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COALGEBRAS, BRAIDINGS, AND DISTRIBUTIVE LAWS

To Aurelio Carboni on his 60th birthday

STEFANO KASANGIAN, STEPHEN LACK, AND ENRICO M. VITALE

Abstract. We show, for a monad T, that coalgebra structures on a T-algebra can
be described in terms of “braidings”, provided that the monad is equipped with an
invertible distributive law satisfying the Yang-Baxter equation.

1. Introduction

The aim of this note is to provide an equivalent description of T
∗-coalgebra structures on

a T-algebra, for T a monad — equipped with a special kind of distributive law — on a
category C, and T

∗ the comonad induced by the adjunction

C
LT

�� Alg(T)
RT

�� LT � RT

Our interest for such coalgebras is motivated mainly by classical descent theory: let
f : R → S be a morphism of commutative unital rings, and consider the induced functor

f ! : R-mod → S-mod

defined by f !(N) = N ⊗R S (where S is seen as an R-module by restriction of scalars).
The descent problem for f consists in recognizing when an S-module is of the form f !(N)
for some R-module N. A classical theorem [6, 2, 7], which establishes a deep link between
descent theory and the theory of (co)monads, asserts that, if f is faithfully flat, then an
S-module is of the form f !(N) if and only if it is equipped with a T

∗-coalgebra structure,
where T

∗ is the comonad on S-mod induced by the adjunction

R-mod
f ! ��

S-mod
f∗

�� f ! � f ∗

and f ∗ is the restriction of scalars functor. (For this reason, a T
∗-coalgebra structure on

an S-module M is sometimes called a descent datum for M.) It is also well-known that, for
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any morphism f : R → S of commutative unital rings, there are several equivalent ways
of describing what a T

∗-coalgebra structure for an S-module is, and a natural problem is
to lift to a categorical level these other descriptions of T

∗-coalgebra structures.

In a recent paper [11], Menini and Stefan, extending results by Nuss [12] on non-
commutative rings, replace the situation

R-mod
f ! ��

S-mod
f∗

�� f ! � f ∗

by

C
LT

�� Alg(T)
RT

�� LT � RT

where T is a monad on an arbitrary category C (indeed, even in the non-commutative
situation, f ∗ : S-mod → R-mod is a monadic functor, so that S-mod is equivalent to
the category of algebras for the monad on R-mod induced by the adjunction f ! � f ∗).
In this context, they prove that, if the monad T is equipped with a “compatible flip”
K : T 2 ⇒ T 2, then to give a T

∗-coalgebra structure on a T-algebra X is equivalent to
giving a “symmetry” on X, that is an involution TX → TX satisfying some suitable
conditions.

Unfortunately, the following natural example, which is a direct generalization of the
classical case of commutative rings, does not fit into their general context: let C be a
braided monoidal category and let S be a monoid in C, then the braiding cS,S : S ⊗ S →
S⊗S induces a natural isomorphism K : T 2 ⇒ T 2 on the monad T = −⊗S : C → C, but
this natural isomorphism is not a flip unless the braiding is a symmetry and the monoid
is commutative. In this note we adapt the notions of “compatible flip” and “symmetry”
to encompass the previous example, as well as another example coming from the theory
of bialgebras.

In Section 2 we introduce the notion of BD-law on a monad T as a special case of
distributive law in the sense of Beck [1]. Using a BD-law K, we can define K-braidings on
a T-algebra, and we want to show that K-braidings correspond bijectively to T

∗-coalgebra
structures. There are two different methods: in Section 3 we use K-braidings to define a
category Brd(T, K) equipped with a forgetful functor V : Brd(T, K) → Alg(T). We show,
using the Beck criterion [10], that V is comonadic; and that the corresponding comonad
is T

∗, so that Brd(T, K) is isomorphic to Coalg(T∗). In Section 4 we give a different proof
based as far as possible on general facts about monads and distributive laws. This second
proof is quite long, but it seems to us of some interest, since it shows that the bijection
between K-braidings and T

