
Hindawi Publishing Corporation
Journal of Artificial Evolution and Applications
Volume 2008, Article ID 184286, 17 pages
doi:10.1155/2008/184286

Research Article
Evolving Neural Networks for Static Single-Position
Automated Trading

Antonia Azzini and Andrea G. B. Tettamanzi

Information Technology Department, University of Milan, Via Bramante 65, 26013 Crema (CR), Italy

Correspondence should be addressed to Antonia Azzini, azzini@dti.unimi.it

Received 30 July 2007; Revised 30 November 2007; Accepted 16 January 2008

Recommended by Anthony Brabazon

This paper presents an approach to single-position, intraday automated trading based on a neurogenetic algorithm. An artificial
neural network is evolved to provide trading signals to a simple automated trading agent. The neural network uses open, high,
low, and close quotes of the selected financial instrument from the previous day, as well as a selection of the most popular technical
indicators, to decide whether to take a single long or short position at market open. The position is then closed as soon as a given
profit target is met or at market close. Experimental results indicate that, despite its simplicity, both in terms of input data and in
terms of trading strategy, such an approach to automated trading may yield significant returns.

Copyright © 2008 A. Azzini and A. G. B. Tettamanzi. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

1. INTRODUCTION

Trading is the activity of buying and selling financial instru-
ments for the purpose of gaining a profit [1]. Usually, such
operations are carried out by traders by making bids and
offers, by using orders to convey their bids and offers to
the brokers or, more interestingly, by developing automated
trading systems that arrange their trades.

Several works have been carried out in the literature by
considering market simulators for program trading. Re-
cently, Brabazon and O’Neill [2] explained that, in program
trading, the goal is usually to uncover and eliminate anom-
alies between financial derivatives and the underlying finan-
cial assets which make up those derivatives. Trading rules are
widely used by practitioners as an effective mean to mech-
anize aspects of their reasoning about stock price trends.
However, due to their simplicity, individual rules are sus-
ceptible of poor behavior in specific types of adverse market
conditions. Naive combinations of rules are not very effective
in mitigating the weaknesses of component rules [3]. As
pointed out in [3], recent developments in the automation
of exchanges and stock trading mechanisms have generated
substantial interest and activity within the machine learning
community. In particular, techniques based on artificial
neural networks (ANN’s) [4, 5] and evolutionary algorithms

(EAs) [2, 6, 7] have been investigated, in which the use
of genetic algorithms and genetic programs has proven
capable of discovering profitable trading rules. The major
advantages of the evolutionary algorithms over conventional
methods mainly regard their conceptual and computational
simplicity, their applicability to broad classes of problems,
their potential to hybridize with other methods, and their
capability of self-optimization. Evolutionary algorithms can
be easily extended to include other types of information such
as technical and macroeconomic data as well as past prices.
For example, genetic algorithms become useful to discover
technical trading rules [8] or to find optimal parameter
values for trading agents [9]. Some works focused on investi-
gating the relationship between neural network optimization
for financial trading and the efficient market hypothesis
[10]; others examined the relationships between economic
agents’ risk attitude and the profitability of stock trading
decisions [11]; others focused on modeling the mutual
dependencies among financial instruments [4], and recently,
other works construct predictive models for financial time
series by employing evolutionary neural network modeling
approaches [12, 13].

This work is based on an evolutionary artificial neural
network approach (EANN), already validated on several real-
world problems [4, 5]. It is applied to providing trading

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIR Universita degli studi di Milano

https://core.ac.uk/display/187799022?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:azzini@dti.unimi.it

2 Journal of Artificial Evolution and Applications

signals to an automated trading agent, performing joint
evolution of neural network weights and topology.

The matter is organized as follows. Section 2 describes
the trading problem, which is the focus of this work, and
the main characteristics of the trading rules and the sim-
ulator implemented in this work. Section 3 introduces the
artificial neural networks and the evolutionary artificial
neural networks, together with some of their previous app-
lications to real-world problems. Then in Section 4, the
neurogenetic approach is presented, together with the main
aspects of the evolutionary process and information related
to the considered financial data. Section 6 presents the ex-
periments carried out on some financial instruments: the
stock of Italian car maker FIAT, the Dow Jones Industrial
Average (DJIA), the Financial Times Stock Exchange (FTSE
100), and the Nikkei, a stock market index for the Tokyo
Stock Exchange (Nikkei 225), together with a comparison
with other traditional methods. Finally, Section 7 concludes
with a few remarks.

2. PROBLEM DESCRIPTION

A so-called single-position automated day-trading problem
is the problem of finding an automated trading rule for
opening and closing a single position within a trading day. In
such a scenario, either short or long positions are considered,
and the entry strategy is during the opening auction at
market price. A profit-taking strategy is also defined in this
work, by waiting until market close unless a stop-loss strategy
is triggered. A trading simulator is used to evaluate the
performance of a trading agent.

While for the purpose of designing a profitable trading
rule R, that is, solving any static automated day trading
problem, the more information is available the better it is,
whatever the trading problem addressed, for the purpose of
evaluating a given trading rule, the quantity and granularity
of quote information required vary depending on the
problem. For instance, for one problem, daily open, high,
low, and close data might be enough, while for another tick-
by-tick data would be required. Such a problem does not
happen in this approach, because, in order to evaluate the
performance of the rules, the trading simulator only needs
the open, high, low, and close quotes for each day of the
time series.

An important distinction that may be drawn is the
one between static and dynamic trading problems. A static
problem is when the entry and exit strategies are decided
before or on market open and do not change thereafter. A
dynamic problem allows making entry and exit decisions as
market action unfolds. Static problems are technically easier
to approach, as the only information that has to be taken
into account is the information available before market open.
This does not mean, however, that they are easier to solve
than their dynamic counterparts. The aim of the approach
implemented in this work considers the definition of an
automated trader in the static case.

2.1. Evaluating trading rules

What one is really trying to optimize when approaching a
trading problem is the profit generated by applying a trading
rule. Instead of looking at absolute profit, which depends on
the quantities traded, it is a good idea to focus on returns.

2.1.1. Measures of profit and risk-adjusted return

For mathematical reasons, it is convenient to use log-returns
instead of the usual returns, because they are additive under
compounding. The annualized log-return of rule R when
applied to time series X of length N is

r(R,X) = Y

N

N∑

i=1

r(R,X , i), (1)

where r(R,X , i) is the log-return generated by the rule R
on the ith day of time series X , and Y is the number of
market days in a year. This is the most obvious performance
index for a trading rule. However, as a performance measure,
average log-return completely overlooks the risk of a trading
rule.

Following the financial literature on investment evalua-
tion, the criteria for evaluating the performance of trading
rules, no matter for what type of trading problem, should
be measures of risk-adjusted investment returns. The reason
these are good metrics is that, in addition to the profits,
consistency is rewarded, while volatile patterns are not.
Common measures within this class are the Sharpe ratio
[14] and its variants. An extension of the Sharpe ratio
implemented in this approach is the Sortino ratio [15],

SRd(R,X) = r(R,X)− r f
DSRr f (R,X)

, (2)

where DSR corresponds to the downside risk of rule R on
time series X and is defined by (3). The Sortino ratio is
a measure of a risk-adjusted return of an investment asset.
While the Sharpe ratio takes into account any volatility in
return of an asset, Sortino ratio differentiates volatility due
to up and down movements, since the up movements are
considered desirable and not accounted in the volatility. For
this reason, the Sortino ratio does not penalize a fund for its
upside volatility:

DSRθ(R,X) =

√√√√√Y
N

N∑

i=1

[
r(R,X , i) < θ

][
θ − r(R,X , i)

]2
,

(3)
where θ corresponds to the minimum acceptance level of the
log-return.

2.2. Trading simulator

Static trading problems could be classified according to four
different features: the type of positions allowed, the type of
entry strategy, the type of profit-taking strategy, and, finally,
the strategy for stop-loss or exit.

A. Azzini and A. G. B. Tettamanzi 3

In this approach, either short or long positions are
considered, and the entry strategy is during the opening
auction at market price. An open position is closed if
predefined profit is attained (profit-taking strategy) or,
failing that, at the end of the day at market price. No stop-
loss strategy is used, other than automatic liquidation of the
position when the market closes.

A trading simulator is used to evaluate the performance
of a trading agent. The trading simulator supports sell and
buy operations, and allows short selling. Only one open
position is maintained during each trading process.

In this approach, in order to evaluate the performance of
the rules, the trading simulator only requires the open, high,
low, and close quotes for each day of the time series. The data
set X used for trading agent optimization consists of such
data, along with a selection of the most popular financial
instrument technical indicators.

Each record consists of the inputs to the network
calculated on a given day, considering only past information,
and the desired output, namely, which action would have
been most profitable on the next day.

As explained in detail in Section 4.6, the overall data set
has been divided into three sets, respectively, training, test,
and validation set, referring to three different time intervals,
in order to avoid overlapping of the considered time period,
as explained in (4):

XTraining =
{
xOi , xHi , xLi , xCi , MA5(i), MA10(i), . . .

}
i=1,...,NTraining

,

XTest =
{
xOi , xHi , xLi , xCi , MA5(i), MA10(i), . . .

