSI & PNSI 19 

Marchant-Forde, Marchant-Forde, 2004 Effects of gestation  Polar NV Mean HR, RR Max, LF, 0.01 - 0.07 Hz 20 

[97] on HRV  RR Min, SD, σ2, HF, 0.01 - 0.5 Hz 21 

   RMSSD Total Power  22 

    SNSI & PNSI 23 

de Jong et al. 2000  Social stress Data Science Mean RR, SDNN, 24 

[27]  TA10CTA-D70 SDRR, RMSSD 25 

Geverink et al. 2002 Restraint stress Polar Sport Tester  Mean HR, SD, SD1, 26 

[32]  Electrodes & FM  SD2, SD2/SD1 ratio 27 

  Transmitters   28 

 29 
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Table 4 1 

Baseline values of HRV at lying down (mean ± SD) in 2 

18 calves [28] 3 

Variable Units mean ± SD 4 

IBI ms 593,47 ± 131,9 5 

SDNN ms 27,1 ± 8.3 6 

RMSSD ms 15.2 ± 8.8 7 

LF/HF  6.1 ± 6.2 8 

LF normalized units 35.3 ± 12.1 9 

HF normalized units 9.9 ± 6.2 10 

%REC  3.3 ± 2.2 11 

%DET  84.0 ± 6.9 12 

ENT  3.5 ± 0.4 13 

LMAX  50,0 ± 24.3 14 

 15 

15 cows, breed Brown Swiss [35] 16 

Variable Units mean ± SD 17 

IBI ms 819.11±114.6 18 

SDNN ms 35.6 ± 10.8 19 

RMSSD ms 16,2 ± 8.2 20 

LF/HF  4.7 ± 3.2 21 

LF normalized units 25.9 ±5.7 22 

HF normalized units 11.9 ± 8.6 23 

%REC  3.4 ±2.4 24 

%DET   76.1 ±11.5 25 

ENT   3.0 ±0.62 26 

LMAX  49.7 ±40.0 27 

28 
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Table 5 1 

Baseline values of HRV (mean ± SD) in: 2 

18 adult Warmblood horses [30] 3 

Variable Units mean ± SD 4 

IBI ms 1818±152 5 

SDNN ms 111±50.55 6 

LF/HF  1.70±1.69 7 

LF normalized units 53.3±19.5 8 

HF normalized units 46.8±19.5 9 

 10 

6 Thoroughbred horses (8-20 years) [100] 11 

Variable Units mean ± SD 12 

IBI ms 1532±130 13 

SDNN ms 313±169 14 

RMSSD  300±297 15 

PNN50  37±14 16 

Total power ms2 149.5±167.8 17 

HF ms2 114.1±153.9 18 

LF ms2 35.4±18.1 19 

20 
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Legends for Fig.s 1 

Fig. 1. Simplified model for the formation of HRV and the structure of the cardiovascular 2 

control (modified from [75]) 3 

 4 

Fig. 2. Structure of the cardiovascular control; modified from [64] 5 

Centre (dotted rectangle) in the medulla. DMN=vagal Dorsal Motor Nucleus, 6 

HYP=Hypothalamus, NA=Nucleus Ambiguus, NTS=Nucleus Tractus Solitarii, 7 

RVLM=Rostral Ventrolateral Medulla  8 

 9 

Fig. 3. Five different error types in IBI data series recorded by the Polar R-R Recorder in pigs 10 

as identified by comparison of the Polar tachogram with simultaneously recorded 11 

conventional ECG derived IBIs (modified from [99]). 12 

 13 

Fig. 4. Quantitative analysis of Poincaré plot. SD1 is the SD of instantaneous IBI variability 14 

measured from axis 1. SD2 is the SD of long-term continuous IBI variability measured from 15 

axis 2 (modified from [132]). 16 

 17 

Fig. 5. Differences in FFT-spectra depending on the method of correction of data length. 18 

 19 
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Fig. 6. Information content of spectra depends on the number of spectral lines. 1 

 2 

Fig. 7. a) Computing an embedding matrix from original time series in a 3-dimensional 3 

Euklidian space with time lag = 1. b) Calculating. 4 

 5 

Fig. 8. Recurrence plot of a tachogram (2500 IBI´s) of (a) a 7 day old healthy calf and (b) the 6 

same calf four days later when suffering from diarrhoea. Changes in the various RQA-7 

parameters are given.  8 