∗-coalgebra structures is the natural bijection induced by a
pair of adjoint functors. The description of K-braidings we obtain in this way is slightly
different, but in fact equivalent, to that used in Section 3.
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2. BD-laws on a monad

To begin, we fix notation. A monad T on a category C is a triple

T = (T : C → C,m : T 2 ⇒ T, e : IdC ⇒ T )

consisting of a functor T , and natural transformations m and e making the diagrams

T
eT ��

T
���������������

������������� T 2

m

��

T
Te��

T
�� �������������

�������������
(1)

T

(2)
T 3 Tm ��

mT
��

T 2

m

��
(3)

T 2
m

�� T

commute. A T-algebra is a pair (X, x : TX → X) in C such that the diagrams

X
eX ��

1
���������������� TX

x

		

(4)

X

T 2X
Tx ��

mX
		

(5)

TX

x

		
TX x

�� X

commute. Given two monads T and S on the same category C, a distributive law of T

over S is a natural transformation K : TS ⇒ ST such that the diagrams

T
Te ��

eT 


�������

������� TS

K�� ��������

��������

ST

(6)

S
eS ��

Se 


�������

������� TS

K�� ��������

��������

ST

(7)

TS2

Tm
��

KS �� STS

(8)

SK �� S2T

mT
��

TS
K

�� ST

T 2S

mS
��

TK �� TST

(9)

KT �� ST 2

Sm
��

TS
K

�� ST

commute.

We refer to [1, 3] for more details on monads and distributive laws. When the natural
transformation K is an isomorphism, the definition of distributive law can be simplified,
as in the following lemma:

2.1. Lemma. Consider two monads T and S on a category C, and a natural isomor-
phism K : TS ⇒ ST. Then (8) implies (6) and (9) implies (7). Moreover, K satisfies (8)
and (9) iff K−1 does.
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Proof. We prove that (9) implies (7); the proof of the other implication is similar, and
the rest of the statement is obvious. The proof is contained in the following diagram, in
which unlabelled regions commute by naturality:

S
eS ��

Se

��

eS

�����������

��������� TS

(2)

K �� ST

TS
K ��

TSe
��

ST
STe �� ST 2

Sm
���������

��������

ST
eST

��

K−1

��

TST
TK−1

�� T 2S
TK ��

mS
������������������

����������������� TST

KT

��

(9)

TS

eTS

��																	

																	
TS

��

(1)

TS.

K

��

2.2. Definition. Let T be a monad on a category C. A BD-law on T is a natural
transformation K : T 2 ⇒ T 2 such that

(B) K satisfies the Yang-Baxter equation:

T 3 KT ��

TK
��

T 3

(10)

TK �� T 3

KT
��

T 3
KT

�� T 3
TK

�� T 3

(D) K is a distributive law (that is, it satisfies equations (6–9)).

A BCD-law on T is a BD-law such that

(C) the monad T is K-commutative:

T 2 K ��

m
��


















(11)

T 2

m
�� �������

�������

T

A BD-law or BCD-law is said to be invertible if the natural transformation K is so.

2.3. Remark. Once again, as stated in Lemma 2.1 for the distributivity conditions,
a natural isomorphism K : T 2 ⇒ T 2 satisfies conditions (B) or (C) iff K−1 does.

2.4. Remark. If C is an arbitrary monoidal category, and T is a monoid in C, one
can define a BD-law or BCD-law on T as above. A monoid equipped with an invertible
BCD-law has been called a quasi-commutative monoid by Davydov [5], since the BCD-law
provides a kind of “local braiding” with respect to which the monoid is commutative.
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2.5. Remark. If K is involutive — that is, K2 = 1 — each of the conditions (8) and
(9) implies the other. This fact, together with Lemma 2.1, means that compatible flips
in the sense of Menini and Stefan [11] are precisely the involutive BCD-laws.