}
i=NTraining+1,...,NTest

,

XVal =
{
xOi , xHi , xLi , xCi , MA5(i), MA10(i), . . .

}
i=NTest+1,...,NVal

.

(4)

All entries of the data set will be described in detail in
Section 5; the three data sets show some of the input data
used in this problem. All the input data are also summarized
in Table 4.

The log-return generated by rule R on the ith day of
time series X depends on a fixed take-profit return rTP.
This is a parameter of the algorithm that corresponds to
the maximum performance that can be assigned by the
automated trading simulation. The constant value of rTP

is defined, together with all other parameters, when the
population of traders is generated for the first time, and does
not change during the entire evolutionary process.

The main steps of the trading simulator are shown by the
following pseudocode.

For all days, i of the time series:

(i) opens a single day-trading position,

(ii) calculates signali with neurogenetic approach,

(iii) sends to the trading simulator the order decoded from
the neurogenetic approach,

(iv) calculates the profit r(R,X , i),

(v) closes the position.

The measure of the profit obtained from each day is
defined by

r(R,X , i) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rTP if
(
signali=buy and ln

xHi
xOi

> rTP

)
or

if
(

signali = sell and ln
xOi
xLi

> rTP

)
,

ln
xCi
xOi

if
(

signali = buy and ln
xHi
xOi

≤ rTP

)
,

ln
xOi
xCi

if
(

signali = sell and ln
xOi
xLi
≤ rTP

)
,

0 if signali = no operation.
(5)

Different positions, previously generated by the neural
network simulation, are considered in order to obtain the
measure of the log-returns on the time series.

Equation (6) defines the signal generated by decoding the
output of the ANNs processed by the evolutionary approach.
For each day, this is defined through two different operation
thresholds θbuy and θsell, that correspond, respectively, to
the maximum value of a network output for buying and
to the minimum value for selling. In this automated trader
application, these threshold are set, respectively, to 0.34 and
0.66, in order to avoid introducing a bias toward one or the
other alternative operation the trader can execute:

signali =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

buy if
(
outputsim(i) < θbuy

)
,

sell if
(
outputsim(i) > θsell

)
,

no operation otherwise.

(6)

The trading rules defined in this approach use past
information to determine the best current trading action,
and return a buy/sell signal for the current day depending
on the information available on the previous day. Such a rule
is then used to define the log-returns of the financial trading
on the current day.

In the trading simulation, the log-returns obtained are
then used, together with the risk free rate r f and the
downside risk DSR, given by (3), to calculate the Sortino
ratio SRd. This value represents the measure of the risk-
adjusted returns of the simulation, and it will be used by
the neurogenetic approach, together with a measure of the
network computational cost, in order to evaluate the fitness
of an individual trading agent.

At the beginning of the trading day, the trader sends to
the trading simulator the order decoded from the output
of the neural network. During the trading day, if a position
is open, the position is closed as soon as the desired profit
(indicated by a log-return rTP) is attained (in practice, this
could be obtained by placing a reverse limit order at the
same time as the position-opening order); if a position is still
open when the market closes, it is automatically closed in the
closing auction at market price.

4 Journal of Artificial Evolution and Applications

1

0

−1

a

n

Figure 1: Tangent sigmoidal function.

3. ARTIFICIAL NEURAL NETWORKS

Artificial neural networks (ANN’s) are well-defined compu-
tational models belonging to Soft Computing. The attrac-
tiveness of ANNs comes from the remarkable information
processing characteristics of the biological system such as
nonlinearity, high parallelism, robustness, fault and failure
tolerance, learning, ability to handle imprecise information,
and their capability to generalize.

Among the different kinds of neural networks, feedfor-
ward multilayer perceptron (MLP) neural networks receive
great attention due to their relative simplicity and computa-
tional capabilities. In a feedforward neural network, an input
pattern is transformed into an output pattern through the
processing performed by a series of layers of interconnected
nodes, defining layers of neurons. The layers between inputs
and outputs are defined “hidden layers” and the neurons that
belong to these layers are called “hidden nodes,” because they
are not directly connected to the external system through
the inputs and the outputs. Each node computes a transfer
function, represented by the following equation:

yi = gi

(n∑

i=1

wixi

)
, (7)

where g(w · x) is called the activation function. Commonly
used continuous transfer functions are linear, hyperbolic
tangent, and Gaussian, even if most researchers prefer to use
the sigmoid function, whose analytic form is

y(x) = 1
1 + e−(bx−c) . (8)

The sigmoid, as the tangent hyperbolic, is a popular
activation function because it is differentiable and it saturates
to the horizontal asymptotic axes y = 0 and y = 1.
The transfer function implemented in the neurogenetic
approach, described in the following chapters, is a kind
of sigmoid function, the tan-sigmoid function, that tends
asymptotically to −1 and +1 at the extremes. Figure 1
shows the shape of this function. As indicated in [16],
networks of neurons with real-valued inputs and sigmoid
transfer function can be used to approximate mathematical
functions, allowing the parametrization of the latter. This is
very useful in situations where the exact expression of the
function is unknown.

An example of architecture of a feedforward MLP neural
network is depicted in Figure 2, where each activation

Table 1: Synoptic table of some evolving ANNs techniques
presented in the literature.

Evolutionary ANNs

Techniques Examples in the literature

Weight
optimization

GA with real encoding (Montana et al. [17])

GENITOR (Whitley et al. [18])

Mutation-based EAs (Keesing et al. [19])

Improved GA (Yang et al. [20])

NN weight evolution (Zalzala et al. [21])

MLP training using GA (Seiffert [22])

STRE (Pai [23])

Parameter
optimization

GA for competitive learning NNs

(Merelo Guervós et al. [24])

G-prop II/III (Merelo Guervós et al. [25])

ANOVA (Castillo et al. [26])

Rule
optimization

GA for learning rules (Chalmers [27])

GP for learning rules (Poli et al. [28])

Transfer
function
optimization

EANNs through EPs (Yao et al. [29])

Hybrid method with GP (Poli et al. [30])

Input data
selection

EAs for fast data selection (Brill et al. [31])

Selecting Training set (Reeves et al. [32])

Architeture
optimization:
constructive
and destructive
algorithms

Design of ANN (Yao et al. [33])

Design NN using GA (Miller et al. [34])

NEAT (Stanley and Miikkulainen [35])

EP-Net (Yao [36])

Evo-design for MLP (Filho et al. [37])

genetic design of NNs (Harp et al. [38])

Constructing/Pruning with GA (Wang et al. [20])

Network Size Reduction (Moze et al. [39])

Simultaneous
evolution of
architecture and
weights

ANNA ELEONORA (Maniezzo [40])

EP-Net (Yao et al. [36])

Improved GA (Leung et al. [41])

COVNET (Pedrajas et al. [42])

CNNE (Yao et al. [43])

SEPA, MGNN (Palmes et al. [44])

GNARL (Angeline et al. [45])

GAEPNet (Tan [46])

NEGE Approach (Azzini and Tettamanzi [5])

Structure Evolution and

Parameter Optimization (Palmes et al. [44])

function ai depends on the contribution of the previous
subnetwork topology.

The expressions of the activation values defined for the
example reported in Figure 2 are here defined:

a1 = f1
(

IW1,1 · x + b1
)
,

a2 = f2
(

LW2,1 · a1 + b2
)
,

a3 = f3
(

LW3,2 · a2 + b3
)
.

(9)

A. Azzini and A. G. B. Tettamanzi 5

Input First layer Second layer Third layer

∑

∑

∑

f

f

f

∑

∑

∑

f

f

f

∑

∑

∑

f

f

f

x1

x2

x3

...

...
...

...

xn

IW1,1 LW2,1 LW3,2

1

2

n

1

2

n

1

2

n

b1,1

b1,2

b1,n

b2,1

b2,2

b2,n

a1,1

a1,2

a1,n

a2,1

a2,2

a2,n

b3,1

b3,2

b3,n

a3,1

a3,2

a3,n

Figure 2: Feedforward MLP structure.

The activation function obtained at each hidden layer
will become the input for the successive layer, with the
expression reported in (10):

a3 = f3
(

LW3,2 f2
(

LW2,1 f1
(

IW1,1 · x + b1
)

+ b2
)

+ b3
)
.
(10)

3.1. Evolutionary artificial neural networks

The success of an ANN application usually requires a high
number of experiments. Moreover, several parameters of an
ANN, set during the design phase, can affect how easy a
solution is to be found. In this sense, a particular type of
evolving systems, namely, neurogenetic systems, has become
a very important topic of study in neural network design.
They make up so-called Evolutionary Artificial Neural
Networks (EANNs) [36, 47, 48], that is, biologically-inspired
computational models that use evolutionary algorithms in
conjunction with neural networks to solve problems in a
synergetic way.

Several approaches presented in the literature have
been developed to apply evolutionary algorithms to neural
network design. Some consider the setting of the weights in a
fixed topology network. Others optimize network topologies,
or evolve the learning rules, the input feature selection, or the
transfer function used by the network. Several systems also
allow an interesting conjunction of the evolution of network
architecture and weights, carried out simultaneously.

Table 1 summarizes some of the approaches presented in
the literature for the different EANN techniques.

The last technique reported in this table also corresponds
to that considered in this work. Important aspects of
the simultaneous evolution underline that an evolutionary
algorithm allows all aspects of a neural network design to
be taken into account at once, without requiring any expert
knowledge of the problem. Furthermore, the conjunction
of weights and architecture evolution overcomes the pos-
sible drawbacks of each single technique and joins their

advantages. The main advantage of weight evolution is to
simulate the learning process of a neural network, avoiding
the drawbacks of the traditional gradient descent techniques,
such as the backpropagation algorithm (BP). Given then
some performance optimality criteria about architectures,
as momentum, learning rate, and so on, the performance
level of all these forms a surface in the design space. The
advantage of such representation is that determining the
optimal architecture design is equivalent to finding the
highest point on this surface. The simultaneous evolution of
architecture and weights limits also the negative effects of a
noisy-fitness evaluation in an ANN structure optimization,
by defining a one-to-one mapping between genotypes and
phenotypes of each individual.

This neurogenetic approach restricts the attention to a
specific subset of feedforward neural networks, namely, MLP,
presented above, since they have features such as the ability
to learn and generalize smaller training set requirements, fast
operation, ease of implementation, and simple structures.

4. THE NEUROGENETIC APPROACH

The approach implemented in this work defines a population
of traders, the individuals, encoded through neural network
representations. The improvements of the joint evolution of
architecture and weights make the evolutionary algorithm
considered in this approach to evolve a traders population
by using this technique, taking advantage of the backpropa-
gation (BP) as a specialized decoder [5].

The general idea implemented is similar to other
approaches presented in the literature, but it differs from
them in the novel aspects implemented in the genetic
evolution. This work can be considered a hybrid algorithm,
since a local search based on the gradient descent technique,
backpropagation, can be used as local optimization operator
on a given data set. The basic idea is to exploit the ability of
the EA to find a solution close enough to the global optimum,

6 Journal of Artificial Evolution and Applications

Table 2: Individual representation.

Element Description

l Length of the topology string, corresponding to the number of layers

Topology String of integer values that represent the number of neurons in each layer

W(0) Weights matrix of the input layer neurons of the network

Var(0) Variance matrix of the input layer neurons of the network

W(i) Weights matrix for the ith layer, i = 1, . . . , l

Var(i) Variance matrix for the ith layer, i = 1, . . . , l

bi j Bias of the jth neuron in the ith layer

Var(bi j) Variance of the bias of the jth neuron in the ith layer

together with the ability of the BP algorithm to finely tune a
solution and reach the nearest local minimum.

BP becomes useful when the minimum of the error
function currently found is close to a solution but not
close enough to solve the problem; BP is not able to find
a global minimum if the error function is multimodal
and/or nondifferentiable. Moreover, the adaptive nature of
NN learning by examples is a very important feature of these
methods, and the training process modifies the weights of
the ANN, in order to improve a predefined performance
criterion, that corresponds to an objective function over
time. In several methods to train neural networks, BP has
emerged as a suitable solution for finding a set of good
connection weights and biases.

4.1. Evolutionary algorithm

The idea proposed in this work is close to the solution pre-
sented in EPNet [36]: a new evolutionary system for evolving
feedforward ANNs, that puts emphasis on evolving ANNs
behaviors. This neurogenetic approach evolves ANNs archi-
tecture and connection weights simultaneously, as EPNet, in
order to reduce noise in fitness evaluation.

Close behavioral link between parent and offspring is
maintained by applying different techniques, like weight
mutation and partial training, in order to reduce behavioral
disruption. Genetic operators defined in the approach
include the following.

(i) Truncation Selection.
(ii) Mutation, divided into

(a) weight mutation,
(b) topology mutation.

In this context, the evolutionary process attempts to
mutate weights before performing any structural mutation;
however, all different kinds of mutation are applied before
the training process. Weight mutation is carried out before
topology mutation, in order to perturb the connection
weights of the neurons in a neural network. After each weight
mutation, a weight check is carried out, in order to delete
neurons whose contribution is negligible with respect to the
overall network output. This allows to obtain, if possible, a
reduction of the computational cost of the entire network
before any architecture mutation.

Particular attention has to be given to all these operators,
since they are defined in order to emphasize the evolutionary
behavior of the ANNs, reducing disruptions between them.

It is well known that recombination of neural networks of
arbitrary structure is a very hard issue, due to the detrimental
effect of the permutation problem. No satisfactory solutions
have been proposed so far in the literature. As a matter
of facts, the most successful approaches to neural network
evolution do not use recombination at all [36]. Therefore,
in this approach the crossover operator is not applied either,
because of the disruptive effects it could have on the neural
models, after the cut and recombination processes on the
network structures of the selected parents.

4.2. Individual encoding

For each simulation a new population of MLPs is created. As
described in detail in [5], individuals are not constrained to
a preestablished topology, and the population is initialized
with different hidden layer sizes and different numbers of
neurons for each individual according to two exponential
distributions, in order to maintain diversity among all the
individuals in the new population. Such dimensions are not
bounded in advance, even though the fitness function may
penalize large networks. A normal distribution is also applied
to determine the weights and bias values, and variance
is initialized to one for all weights and biases. Variances
are applied in conjunction with evolutionary strategies in
order to perturb network weights and bias. Each individual
is encoded in a structure in which basic information is
maintained as illustrated in Table 2.

The values of all these parameters are affected by the
genetic operators during evolution, in order to perform
incremental (adding hidden neurons or hidden layers) and
decremental (pruning hidden neurons or hidden layers)
learning.

Table 3 lists all the parameters of the algorithm, and
specifies the values that they assume in this problem.

The setting of the mutation probability parameters p+
layer,

p−layer, and p+
neuron is defined in this work equal to the default

values shown in Table 3, since, as indicated by previous
experiences [4, 49, 50], their setting is not critical for the
performance of the evolutionary process.

A. Azzini and A. G. B. Tettamanzi 7

Table 3: Parameters of the algorithm.

Symbol Meaning Default value

n Population size 60

p+
layer Probability of inserting a hidden layer 0.05

p−layer Probability of deleting a hidden layer 0.05

p+
neuron Probability of inserting a neuron in a hidden layer 0.05

r Parameter used in weight mutation for neuron elimination 1.5

h Mean for the exponential distribution 3

Nin Number of network inputs 24

Nout Number of network outputs 1

α Cost of a neuron 2

β Cost of a synapsis 4

λ Desired tradeoff between network cost and accuracy 0.2

k Constant for scaling cost and MSE in the same range 10−6

4.3. The evolutionary process

The general framework of the evolutionary process can be
described by the following pseudocode. Individuals in a
population compete and communicate with other individ-
uals through genetic operators applied with independent
probabilities, until termination conditions are not satisfied.

(1) Initialize the population by generating new random
individuals.

(2) Create for each genotype the corresponding MLP, and
calculate its cost and its fitness values.

(3) Save the best individual as the best-so-far individual.

(4) While not termination condition do,

(a) apply the genetic operators to each network,

(b) decode each new genotype into the corresponding
network,

(c) compute the fitness value for each network,

(d) save statistics.

The application of the genetic operators to each network
is described by the following pseudocode.

(1) Select from the population (of size n) �n/2� individu-
als by truncation and create a new population of size n
with copies of the selected individuals.

(2) For all individuals in the population,

(a) mutate the weights and the topology of the off-
spring,

(b) train the resulting network using the training set,

(c) calculate f on the test set (see Section 4.6),

(d) save the individual with lowest f as the best-so-far
individual if the f of the previously saved best-so-far
individual is higher (worse).

(3) Save statistics.

For each generation of the population, all the informa-
tion of the best individual is saved.

4.4. Selection

The selection method implemented in this work is taken
from the breeder genetic algorithm [51], and differs from
natural probabilistic selection in that evolution considers
only the individuals that best adapt to the environment.
Elitism is also used, allowing the best individual to survive
unchanged in the next generation and solutions to mono-
tonically get better over time.

The selection strategy implemented is truncation. This
kind of selection is not a novel solution, indeed, several
approaches consider evolutionary approaches describing the
truncation selection, in order to prevent the population
from remaining too static and perhaps not evolving at all.
Moreover, this kind of selection is a very simple technique
and produces satisfactory solutions through conjunction
with other strategies, like elitism.

In each new generation a new population has to be cre-
ated, and the first half of such new population corresponds to
the best parents that have been selected with the truncation
operator, while the second part of the new population is
defined by creating offspring from the previously selected
parents.

4.5. Mutation

The main function of this operator is to introduce new
genetic materials and to maintain diversity in the population.
Generally, the purpose of mutation is to simulate the
effect of transcription errors that can occur with a very
low probability, the mutation rate, when a chromosome is
duplicated. The evolutionary process applies two kinds of
neural network perturbations.

(i) Weights mutation, that perturbs the weights of the
neurons before performing any structural mutation and
applying BP. This kind of mutation defines a Gaussian
distribution for the variance matrix values Var(i) of each
network weight W(i), defined in Table 2. This solution is
similar to the approach implemented by Schwefel [52], who

8 Journal of Artificial Evolution and Applications

defined evolution strategies, algorithms in which the strategy
parameters are proposed for self-adapting the mutation
concurrently with the evolutionary search. The main idea
behind these strategies is to allow a control parameter, like
mutation variance, to self-adapt rather than changing their
values by some deterministic algorithm. Evolution strategies
perform very well in numerical domains, since they are
dedicated to (real) function optimization problems.