2.6. Example. Let C = (C,⊗, I, . . .) be a monoidal category and S = (S,mS, eS) a
monoid in C. The monoid S induces a monad T on C in the following way:

• T = −⊗ S : C → C

• mX = 1 ⊗ mS : X ⊗ S ⊗ S → X ⊗ S

• eX = 1 ⊗ eS : X � X ⊗ I → X ⊗ S

2.6.1 If C is braided, with braiding c = {cX,Y : X ⊗ Y → Y ⊗ X}, then there is
an invertible BD-law K on T defined by KX = 1 ⊗ cS,S : X ⊗ S ⊗ S → X ⊗ S ⊗ S.
In this case, condition (B) is precisely the Yang-Baxter equation; by naturality of the
braiding, conditions (8) and (9) reduce to the following equations, which hold in any
braided monoidal category:

•

������������������ •












•













•
��������� •

��
��

��
��

•

= • •
��������� •

��
��

��
��• • • • • •

•

��
��

��
��

��
��

��
� •

��
��

��
��

��
��

��
� •

������

�����

������

• •
��������� •

��
��

��
��

= •
��������� •

��
��

��
��

•

• • • • • •
This BD-law is a BCD-law precisely when the monoid S is commutative; it is involutive
if and only if cS,S is so, in particular if the braiding c is a symmetry.

2.6.2 Let K be a field and take as C the category of K-vector spaces. Let H be a
cobraided bialgebra with universal form r : H ⊗ H → I; there is a natural isomorphism
of H-comodules cr

V,W : V ⊗ W → W ⊗ V defined by

V ⊗ W
τ �� W ⊗ V

∆⊗∆ �� H ⊗ W ⊗ H ⊗ V
1⊗τ⊗1�� H ⊗ H ⊗ W ⊗ V

r⊗1⊗1�� W ⊗ V

where ∆ is the coaction and τ is the standard twist: see [9]. If S is any H-comodule
algebra (in particular, one can take S = H), then we have an invertible BD-law K on T

defined by KX = 1 ⊗ cr
S,S : X ⊗ S ⊗ S → X ⊗ S ⊗ S. Indeed, conditions (8-10) follow

from [9, Proposition VIII.5.2], using the fact that the multiplication mS : S ⊗ S → S is a
homomorphism of H-comodules.

2.7. Example. If f : R → S is a morphism of unital rings, with R commutative,
we can specialize Example 2.6.1 by taking C = R-mod, so that K is defined by the
standard twist S ⊗ S → S ⊗ S. This is possible also if R is not commutative, provided
its image lies in the centre of S : taking now C = R-R-bimod, the standard twist on S
can be defined and gives once again an invertible BD-law on T. If we drop the centrality
condition the standard twist can no longer be defined, but one can use the additivity
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of the category of bimodules to define a different BD-law. In fact, if C is an additive
category and T is any monad on C, then there is an involutive BCD-law K on T defined
by K = (eT + Te) · m − T 2; see [11]. This case generalizes results on non-commutative
rings established in [4, 12].

3. Coalgebras and braidings

For the reader’s convenience, let us recall how the definition of coalgebra for a comonad
specializes when the comonad is of the form T

∗.

3.1. Definition. Let T = (T,m, e) be a monad on a category C and consider the
comonad T

∗ on Alg(T) induced by the adjunction

C
LT

�� Alg(T)
RT

�� LT � RT

A T
∗-coalgebra structure on a T-algebra (X, x : TX → X) is a morphism r : X → TX

such that

TX
Tr ��

x

		
(12)

T 2X

mX
		

X r
�� TX

X
r ��

1
���������������� TX

x

		

(13)

X

X
r ��

r

		
(14)

TX

Tr
		

TX
TeX

�� T 2X

We denote by T
∗-coalg(X, x) the set of T

∗-coalgebra structures on a T-algebra (X, x).

3.2. Remark. For all X ∈ C, the morphism TeX : TX → T 2X is a T
∗-coalgebra struc-

ture on the free T-algebra LTX = (TX,mX). This is the (object part of the) canonical
comparison functor C → Coalg(T∗).