This kind of mutation offers a simplified method for
self-adapting each single value of the variance matrix Var(i)

j ,
whose values are defined as log-normal perturbations of
their parent parameter values. The weight perturbation
implemented in this neurogenetic approach allows network
weights to change in a simple manner, by using evolution
strategies.

(ii) Topology mutation, that is defined with four types
of mutation by considering neurons and layer addition and
elimination. It is implemented after weight mutation because
a perturbation of weight values changes the behavior of the
network with respect to the activation functions; in this
case, all neurons whose contribution becomes negligible with
respect to the overall behavior are deleted from the structure.
The addition and the elimination of a layer and the insertion
of a neuron are applied with independent probabilities,
corresponding, respectively, to three algorithm parameters
p+

layer, p
−
layer, and p+

neuron. Also these parameters are set at
the beginning and maintained unchanged during the entire
evolutionary process.

All the topology mutation operators are aimed at min-
imizing their impact on the behavior of the network; in
other words, they are designed to be as little disruptive, and
as much neutral, as possible, preserving the behavioral link
between the parent and the offspring better than by adding
random nodes or layers.

4.6. Fitness

An important aspect that has to be considered in the
overall evolutionary process is that the depth of the network
structure could in principle increase without limits under
the influence of some of the topology mutation operators,
defining a so-called bloating effect. In order to avoid this
problem, some penalization parameters are introduced in
the fitness function in order to control the structure growth,
reducing the corresponding computational cost.

In this application, the fitness function depends on the
risk-adjusted return obtained by the considered trader, and is
calculated, at the end of the training and evaluation process,
by

f = λkc + (1− λ)∗e−SRd , (11)

where λ corresponds to the desired tradeoff between network
cost and accuracy, and has been set to 0.2 after some
preliminary experiments. This parameter also represents the
measure of the correlation between the fitness value and the
measure of the risk-adjusted return considered e−SRd . k is a
scaling constant set to 10−6, and c models the computational

cost of a neural network, defined by

c = αNhn + βNsyn, (12)

where Nhn is the number of hidden neurons, Nsyn is the
number of synapses, and α = 2 and β = 4 represent,
respectively, the costs of each hidden neuron and of each
synapsis. This term has been introduced to keep the demand
of computational resources at a reasonable level by penal-
izing large networks. In this work, we have assumed these
values in order to give more weight to the number of synapses
of the neural network.

It is important to emphasize that the Sortino ratio used
in the fitness function defines “risk” as the risk of loss.

Following the commonly accepted practice of machine
learning, the problem data are partitioned into three sets,
respectively, training set, for network training, test set, used
to decide when to stop the training and avoid overfitting,
and validation set, used to test the generalization capabilities
of a network. There is no agreement in the literature on
the way test and validation sets are named, and here the
convention that validation set is used to assess the quality
of the neural networks is adopted, while test set is used to
monitor network training.

The fitness is calculated according to (11) over the test
set. The training set is used for training the networks with
BP and the test set is used to stop BP.

5. INPUT AND OUTPUT SETTINGS

The data set of the automated trader simulation is created by
defining input data and the corresponding target values for
the desired output.

The input values of the data set are defined by consider-
ing the quotes of the daily historical prices and 24 different
technical indicators for the same financial instrument, that
correspond to the most popular indicators used in technical
analysis. These indicators also summarize important features
of the time series of the financial instrument considered,
and they represent useful statistics and technical information
that otherwise should be calculated by each individual of the
population, during the evolutionary process, increasing the
computational cost of the entire algorithm.

The list of all the inputs of a neural network is shown
in Table 4, and a detailed discussion about all these technical
indicators can be easily found in the literature [53]. In this
approach, the values of all these technical indicators are
calculated for each day based on the time series up to and
including the day considered.

In all the time series considered, for each day i one target
value is defined, corresponding to the operation that would
have been most profitable to carry out for a trader on the next
day. In the output definition, only two possible operations
are taken into account, namely to buy and sell, respectively,
encoded with the values 0 (for buy) and 1 (for sell):

target(i) =
⎧
⎨
⎩

1 if rsell(i) ≥ max
(
rbuy(i), 0

)
,

0 if rbuy(i) ≥ max
(
rsell(i), 0

)
.

(13)

A. Azzini and A. G. B. Tettamanzi 9

Table 4: Input technical indicators.

Index Input technical indicators Description

1 Open(i) (xOi) Opening value of the financial instrument on day i

2 High(i) (xHi) High value of the financial instrument on day i

3 Low(i) (xLi) Low value of the financial instrument on day i

4 Close(i) (xCi) Closing value of the financial instrument on day i

5 MA5(i) 5-day Moving Average on day i

6 MA10(i) 10-day Moving Average on day i

7 MA20(i) 20-day Moving Average on day i

8 MA50(i) 50-day Moving Average on day i

9 MA100(i) 100-day Moving Average on day i

10 MA200(i) 200-day Moving Average on day i

11 EMA5(i) 5-day Exponential Moving Average on day i

12 EMA10(i) 10-day Exponential Moving Average on day i

13 EMA20(i) 20-day Exponential Moving Average on day i

14 EMA50(i) 50-day Exponential Moving Average on day i

15 EMA100(i) 100-day Exponential Moving Average on day i

16 EMA200(i) 200-day Exponential Moving Average on day i

17 MACD(i) Moving Average Convergence/Divergence on day i

18 SIGNAL(i) Exponential Moving Average on MACD on day i

19 MOMENTUM(i) Rate of price change on day i

20 ROC(i) Rate of change on day i

21 K(i) Stochastic oscillator K on day i

22 D(i) Stochastic oscillator D on day i

23 RSI(i) Relative Strength Index on day i

24 Close(i− 1) Closing value of the financial instrument on day i− 1

The choice between them depends on the value of the
corresponding return for buy and sell operations, as follows:

rbuy(R,X , i) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

rTP if ln
xHi
xOi

> rTP,

ln
xCi
xOi

otherwise;

rsell(R,X , i) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

rTP if
(

ln
xOi
xLi

> rTP

)
,

ln
xOi
xCi

otherwise.

(14)

6. EXPERIMENTS AND RESULTS

The automated trader presented in this work has been
applied to four financial instruments: the stock of Italian car
maker FIAT, traded at the Borsa Italiana stock exchange, the
Dow Jones Industrial Average (DJIA), the Financial Times
Stock Exchange (FTSE 100), and a stock market index for the
Tokyo Stock Exchange Nikkei, namely the Nikkei 225. All the
four databases were created by considering all daily quotes
and the 24 technical indicators described in Table 4.

Each database has been divided into three sets, in order
to define the training, test, and validation sets for the
neurogenetic process. In each of the considered financial
instrument, training, test, and validation sets have been

created by considering, respectively, the 66, 27, and 7% of
all available data. All time series of the three data sets are
preprocessed by rescaling them so that they are normally
distributed with mean 0 and standard deviation σ equal to
1.

The risk free rate r f has been set for all runs to the
relevant average discount rate during the time span covered
by the data. Different settings have been also considered
for the log-return values of the take profit, for both target
output and trading simulator settings, in order to define
the combination that better suits to the results obtained
by the evolutionary process to provide the best automated
trader. For each of the considered financial instrument, three
settings are considered and set, respectively, to 0.0046, 0.006,
and 0.008, in order to more or less cover the range of possible
target daily returns.

A first round of experiments, whose results are sum-
marized in Table 5, was aimed at determining the most
promising setting of the neurogenetic algorithm parameters
for three distinct settings of the take-profit log-return.
Indeed, the neurogenetic parameters are set to the constant
values defined in the evolutionary approach, previously
reported in Table 3. In order to find out optimal settings
of the genetic parameters p+

layer, p
−
layer, and p+

neuron, several
runs of the trading application have been carried out by
using FIAT, the first financial instrument considered in this
work. For each run of the evolutionary algorithm, up to

10 Journal of Artificial Evolution and Applications

Table 5: A comparison of experimental results for different settings of the neurogenetic algorithm parameters.

Setting
Parameter setting Take-profit log-returns

p+
layer p−layer p+

neuron
rTP = 0.0046 rTP = 0.006 rTP = 0.008

favg Std. Dev. SRd favg Std. Dev. SRd favg Std. Dev. SRd

1 0.05 0.05 0.05 0.3909 0.0314 0.0311 0.2514 0.0351 0.2731 0.1207 0.0196 0.3950

2 0.05 0.1 0.05 0.4052 0.0486 −0.0620 0.2574 0.0258 1.2290 0.1200 0.0252 0.2091

3 0.1 0.1 0.05 0.4118 0.0360 −0.6211 0.2711 0.064 −0.0627 0.1172 0.0187 0.0407

4 0.1 0.2 0.05 0.4288 0.0418 0.1643 0.2541 0.0386 0.2843 0.1200 0.0153 0.3287

5 0.2 0.05 0.05 0.4110 0.0311 1.2840 0.2697 0.0447 0.4199 0.1188 0.0142 0.0541

6 0.2 0.1 0.2 0.4023 0.0379 0.7685 0.2811 0.0194 0.3215 0.1187 0.0197 1.2244

7 0.2 0.2 0.2 0.4346 0.0505 −0.0612 0.2393 0.0422 0.3612 0.1089 0.0111 0.3290

Table 6: Financial instruments and time series.