3.3. Definition. Let T = (T,m, e) be a monad on a category C and let K : T 2 ⇒ T 2

be a BD-law. A K-braiding on a T-algebra (X, x : TX → X) is a morphism c : TX → TX
such that

TX
c ��

(15)

TX

x

		
X

eX

��

1
�� X

T 2X
KX ��

Tc
		

T 2X
Tc ��

(16)

T 2X

KX
		

T 2X KX
�� T 2X Tc

�� T 2X

T 2X
KX ��

Tx
		

T 2X
Tc ��

(17)

T 2X

mX
		

TX c
�� TX

We denote by K-Brd(X, x) the set of K-braidings on a T-algebra (X, x).

3.4. Remark. If K is invertible, condition (17) means that c is a morphism

c : T (X, x) → T ∗(X, x)

in Alg(T), where T is the lifting of T on Alg(T) induced by the distributive law K−1.
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3.5. Remark. We shall see in Proposition 3.9 that if K is invertible or involutive then
the same is true of any K-braiding, whence by Corollary 3.11 it will follow that if K is
an involutive BCD-law, then K-braidings are precisely symmetries in the sense of Menini
and Stefan [11].

3.6. Remark. If K is a BD-law on T, then KX is a K-braiding on LTX, for all X ∈ C.
Indeed, conditions (16) and (17) correspond respectively to conditions (10) and (9), while
condition (15) is the pasting of (1) and (6). In the bijection stated in Corollary 3.8, KX
corresponds to the T

∗-coalgebra structure TeX of Remark 3.2.

If T is a monad on a category C and K : T 2 ⇒ T 2 is a BD-law, we write Brd(T, K)
for the category having pairs

〈 (X, x) ∈ Alg(T), c ∈ K-Brd(X, x) 〉
as objects. An arrow f : 〈 (X, x), c 〉 → 〈 (X ′, x′), c′ 〉 in Brd(T, K) is an arrow between the
underlying T-algebras such that the diagram

TX
Tf ��

c

		

TX ′

c′
		

TX
Tf

�� TX ′

commutes.
We are ready to state our main result.

3.7. Theorem. Let T = (T,m, e) be a monad on a category C and let K : T 2 ⇒ T 2

be a BD-law on T. The forgetful functor

V : Brd(T, K) → Alg(T)

is comonadic, and the corresponding comonad on Alg(T) is the comonad T
∗ induced by

the adjunction LT � RT between C and Alg(T).

Proof. We show that V has a left adjoint and then apply Beck’s theorem. The free T -
algebra functor LT : C → Alg(T) factorizes as LT = V J , where J : C → Brd(T, K) is the
functor sending an object X of C to the algebra (TX,mX) equipped with the K-braiding
KX : T 2X → T 2X. The counit ε : LTRT → 1 may be seen as a natural transformation
V JRT = LTRT → 1. For an object (X, x, c) of Brd(T, K), write β : X → TX for the
composite

X
eX �� TX

c �� TX

and observe that, by commutativity of

TX
eTX

��

x

		

TeX
��

T 2X

Tx
		

KX
�� T 2X

(17)

Tc �� T 2X

mX
		

X
eX

�� TX c
�� TX
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and

TX
eTX

��

c

		

TeX
��

T 2X

Tc
		

KX
�� T 2X

Tc ��

(16)

T 2X

KX
		

TX
eTX ��

TeX

��T 2X
KX �� T 2X Tc

�� T 2X

this makes β a map in Brd(T, K) from (X, x, c) to (TX,mX,KX). This gives the com-
ponent at (X, x, c) of a natural transformation β : 1 → JRTV .

The triangle equation εV.V β = 1 is precisely equation (15), while the other triangle
equation JRTε.βJRT = 1 follows easily from the definitions of BD-law and of T-algebra.
Thus there is an adjunction V � JRT, which clearly induces the same comonad as
LT � RT.

It remains to verify the Beck condition. Let f, g : (X, x, c) → (Z, z, c′) be morphisms
in Brd(T, K), and let

(W,w) i �� (X, x)

u
��

f ��

g
�� (Z, z)

v

��

be a split equalizer diagram in Alg(T), with ui = 1, iu = gv, and fv = 1. Since Ti is
(split) monic, the only possibility for a K-braiding c′′ : TW → TW on (W,w) compatible
with i is given by

TW
T i �� TX

c �� TX
Tu �� TW

and we need only check that this does indeed give a braiding; the fact that the resulting
diagram is an equalizer in Brd(T, K) is then obvious. Thus we must check equations
(15,16,17); instead, we allow the reader to contemplate the following diagrams at his or
her leisure:

TW
T i �� TX

c �� TX
Tu ��

x

		

TW

w

		
W

eW

��

i ��

1

��X
1 ��

eX

��

X
u �� W
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T 2X
T 2u ��

T 2g

����������� T 2W
KW ��

T 2i

		

T 2W

T 2i

		

T 2X

Tc
�����������

T 2g
�� T 2Z

Tc′
�� T 2Z

T 2v �����������

T 2W
T 2i ��

KW
		

T 2i

��

T 2X Tc
��

KX
		

T 2f

��

T 2X 1
��

T 2f

��

T 2X KX
�� T 2X

Tc
		

T 2W
T 2i

�� T 2X Tc
�� T 2X

KX ��

T 2u
		

T 2X

T 2u
		

T 2W KW
�� T 2W

T 2W
T 2i �� T 2X

Tc

�����������

T 2W

KW
�����������

T 2i
��

Tw
		

T 2X

KX
�����������

Tx
		

T 2X
T 2u ��

mX
		

T 2W

mW
		

TW
T i

�� TX
Tc

�� TX
Tu

�� TW.

3.8. Corollary. Let T = (T,m, e) be a monad on a category C and let K : T 2 ⇒ T 2

be a BD-law on T. For (X, x) a T-algebra, consider the map

Ψ(X,x) : K-Brd(X, x) → T
∗-coalg(X, x)

(c : TX → TX) 
→ (r : X
eX �� TX

c �� TX )

and the functor

Ψ: Brd(T, K) → Coalg(T∗)

〈(X, x), c〉 f �� 〈(X ′, x′), c′〉 
→ (X, x, Ψ(c))
f �� (X ′, x′, Ψ(c′))

1. The functor Ψ is an isomorphism of categories;

2. The map Ψ(X,x) is bijective.

Proof. Since the forgetful functor V : Brd(T, K) → Alg(T) is comonadic, the induced
comparison functor Ψ: Brd(T, K) → Coalg(T∗) is an isomorphism of categories and so it
induces a bijection on objects.
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3.9. Proposition. For a BD-law K : T 2 → T 2 we have the following facts about a
K-braiding c : TX → TX on an algebra (X, x):

1. The diagrams

T 2X
Tc ��

mX
		

T 2X
KX ��

(18)

T 2X

Tx
		

TX c
�� TX

T 3X
TKX ��

T 2x
		

T 3X

(19)

T 2c �� T 3X

TmX
		

T 2X

mX
		

T 2X

KX
		

TX c
�� TX T 2XTx

��

commute;

2. If K is invertible then so is c;

3. If K is involutive then so is c;

4. If K is a BCD-law then the diagram

TX
c ��

x
����������
(20)

TX

x
����������

X

commutes.

Proof. In each case the proof goes as follows. Modify the definition of K-braiding so
that the extra condition is assumed part of the structure, then check that the modified
category Brd(T, K)′ is still comonadic via the same comonad. This involves (i) proving
that the cofree objects (TX,mX,KX) have the required property, and (ii) proving that
in the split equalizer diagram in the proof of Theorem 3.7, the induced morphism c′′ =
Tu.c.T i : TW → TW satisfies the condition if c : TX → TX does so. In each case (i)
is entirely straightforward: for example, the fact that the cofree objects satisfy (18) is
precisely (9). We therefore check only (ii).