Time series period
Instruments

DJIA FTSE Nikkei FIAT

From 10/16/2002 10/16/2002 10/23/2002 03/28/2003

To 11/09/2007 11/09/2007 11/09/2007 12/01/2006

Table 7: Comparison of validation Sortino ratio and log-return for different combinations of target and simulation take profits for FIAT
instrument.

Target take profit Validation set
Simulation take profit

0.0046 0.006 0.008

Worst Avg. Best Worst Avg. Best Worst Avg. Best

0.0046
SRd −0.6210 0.2149 1.2355 −0.3877 −0.0027 0.5294 −0.3605 0.0050 0.5607

Log-return −0.3336 0.1564 0.6769 −0.1973 0.0628 0.3192 −0.1770 0.0225 0.3424

0.006
SRd −0.1288 −0.0303 0.0712 −0.0620 0.4035 1.2289 −0.0043 0.3863 1.2432

Log-return 0 0.0218 0.0737 0.0363 0.2559 0.6768 0.0320 0.3041 0.6773

0.008
SRd −0.0620 0.2137 0.7859 −0.0620 0.2803 0.9327 0.0395 0.3683 1.2237

Log-return 0 0.1484 0.4531 0 0.1850 0.5312 0.0562 0.2311 0.6695

800 000 network evaluations (i.e., simulations of the network
on the whole training set) have been allowed, including
those performed by the backpropagation algorithm. In the
automatic trading of FIAT instrument, all the daily data are
related to the period from the 31st of March, 2003, through
the 1st of December, 2006.

Table 5 reports the average and standard deviation of the
test fitness of the best solutions found for each parameter
setting over 10 runs, as well as their Sortino ratio, for
reference.

What these results tell us is that for each different setting
of the genetic parameters there is no high difference of
the mean fitness favg. The choice has been carried out by
considering the solution that could satisfy the aim of low
fitness, maintaining satisfactory values for the Sortino Ratio.
However, as indicated in previous works [4, 49, 50], the
actual setting of the neurogenetic parameters is not critical;
therefore, from that point on, we decided to adopt the
standard setting corresponding to row 1 in the table, with

p+
layer = 0.05, p−layer = 0.05, and p+

neuron = 0.05, also for the
other financial instruments considered in this approach.

A second round of experiments was aimed at deter-
mining whether using a different take-profit log-return for
generating the target in the learning data set used by back-
propagation than the one used for simulating and evaluating
the trading rules could bring about any improvement of the
results. For this reason, in this second round of experiments,
the best individual found for each setting is saved, and the
Sortino ratio and the correlated log-returns on the validation
set are reported.

The time series considered for each of the four financial
instruments are shown in Table 6. Note that the time
series considered for these instruments also cover the recent
credit crunch bout of volatility, as it is the case for the
last 90 days of the DJIA and FTSE validation sets (cf.,
Table 13). Nevertheless, the strategy implemented has shown
satisfactory performance and robustness with respect to such
a volatility crisis.

A. Azzini and A. G. B. Tettamanzi 11

Table 8: Comparison of validation Sortino ratio and log-return for different combinations of target and simulation take profits for DJIA
instrument.

Target take profit Validation set
Simulation take profit

0.0046 0.006 0.008

Worst Avg. Best Worst Avg. Best Worst Avg. Best

0.0046
SRd 0.6506 0.9829 1.4956 0.8920 1.0829 1.4822 1.1464 1.6260 1.8516

Log-return 0.3862 0.5511 0.7939 0.51059 0.610 0.7953 0.6431 0.8646 0.9735

0.006
SRd 0.50425 0.7682 1.1365 0.1171 0.7034 1.3417 0.5854 1.471 2.2098

Log-return 0.3101 0.4451 0.6287 0.1009 0.4104 0.7289 0.3594 0.7900 1.1255

0.008
SRd 0.1380 0.5131 0.7024 0.1974 1.0860 1.7617 0.9162 1.3306 2.0015

Log-return 0.1125 0.3140 0.4131 0.1459 0.6003 0.9209 0.5236 0.7256 1.0383

Table 9: Comparison of validation Sortino ratio and log-return for different combinations of target and simulation take profits for FTSE
instrument.

Target take profit Validation set
Simulation take profit

0.0046 0.006 0.008

Worst Avg. Best Worst Avg. Best Worst Avg. Best

0.0046
SRd 0.6820 1.1627 1.4193 1.5262 1.7075 1.9199 1.8717 2.0766 2.3146

Log-return 0.4041 0.6384 0.7599 0.8142 0.8964 0.9902 0.9831 1.0682 1.1694

0.006
SRd 0.4914 1.1476 1.4922 1.4852 1.6725 1.8357 1.8266 2.1439 2.3312

Log-return 0.3033 0.6299 0.7947 0.7943 0.8808 0.9543 0.9618 1.0977 1.1792

0.008
SRd 1.0992 1.2297 1.5179 1.5320 1.7565 2.0262 1.7763 2.1589 2.3961

Log-return 0.6086 0.6708 0.8056 0.8183 0.9187 1.0372 0.9427 1.1039 1.2050

Table 10: Comparison of validation Sortino ratio and log-return for different combinations of target and simulation take profits for Nikkei
instrument.

Target take profit Validation set
Simulation take profit

0.0046 0.006 0.008

Worst Avg. Best Worst Avg. Best Worst Avg. Best

0.0046
SRd 6.0964 7.1855 8.9124 6.5291 7.6685 8.8954 7.6012 9.1406 10.5916

Log-return 0.4833 0.5349 0.6115 0.4909 0.5523 0.5938 0.6506 0.7286 0.7968

0.006
SRd 5.1195 7.3389 9.2933 6.2432 7.5702 8.5831 8.4128 9.3151 10.7664

Log-return 0.4530 0.5485 0.6221 0.5330 0.6141 0.6763 0.7199 0.7674 0.8372

0.008
SRd 4.3248 6.9352 10.2934 6.4700 7.8899 9.9229 8.9438 9.6727 10.7350

Log-return 0.3773 0.5179 0.6694 0.5533 0.6224 0.7556 0.7539 0.7843 0.8214

The values of worst, average, and best Sortino Ratio
and log-returns found are shown in Tables 7, 8, 9, and 10,
respectively for FIAT, DJIA, FTSE, and Nikkei instruments.

The conclusion is that runs in which the take profit used
to construct the target is greater than or equal to the actual
target used by the strategy usually lead to more profitable
trading rules, with few exceptions.

6.1. Tenfold crossvalidation

To further validate the generalization capabilities of the
automated trading rules found by the approach, a tenfold
crossvalidation has been carried out as follows.

The training and test sets have been merged together into
a set covering the period from March 31, 2003 to August 30,

2006. That set has been divided into 10 equal-sized intervals.
Each interval has been used in turn as the validation set,
while the remaining 9 intervals have been used to create
a training set (consisting of 6 intervals) and a test set (3
intervals).

Each record of the sets can be regarded as independent
of the others, since it contains a summary of the whole
past history of the time series, as seen through the lens of
the technical indicators used. Therefore, any subset of the
records can be used to validate models trained on the rest of
the set, without violating the constraint that only past data
be used by a model to provide a signal for the next day.

The 10 (training, test, and validation) data sets thus
obtained have been used to perform 10 runs each of the
evolutionary algorithm, for a total of 100 runs. The best

12 Journal of Artificial Evolution and Applications

Genotype vector

Input First layer Second layer Output

∑

∑

∑

∑

∑

∑ y
f

f

f

f

f

f

3 2 1

IW

LW

b1,1

b1,2

b1,3

b2,1

b2,2

a1,1

a1,2

a1,3

a2,1

a2,2

b3,1

lw{i, j}

lw{i, j}

lw11 lw12 lw13

lw21 lw22 lw23

Figure 3: Example of an individual.

performing take-profit settings found during the previous
round of experiments have been used for all 100 runs,
namely, a target take profit of 0.006 and a simulation take
profit of 0.008. Table 11 reports the average and standard
deviation of the best fitness obtained during each run; the
best individual found in each run was applied to its relevant
validation set, and the resulting Sortino ratio and log-return
are reported in the table.

It can be observed that the results are consistent for all
ten data sets used in the cross-validation, with Sortino ratios
often greater than one, meaning that the expected return
outweighs the risk of the strategy. This is a positive indi-
cation of the generalization capabilities of the neurogenetic
approach.

6.2. Discussion

The approach to automated intraday trading described above
is minimalistic in two respects:

(i) the data considered each day by the trading agent to
make a decision about its action is restricted to the
open, low, high, and close quotes of the last day, plus
the close quote of the previous day; any visibility of
the rest of the past time series is filtered through a
small number of popular and quite standard technical
indicators;

(ii) the trading strategy an agent can follow is among the
simplest and most accessible even to the unsophisti-
cated individual trader; its practical implementation
does not even require particular kinds of information
technology infrastructures, as it could very well be
enacted by placing a couple of orders with a broker on
the phone before the market opens; there is no need to
monitor the market and react in a timely manner.