1. If c satisfies (18), then so does c′′ by commutativity of the diagram

T 2X
T 2u ��

KX

����������� T 2W
KW

�����������

T 2W
T 2i ��

mW
		

T 2X

Tc
�����������

mX
		

T 2X
T 2u

��

Tx
		

T 2W

Tw
		

TW
T i

�� TX c
�� TX

Tu
�� TW
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while (19) is obtained by pasting together (17) and (18).
2 and 3. If c is invertible, then a straightforward calculation shows that Tu.c−1.T i is

inverse to Tu.c.T i.
4. If xc = x then the diagram

TX

x
����������

c �� TX
Tu

����������

x
����������

TW

T i
����������

w
���������� X

u

���������� TW

w
����������

W

i
 ���������

1
�� W

commutes and so wc′′ = w.

3.10. Remark. If K is a distributive law, condition (18) means that c is a morphism

c : T ∗(X, x) → T̃ (X, x)

in Alg(T), where T̃ is the lifting of T to Alg(T) induced by the distributive law K.

In fact we can use the Proposition to give two alternative formulations of the definition.
One of them will be used in the following section, the other to make the connection with
the “symmetries” of [11].

3.11. Corollary. In the definition of K-braiding, condition (17) can be replaced by
(19), while if K is a BCD-law then (15) can be replaced by (20).

Proof. We have seen that for a K-braiding (19) always holds; conversely (17) follows
easily from (19) by composing with eTX : TX → T 2X. Similarly, if K is a BCD-
law then (20) holds for any K-braiding, while (15) follows from (20) by composing with
eX : X → TX.

If K is an involutive BCD-law on a monad T, then a symmetry on a T-algebra (X, x),
was defined in [11] to be an involution c : TX → TX satisfying (16, 17, 20); combining the
proposition and the corollary one now sees as promised that this is precisely a K-braiding.

4. Another proof

We proved our main theorem in the previous section; here we provide an alternative proof,
which may be of interest to some readers. It exhibits the bijection which is the object
part of the isomorphism Φ of Corollary 3.8 as being part of the natural bijection (between
hom-sets) of an adjunction.

To do this, we use the definition of K-braiding involving (19) rather than (17); see
Corollary 3.11.
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4.1. Proposition. Let T = (T,m, e) be a monad on a category C and let K : T 2 ⇒ T 2

be an invertible BD-law on T. For (X, x) a T-algebra, we have a bijection

K-Brd(X, x) ∼= T
∗-coalg(X, x)

given by

Ψ(X,x) : K-Brd(X, x) → T
∗-coalg(X, x)

(c : TX → TX) 
→ (r : X
eX �� TX

c �� TX )

Ψ−1
(X,x) : T

∗-coalg(X, x) → K-Brd(X, x)

(r : X → TX) 
→ (c : TX
Tr �� T 2X

KX �� T 2X
Tx �� TX )

As explained above, the proposition can be deduced from Corollary 3.8; our alternative
proof occupies the remainder of the paper.

Let T and S be monads on a category C. A morphism of monads is a natural trans-
formation ϕ : S ⇒ T such that

S2
ϕ2

��

m

��
(21)

T 2

m

��
S ϕ

�� T

IdC

e ��

e
��������������

������������ S

ϕ

��

(22)

T

Following [1], such a morphism ϕ induces a functor ϕ∗ : Alg(T) → Alg(S) defined by
ϕ∗(X, x : TX → X) = (X,ϕX · x : SX → TX → X). Moreover, ϕ∗ has a left adjoint
ϕ! : Alg(S) → Alg(T) sending an S-algebra (Y, y) to the object ϕ!(Y, y) in the coequalizer

TSY
Ty ��

TϕY ����������� TY
q �� ϕ!(Y, y)

T 2Y

mY

!����������

in Alg(T), provided that such a coequalizer exists. Indeed, if f : (Y, y) → ϕ∗(X, x) is a
morphism of S-algebras, then x.Tf : TY → X coequalizes Ty and mY.TϕY . Conversely,
from g : ϕ!(Y, y) → (X, x), we get g.q.eY : (Y, y) → ϕ∗(X, x).