Nonetheless, the results clearly indicate that, despite its
simplicity, such an approach may yield, if carried out
carefully, significant returns, in the face of a risk that is, to
be sure, probably higher than the one the average investor

would be eager to take, but all in all proportionate with the
returns expected.

By simulating individual trading rules, we observed that
the signal given by the neural network is correct most of the
times; when it is not, the loss (or draw-down) tends to be
quite severe—which is the main reason for the low Sortino
ratios exhibited by all the evolved rules.

However, a simple but effective technique to greatly
reduce the risk of the trading rules is to pool a number
of them, discovered in independent runs of the algorithm,
perhaps using different parameter settings, and adopt at any
time the action suggested by the majority of the rules in the
pool. In case of tie, it is safe to default to no operation.

Table 12 shows the history of a simulation of a trading
strategy carried out on the FIAT instrument, combining by
majority vote the seven best trading rules discovered when
using a target take profit of 0.006 and a simulation take
profit of 0.008 on the validation set. Only days in which the
majority took a position are shown.

The compounded return is really attractive: the annual-
ized log-return of the above strategy, obtained with target
take profit of 0.006 and actual take profit of 0.008, corre-
sponds to a percentage annual return of 39.87%, whereas
the downside risk is almost zero (0.003). Similar results are
obtained when applying the same technique to the other
instruments considered, as shown in the bottom line of
Table 14. This table shows a comparison of the percentage
annual returns obtained by the automated trader of this
approach with a “Buy & Hold” strategy, which opens a long
position on the first day at market open and closes it on the
last day at market close.

7. CONCLUSION

An application of a neurogenetic algorithm to the optimiza-
tion of a simple trading agent for static, single-position,
intraday trading has been described. The approach has been
validated on time series of four diverse financial instruments,
namely, the stock of Italian car maker FIAT, the Dow Jones

A. Azzini and A. G. B. Tettamanzi 13

Table 11: Tenfold validation: experimental results for different settings of the neurogenetic algorithm parameters.

Setting
Parameter setting Take-profit log-return = 0.008

p+
layer p−layer p+

neuron favg Std. Dev. Log-return SRd

1

0.05 0.05 0.05 0.1518 0.0101 0.7863 1.4326

0.05 0.1 0.05 0.1491 0.0267 4840 0.8105

0.1 0.1 0.05 0.1598 0.0243 0.2012 0.2899

0.1 0.2 0.05 0.1502 0.0190 0.7304 1.3235

0.2 0.05 0.05 0.1494 0.0256 0.7399 1.3307

0.2 0.1 0.2 0.1645 0.0115 0.9002 1.6834

0.2 0.2 0.2 0.1532 0.0129 0.3186 0.5037

2

0.05 0.05 0.05 0.1892 0.0251 0.9920 1.8991

0.05 0.1 0.05 0.1768 0.0293 0.6362 1.1229

0.1 0.1 0.05 0.1786 0.0342 0.9726 1.8707

0.1 0.2 0.05 0.1749 0.0274 0.7652 1.3965

0.2 0.05 0.05 0.1765 0.0188 0.7391 1.3340

0.2 0.1 0.2 0.1864 0.0210 0.5362 0.9355

0.2 0.2 0.2 0.1799 0.0306 0.7099 1.2751

3

0.05 0.05 0.05 0.1780 0.0290 0.6655 1.2008

0.05 0.1 0.05 0.1790 0.1003 1.0537 2.0371

0.1 0.1 0.05 0.1880 0.1364 0.8727 1.6569

0.1 0.2 0.05 0.1858 0.1683 0.3767 0.6347

0.2 0.05 0.05 0.1894 0.1363 0.5434 0.9474

0.2 0.1 0.2 0.1845 0.1013 0.6544 1.1784

0.2 0.2 0.2 0.1840 0.1092 0.6882 1.2551

4

0.05 0.05 0.05 0.1909 0.0315 0.7800 1.4484

0.05 0.1 0.05 0.2026 0.0234 0.8400 1.5745

0.1 0.1 0.05 0.1866 0.0300 0.9303 1.7543

0.1 0.2 0.05 0.1831 0.0293 0.8194 1.5384

0.2 0.05 0.05 0.2011 0.0379 1.0497 2.0417

0.2 0.1 0.2 0.2212 0.0283 0.5146 0.8842

0.2 0.2 0.2 0.1923 0.0340 0.9758 1.8647

5

0.05 0.05 0.05 0.2520 0.0412 0.6825 1.2430

0.05 0.1 0.05 0.2237 0.0245 0.5403 0.9552

0.1 0.1 0.05 0.2213 0.0327 0.4932 0.8545

0.1 0.2 0.05 0.2169 0.0331 0.4748 0.8201

0.2 0.05 0.05 0.2295 0.0416 0.5796 1.0335

0.2 0.1 0.2 0.2364 0.0316 0.4449 0.7644

0.2 0.2 0.2 0.2200 0.0287 0.5799 1.0251

6

0.05 0.05 0.05 0.1932 0.0478 0.3892 0.6407

0.05 0.1 0.05 0.2183 0.0339 0.8521 1.5979

0.1 0.1 0.05 0.2303 0.0312 0.6858 1.2407

0.1 0.2 0.05 0.2094 0.0444 0.6375 1.1418

0.2 0.05 0.05 0.2168 0.0268 0.6776 1.2254

0.2 0.1 0.2 0.2320 0.0445 0.8312 1.5614

0.2 0.2 0.2 0.2186 0.0495 0.3634 0.6671

7

0.05 0.05 0.05 0.2020 0.0268 0.5196 0.8740

0.05 0.1 0.05 0.2171 0.0227 0.6727 1.1781

0.1 0.1 0.05 0.2081 0.0184 0.9178 1.7002

0.1 0.2 0.05 0.2042 0.0381 0.6905 1.2214

0.2 0.05 0.05 0.2050 0.0375 0.6653 1.1619

0.2 0.1 0.2 0.2187 0.0235 0.8449 1.5530

0.2 0.2 0.2 0.2153 0.0353 0.8321 1.5207

14 Journal of Artificial Evolution and Applications

Table 11: Continued.

Setting
Parameter setting Take-profit log-return = 0.008

p+
layer p−layer p+

neuron favg Std. Dev. Log-return SRd

8

0.05 0.05 0.05 0.2109 0.0370 0.3534 0.5823

0.05 0.1 0.05 0.2018 0.0460 0.6068 1.0832

0.1 0.1 0.05 0.1845 0.0369 0.8938 1.6860

0.1 0.2 0.05 0.1956 0.0338 0.5846 1.0402

0.2 0.05 0.05 0.2172 0.0300 0.4137 0.6968

0.2 0.1 0.2 0.1856 0.0365 0.5516 0.9617

0.2 0.2 0.2 0.1888 0.0366 0.8130 1.5059

9

0.05 0.05 0.05 0.2010 0.0263 0.9420 1.7953

0.05 0.1 0.05 0.1997 0.0252 0.2538 0.4051

0.1 0.1 0.05 0.2007 0.0312 0.7444 1.3792

0.1 0.2 0.05 0.2300 0.0373 0.8998 1.6987

0.2 0.05 0.05 0.2170 0.0429 0.7192 1.3175

0.2 0.1 0.2 0.2252 0.0248 0.9606 1.8470

0.2 0.2 0.2 0.1930 0.0441 0.9813 1.8860

10

0.05 0.05 0.05 0.2161 0.0168 0.4443 0.7558

0.05 0.1 0.05 0.2017 0.0312 0.8144 1.5233

0.1 0.1 0.05 0.2154 0.0333 0.8133 1.5007

0.1 0.2 0.05 0.2138 0.0424 0.9079 1.7118

0.2 0.05 0.05 0.2079 0.0230 0.6604 1.1749

0.2 0.1 0.2 0.2063 0.0288 0.6148 1.0804

0.2 0.2 0.2 0.2113 0.0323 0.7083 1.2787

Table 12: A simulation of the strategy dictated by the majority of the best trading rules (one for each of the 7 parameter settings of Table 5)
obtained by running the algorithm with a combination of target take profit of 0.006 and a simulation take profit of 0.008. The action in
the Action column refers to the (short)-selling or buying of FIAT. The r column shows the log-return realized by the strategy for each day.
Only days in which the strategy took a position are shown. As previously defined, each ANN output has been decoded into one of the three
operations buy, no operation, and sell, corresponding, respectively, to the three output ranges: output < 0.34, 0.34 ≤ output ≤ 0.66, and
output > 0.66.