If K : TS ⇒ ST is a distributive law of T over S, we can consider the composite monad
ST on C. Explicitly,

ST = (ST : C → C, STST
SKT �� S2T 2 mm �� ST , IdC

ee �� ST )

Moreover, there are two morphisms of monads as in

S
ε1=Se �� ST T.

ε2=eT��
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Now, for any T-algebra (X, x : TX → X) and S-algebra (Y, y : SY → Y ), the adjunction
ε2! � ε∗2 gives a natural bijection

Ψ: Alg(ST)[ε2!(X, x), ε1!(Y, y)] � �� Alg(T)[(X, x), ε∗2ε1!(Y, y)]

The bijection of Proposition 4.1 will turn out to be a particular case of this natural
bijection. To see this, we give an explicit description of Ψ and of the hom-sets involved.

First of all, let us recall from [1] that the coequalizer defining ε2!(X, x) always exists.
In fact, it is given by the solid part of the following diagram in Alg(ST)

STTX
STx ��

SmX
�� STX

Sx ��

SeTX

��
SX

SeX

"�

with action on SX given by

STSX
SKX �� S2TX

S2x �� S2X
mX �� SX

Indeed, one easily verifies that the dotted arrows satisfy the equations for a split coequal-
izer [2]. Recall also that if f is a morphism of ST-algebras coequalizing STx and SmX,
then the induced ST-algebra map out of SX is f.SeX.

Unfortunately, the existence of the coequalizer defining ε1!(Y, y) is not automatic. We
need the following lemma, which makes sense because of Lemma 2.1:

4.2. Lemma. Consider two monads S and T on a category C, and let K : TS ⇒ ST
be an invertible distributive law of T over S. Consider the composite monad ST induced
by K and the composite monad TS induced by K−1. Then K : TS ⇒ ST is a morphism of
monads, and it satisfies the following equations

TS

K

��

S

η2

���������

�������

ε1 ��
















 T

η1

� 

















ε2�� �������

�������

ST

where η1 = Te and η2 = eS.

Proof. The equations ε1 = Kη2 and ε2 = Kη1 are conditions (6) and (7), and they
imply condition (22). As far as condition (21) is concerned, let us give the idea of the
proof, instead of the complete calculation. (This could be formalized using the string
calculus of [8].) Think of K as a braiding between T and S. Then condition (21) amounts
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to the following equation

•

�������������� •
�������

�������

•

�������������� •
�������

�������

• •
����

����

•

��������� •

• •
��������� •

����

����

• = •
��������� •

��������� •
��������� •

���������

•
��������� •

��������� •
��������� •

��������� •
�������������������� •

���������

���������

• • • •
which can be proved using the distributivity equations three times. Indeed, the distribu-
tivity admits the following graphical representation (this is condition (8))

• •
��������� •

��������� •

������������������������� •
����

���������
•

���������

����•

�������������� •
������

������

= •
��������� •

��������� •

• • • •

As a consequence of the previous lemma, ε1! : Alg(S) → Alg(ST) can be obtained as

Alg(S)
η2! �� Alg(TS)

(K−1)∗�� Alg(ST)

and then ε1!(Y, y) can be described by the following coequalizer in Alg(ST)

(K−1)∗(LTS(SY ))
TmY

��
TSy ��

KSY �
		

(K−1)∗(LTS(Y ))

TeSY

#!

KY�
		

Ty �� TY

TeY

�"

LST(SY )
mTY.SKY

��
STy ��

LST(Y )

with action on TY given by

ST 2Y
SmY �� STY

K−1Y �� TSY
Ty �� TY.

We are now ready to describe the bijection Ψ.

4.3. Lemma. Consider two monads S and T on a category C, and let K : TS ⇒ ST be
an invertible distributive law of T over S. For any T-algebra (X, x) and S-algebra (Y, y) :
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(i) The hom-set Alg(S)[(Y, y), ε∗1(ε2!(X, x))] is the set of morphisms r : Y → SX such
that

SY
Sr ��

y

		
(12)

S2X

mX
		

Y r
�� SX

commutes.

(ii) The hom-set Alg(ST)[ε1!(Y, y), ε2!(X, x)] is the set of morphisms c : TY → SX such
that

T 2SY

T 2y
		

TKY �� TSTY
TSc �� TSSX

TmX
		

T 2Y

mY
		

(19) TSX

KX
		

TY c
�� SX STX

Sx
��

commutes.

(iii) The natural bijection

Ψ: Alg(ST)[ε1!(Y, y), ε2!(X, x)] � �� Alg(S)[(Y, y), ε∗1(ε2!(X, x))]

induced by the adjunction ε1! � ε∗1 is given by

Ψ(c) : Y
eY �� TY

c �� SX Ψ−1(r) : TY
Tr �� TSX

KX �� STX
Sx �� SX.

Proof. Following the description of ϕ! � ϕ∗ given at the beginning of this section, we
have Ψ(c) and Ψ−1(r) given respectively by

Y
eY �� TY

eTY �� STY
K−1

�� TSY
Ty �� TY

c �� SX

TY
eTY �� STY

STr �� STSX
SKX �� SSTX

nTX �� STX
Sx �� SX

which are easily seen to reduce to formulas given in (iii).
For r : Y → SX, to be a morphism of S-algebras means that

SY
Sr ��

y

		

S2X
SeSX �� STSX

SKX
		

Y r
�� SX S2XmX

�� S2TX
S2x

��

commutes, which immediately reduces to (12) by (6) and (4).
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For c : TY → SX, to be a morphism of ST-algebras means commutativity of

ST 2Y

SmY
		

STc �� STSX
SKX �� SSTX

SSx �� SSX

mX
		

STY
K−1Y

�� TSY
Ty

�� TY c
�� SX

which, by (8) and (9), reduces to (19).

This is the best we can do working at this level of generality. ¿From now on, we assume
S = T and (X, x) = (Y, y). We now combine the next two lemmas with the previous one
to complete the proof of Proposition 4.1.

4.4. Lemma. Let T be a monad on a category C, and let K : T 2 ⇒ T 2 be an invertible
distributive law on T. Fix a T-algebra (X, x). In the bijection of Lemma 4.3, the map
r : X → TX satisfies condition (13) iff c = Ψ−1(r) : TX → TX satisfies condition (15).

Proof. Condition (15) says precisely that Ψ(c) satisfies (13).

4.5. Lemma. Let T be a monad on a category C, and let K : T 2 ⇒ T 2 be an invertible
BD-law on T. Fix a T-algebra (X, x). In the bijection of Lemma 4.3, the map r : X → TX
satisfies condition (14) iff c = Ψ−1(r) : TX → TX satisfies condition (16).

Proof. (14) ⇒ (16) :

T 2X
KX ��

T 2r

��������������

T 2r

		

T 2X
T 2r �� T 3X

TKX

		

TKX

$#  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 

(14) T 3X

KTX

��!!!!!!!!!!!!!!!!!!!!!!!

T 3eX
		

TKX

��������������

T 3X
T 3r ��

TKX
		

T 4X

TKTX
		

T 3X
T 3eX

#!""""""""""""

1

%$�������������������
T 3X

T 2x
		

T 3X
(12)

T 3r ��

T 2x
		

T 4X (1)

T 2mX
		

T 2X

KX
		

T 2X
T 2r ��

KX
		

T 3X

KTX
		

(10) T 3X

KTX ����������� T 2X

T 2X
T 2r

�� T 3X
T (KX)

�� T 3X

T 2x

��



COALGEBRAS, BRAIDINGS, AND DISTRIBUTIVE LAWS 145

(16) ⇒ (14) :

X
eX

#!""""""""""""""
eX

&%�������������������

TX
TeX ��

eTX ��������������

c

		

T 2X
(7)

KX
		

Tc

����������� TX
eTX��

c

		
T 2X

Tc
		

T 2X

KX

'&#
############### TX

eTX��

TeX

		

(6)

TX
eTX ��

TeX �������������� T 2X

KX
		

(6)

(16)

T 2X T 2XTc
��

The proof of Proposition 4.1 is now complete.
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