Date
Output of the best ANN found with each parameter setting

Action FIAT r
1 2 3 4 5 6 7

09/08/2006 No Op. Buy No Op. Buy Buy No Op. Buy Buy −0.00087

09/11/2006 No Op. Buy Buy Buy No Op. Buy Buy Buy 0.00605

09/12/2006 No Op. Buy Buy Buy Buy Buy Buy Buy 0.008

09/13/2006 No Op. Buy Buy Buy Buy Buy Buy Buy 0.008

09/14/2006 Buy Buy No Op. Buy No Op. No Op. Buy Buy 0.008

09/26/2006 No Op. Buy No Op. Buy No Op. Buy Buy Buy 0.008

10/18/2006 No Op. Buy Buy Buy No Op. Buy Buy Buy 0.008

10/19/2006 No Op. Buy Buy Buy Buy Buy Buy Buy 0.008

11/02/2006 No Op. Buy No Op. Buy Buy No Op. Buy Buy 0.008

11/03/2006 No Op. Buy No Op. Buy Buy Buy Buy Buy 0.008

11/06/2006 No Op. Buy No Op. Buy Buy Buy Buy Buy 0.008

11/07/2006 No Op. Buy No Op. Buy Buy No Op. Buy Buy 0.008

Industrial Average, which is an index designed to reflect the
New York Stock Exchange, the FTSE index of the London
Stock Exchange, and the Nikkei 225 index of the Tokyo Stock
Exchange.

Experimental results indicate that, despite its simplicity,
both in terms of input data and in terms of trading strategy,

such an approach to automated trading may theoretically
yield significant returns while effectively reducing risk.

Traditional finance theory asserts that investors can
buy/sell any quantity of stock without affecting price. Con-
temporary microstructure literature [1] provides a wealth of
evidence that this is not the case and that trade size and other

A. Azzini and A. G. B. Tettamanzi 15

Table 13: Volatility of the time series considered, expressed as the
standard deviation of daily log-returns calculated on the training,
test, and validation sets of each time series.

Data set
Volatility

DJIA FTSE Nikkei FIAT

Training 0.0085 0.0091 0.0121 0.0179

Test 0.0063 0.0079 0.0108 0.0200

Validation 0.0112 0.0138 0.0139 0.0178

Table 14: Percentage annual return of the strategy.

Strategy
Percentage return

DJIA FTSE Nikkei FIAT

Buy & Hold −3.80 −4.98 −14.30 23.94

Neurogenetic approach 37.92 48.67 5.35 39.87

important determinants like trade type, trading strategy,
industry sector, and trading time can have significant price
impact and affect the profitability of trading [54]. This is
evidenced by the recent growth in large brokers providing
trading platforms to clients to access dark liquidity pools
and specialist firms promising trade execution services which
minimize price impact. In this work no price impact has been
assumed, mainly due to difficulties in correctly estimating
it, even if, in the real world, a strategy trading significant
volumes of shares or contracts will influence the market [55],
thus reducing its effectiveness. Therefore, the performance
data presented should not been construed to reflect the
performance of those strategies when applied to the market,
but to provide evidence of the capability of the neurogenetic
approach to extract useful knowledge from data. A realistic
assessment of risks and returns associated with applying such
knowledge goes beyond the scope of our work.

The main contribution of this work is demonstrating that
it is possible to extract meaningful and reliable models of
financial time series from a collection of popular technical
indicators by means of evolutionary algorithms coupled with
artificial neural networks.

The introduction of a neurogenetic approach to the
modeling of financial time series opens up opportunities
for many extensions, improvements, and sophistications
both on the side of input data and indicators, and of the
technicalities of the trading strategy.

A natural extension would consist of enriching the
data used for modeling with more sophisticated technical
indicators. Novel indicators might be evolved or coevolved
by means of other evolutionary techniques like genetic
programming.

Other extensions could involve applying the approach to
more complex trading problems. These might be dynamic
intraday trading problems, or static problems that require
higher-resolution data to be evaluated.

Finally, it would be interesting to compare the neu-
rogenetic approach with other evolutionary modeling
approaches, for example using fuzzy logic to express models
[56].

REFERENCES

[1] L. Harris, Trading and Exchanges, Market Microstructure for
Practitioners, Oxford University Press, New York, NY, USA,
2003.

[2] A. Brabazon and M. O’Neill, Biologically Inspired Algorithms
for Financial Modelling, Springer, Berlin, Germany, 2006.

[3] H. Subramanian, S. Ramamoorthy, P. Stone, and B. J. Kuipers,
“Designing safe, profitable automated stock trading agents
using evolutionary algorithms,” in Proceedings of the 8th
Annual Conference on Genetic and Evolutionary Computation
(GECCO ’06), vol. 2, pp. 1777–1784, Seattle, Wash, USA, July
2006.

[4] A. Azzini and A. G. B. Tettamanzi, “Neuro-genetic single
position day trading,” in Proceedings of the Workshop Italiano
di Vita Artificiale e Computazione Evolutiva (WIVACE ’07),
Sicily, Italy, September 2007.

[5] A. Azzini and A. G. B. Tettamanzi, “A neural evolutionary
approach to financial modeling,” in Proceedings of the 8th
Annual Conference on Genetic and Evolutionary Computation
(GECCO ’06), vol. 2, pp. 1605–1612, Seattle, Wash, USA, July
2006.

[6] M. A. H. Dempster and C. Jones, “A real-time adaptive trading
system using genetic programming,” Quantitative Finance,
vol. 1, no. 4, pp. 397–413, 2001.

[7] M. A. H. Dempster, T. W. Payne, Y. Romahi, and G.
W. P. Thompson, “Computational learning techniques for
intraday FX trading using popular technical indicators,” IEEE
Transactions on Neural Networks, vol. 12, no. 4, pp. 744–754,
2001.

[8] F. Allen and R. Karjalainen, “Using genetic algorithms to find
technical trading rules,” Journal of Financial Economics, vol. 51,
no. 2, pp. 245–271, 1999.

[9] D. Cliff, “Explorations in evolutionary design of online
auction market mechanisms,” Electronic Commerce Research
and Applications, vol. 2, no. 2, pp. 162–175, 2003.

[10] A. Skabar and I. Cloete, “Neural networks, financial trading
and the efficient markets hypothesis,” in Proceedings of the
25th Australasian Conference on Computer Science, vol. 4, pp.
241–249, Australian Computer Science, Melbourne, Victoria,
Australia, January-February 2002.

[11] S. Hayward, “Evolutionary artificial neural network opti-
misation in financial engineering,” in Proceedings of the
4th International Conference on Hybrid Intelligent Systems
(HIS ’04), pp. 210–215, Kitakyushu, Japan, December 2005.

[12] L. Yi-Hui, “Evolutionary neural network modeling for fore-
casting the field failure data of repairable systems,” Expert
Systems with Applications, vol. 33, no. 4, pp. 1090–1096, 2007.

[13] G. Armano, M. Marchesi, and A. Murru, “A hybrid genetic-
neural architecture for stock indexes forecasting,” Information
Sciences, vol. 170, no. 1, pp. 3–33, 2005.

[14] W. Sharpe, “The Sharpe ratio,” Journal of Portfolio Manage-
ment, vol. 1, pp. 49–58, 1994.

[15] F. Sortino and R. van der Meer, “Downside risk, Capturing
what’s at stake in investment situations,” Journal of Portfolio
Management, vol. 17, pp. 27–31, 1991.

[16] A. G. B. Tettamanzi and M. Tomassini, Soft Computing:
Integrating Evolutionary, Neural, and Fuzzy Systems, Springer,
Berlin, Germany, 2001.

[17] D. Montana and L. Davis, “Training feedforward neural
networks using genetic algorithms,” in Proceedings of the 11th
International Conference on Artificial Intelligence (IJCAI ’89),
pp. 762–767, Morgan Kaufmann, Detroit, Mich, USA, August
1989.

16 Journal of Artificial Evolution and Applications

[18] D. Whitley and J. Kauth, “GENITOR: a different genetic algo-
rithm,” Tech. Rep., Colorado State University, Fort Collins,
Colo, USA, 1988.

[19] R. Keesing and D. G. Stork, “Evolution and learning in neural
networks: the number and distribution of learning trials affect
the rate of evolution,” in Proceedings of the Conference on
Advances in Neural Information Processing Systems 3, pp. 804–
810, Denver, Colo, USA, November 1990.

[20] B. Yang, X.-H. Su, and Y.-D. Wang, “BP neural network
optimization based on an improved genetic algorithm,”
in Proceedings of the International Conference on Machine
Learning and Cybernetics, vol. 1, pp. 64–68, Beijing, China,
November 2002.

[21] P. Mordaunt and A. M. S. Zalzala, “Towards an evolutionary
neural network for gait analysis,” in Proceedings of the Congress
on Evolutionary Computation (CEC ’02), vol. 2, pp. 1238–1243,
Honolulu, Hawaii, USA, May 2002.

[22] U. Seiffert, “Multiple layer perceptron training using genetic
algorithms,” in Proceedings of the European Symposium on
Artificial Neural Networks (ESANN ’01), pp. 159–164, Bruges,
Belgium, April 2001.

[23] G. A. Vijayalakshmi Pai, “A fast converging evolutionary
neural network for the prediction of uplift capacity of
Suction Caissons,” in Proceedings of the IEEE Conference on
Cybernetics and Intelligent Systems (CIS ’04), vol. 1, pp. 654–
659, Singapore, December 2004.

[24] J. J. Merelo Guervós, M. Patón, A. Cañas, A. Prieto, and
F. Morán, “Optimization of a competitive learning neural
network by genetic algorithms,” in Proceedings of the Interna-
tional Workshop on Artificial Neural Networks: New Trends in
Neural Computation (IWANN ’93), J. Mira, J. Cabestany, and
A. Prieto, Eds., vol. 686 of Lecture Notes in Computer Science,
pp. 185–192, Springer, Sitges, Spain, June 1993.

[25] P. A. Castillo-Valdivieso, M. R. Rivas Santos, J. J. Merelo
Guervós, J. Gonzalez, A. Prieto, and G. Romero, “G-prop-
III: global optimization of multilayer perceptrons using an
evolutionary algorithm,” in Proceedings of the Genetic and Evo-
lutionary Computation Conference (GECCO ’99), W. Banzhaf,
J. Daida, A. E. Eiben, et al., Eds., vol. 1, p. 942, Morgan
Kaufmann, Orlando, Fla, USA, July 1999.

[26] P. A. Castillo-Valdivieso, J. J. Merelo Guervós, A. Prieto, I.
Rojas, and G. Romero, “Statistical analysis of the parameters
of a neuro-genetic algorithm,” IEEE Transactions on Neural
Networks, vol. 13, no. 6, pp. 1374–1394, 2002.

[27] D. J. Chalmers, “The evolution of learning: an experiment
in genetic connectionism,” in Proceedings of the Connectionist
Summer School Workshop, D. S. Touretzky, J. L. Elman, T.
J. Sejnowski, and G. E. Hinton, Eds., pp. 81–90, Morgan
Kaufmann, San Mateo, Calif, USA, 1990.

[28] A. Radi and R. Poli, “Discovering efficient learning rules for
feedforward neural networks using genetic programming,”
Tech. Rep., Department of Computer Science, University of
Essex, Essex, UK, January 2002.

[29] X. Yao and Y. Liu, “Evolving artificial neural networks through
evolutionary programming,” in Proceedings of the 5th Annual
Conference on Evolutionary Programming, pp. 257–266, MIT
Press, San Diego, Calif, USA, February-March 1996.

[30] J. C. Figueira Pujol and R. Poli, “Evolution of neural networks
using weight mapping,” in Proceedings of the Genetic and Evo-
lutionary Computation Conference (GECCO ’99), W. Banzhaf,
J. Daida, A. E. Eiben, et al., Eds., vol. 2, pp. 1170–1177, Morgan
Kaufmann, Orlando, Fla, USA, July 1999.

[31] F. Z. Brill, D. E. Brown, and W. N. Martin, “Fast genetic
selection of features for neural network classifiers,” IEEE
Transactions on Neural Networks, vol. 3, no. 2, pp. 324–328,
1992.

[32] C. R. Reeves and S. J. Taylor, “Selection of training data for
neural networks by a genetic algorithm,” in Proceedings of the
5th International Conference on Parallel Problem Solving from
Nature (PPSN ’98), A. Eiben, D. Back, M. Schoenauer, and
H. P. Schwefel, Eds., vol. 1498 of Lecture Notes in Computer
Science, pp. 633–642, Springer, Amsterdam, The Netherlands,
September 1998.

[33] X. Yao and Y. Liu, “Towards designing artificial neural net-
works by evolution,” Applied Mathematics and Computation,
vol. 91, no. 1, pp. 83–90, 1998.

[34] G. F. Miller, P. M. Todd, and S. U. Hegde, “Designing neural
networks using genetic algorithms,” in Proceedings of the 3rd
International Conference on Genetic Algorithms, J. D. Schaffer,
Ed., pp. 379–384, Fairfax, Va, USA, June 1989.

[35] K. O. Stanley and R. Miikkulainen, “Evolving neural networks
through augmenting topologies,” Evolutionary Computation,
vol. 10, no. 2, pp. 99–127, 2002.

[36] X. Yao and Y. Liu, “A new evolutionary system for evolving
artificial neural networks,” IEEE Transactions on Neural Net-
works, vol. 8, no. 3, pp. 694–713, 1997.

[37] E. F. M. Filho and A. C. P. de Carvalho, “Evolutionary design
of MLP neural network architectures,” in Proceedings of the 4th
Brazilian Symposium on Neural Networks (SBRN ’97), pp. 58–
65, Goiania, Brazil, December 1997.

[38] S. Harp, T. Samad, and A. Guha, “Towards the genetic
synthesis of neural networks,” in Proceedings of the 3rd
International Conference on Genetic Algorithms, J. D. Schaffer,
et al., Eds., pp. 360–369, Morgan Kaufmann, Fairfax, Va, USA,
June 1989.

[39] M. C. Moze and P. Smolensky, “Using relevance to reduce
network size automatically,” Connection Science, vol. 1, no. 1,
pp. 3–16, 1989.

[40] V. Maniezzo, “Genetic evolution fo the topology and weight
distribution of neural networks,” IEEE Transactions on Neural
Networks, vol. 5, no. 1, pp. 39–53, 1994.

[41] F. H. F. Leung, H. K. Lam, S. H. Ling, and P. K. S. Tam, “Tuning
of the structure and parameters of a neural network using
an improved genetic algorithm,” IEEE Transactions on Neural
Networks, vol. 14, no. 1, pp. 79–88, 2003.

[42] N. Garcı́a-Pedrajas, C. Hervás-Martı́nez, and J. Muñoz-Pérez,
“COVNET: a cooperative coevolutionary model for evolving
artificial neural networks,” IEEE Transactions on Neural Net-
works, vol. 14, no. 3, pp. 575–596, 2003.

[43] M. M. Islam, X. Yao, and K. Murase, “A constructive algorithm
for training cooperative neural network ensembles,” IEEE
Transactions on Neural Networks, vol. 14, no. 4, pp. 820–834,
2003.

[44] P. P. Palmes, T. Hayasaka, and S. Usui, “Mutation-based
genetic neural network,” IEEE Transactions on Neural Net-
works, vol. 16, no. 3, pp. 587–600, 2005.

[45] P. J. Angeline, G. M. Saunders, and J. B. Pollack, “An evolu-
tionary algorithm that constructs recurrent neural networks,”
IEEE Transactions on Neural Networks, vol. 5, no. 1, pp. 54–64,
1994.

[46] Z.-H. Tan, “Hybrid evolutionary approach for designing
neural networks for classification,” Electronics Letters, vol. 40,
no. 15, pp. 955–957, 2004.

[47] X. Yao, “Evolving artificial neural networks,” Proceedings of the
IEEE, vol. 87, no. 9, pp. 1423–1447, 1999.

A. Azzini and A. G. B. Tettamanzi 17

[48] X. Yao, Evolutionary Optimization, Kluwer Academic Publish-
ers, Norwell, Mass, USA, 2002.

[49] A. Azzini, L. Cristaldi, M. Lazzaroni, A. Monti, F. Ponci, and
A. G. B. Tettamanzi, “Incipient fault diagnosis in electrical
drives by tuned neural networks,” in Proceedings of the
IEEE Instrumentation and Measurement Technology Conference
(IMTC ’06), pp. 1284–1289, Sorrento, Italy, April 2006.

[50] A. Azzini and A. G. B. Tettamanzi, “A neural evolutionary
classification method for brain-wave analysis,” in Proceedings
of the European Workshop on Evolutionary Computation in
Image Analysis and Signal Processing (EVOIASP ’06), vol. 3907
of Lecture Notes in Computer Science, pp. 500–504, Budapest,
Hungary, April 2006.

[51] H. Muhlenbein and D. Schlierkamp-Voosen, “The science of
breeding and its application to the breeder genetic algorithm
(bga),” Evolutionary Computation, vol. 1, no. 4, pp. 335–360,
1993.

[52] H. Schwefel, Numerical Optimization for Computer Models,
John Wiley & Sons, Chichester, UK, 1981.

[53] R. Colby, The Encyclopedia of Technical Market Indicators,
McGraw-Hill, New York, NY, USA, 2nd edition, 2002.

[54] J. A. Bikker, L. Spierdijk, and P. J. van der Sluis, “Market impact
costs of institutional equity trades,” Journal of International
Money and Finance, vol. 26, no. 6, pp. 974–1000, 2007.

[55] J. Chen, H. Hong, M. Huang, and J. D. Kubik, “Does fund
size erode mutual fund performance? the role of liquidity and
organization,” American Economic Review, vol. 94, no. 5, pp.
1276–1302, 2004.

[56] C. da Costa Pereira and A. G. B. Tettamanzi, “Fuzzy-
evolutionary modeling for single-position day trading,” in
Natural Computing in Computational Economics and Finance,
A. Brabazon and M. O’Neill, Eds., vol. 100, Springer, Berlin,
Germany, 2008.

	INTRODUCTION
	PROBLEM DESCRIPTION
	Evaluating trading rules
	Measures of profit and risk-adjusted return

	Trading simulator

	ARTIFICIAL NEURAL NETWORKS
	Evolutionary artificial neural networks

	THE NEUROGENETIC APPROACH
	Evolutionary algorithm
	Individual encoding
	The evolutionary process
	Selection
	Mutation
	Fitness

	INPUT AND OUTPUT SETTINGS
	EXPERIMENTS AND RESULTS
	Tenfold crossvalidation
	Discussion

	CONCLUSION
	References

