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For a class of exterior ideals, we present a method associating first integrals of the
characteristic distributions to symmetries of the ideal. The method is applied, under
some assumptions, to the study of first integrals of ordinary differential equations and
first order partial differential equations as well as to the determination of first integrals
for integrable distributions of vector fields.
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1. Introduction

In recent years an increasing attention was devoted to the search for conservation
laws related to symmetries of differential equations (see, for example [2,7,8,10,12,
13,18] for a non-variational approach and [3,16,17] for a variational point of view,
Noether’s theorem and its extensions).

The paper follows this line, using the framework of exterior ideals and their sym-
metries. This approach allows us to obtain a general result which can be specialized
to different situations such as ordinary differential equations (ODEs), partial dif-
ferential equations (PDEs) as well as distributions of vector fields. In this approach
also the variational case can be considered, but our results do not give a general-
ization of Noether’s theorem.

The main point of the paper is the possibility to associate to any infinitesimal
symmetry of an exterior ideal I, satisfying a suitable closure condition, a function
that is constant along the integral manifolds of the characteristic distribution of I.

By using this result, given a ODE E (satisfying suitable conditions), we associate
to any symmetry of E , a first integral of E . More precisely, we associate to E the
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exterior ideal I generated by the contact forms restricted to E . In this case the
characteristic distribution of I is one dimensional and its integral lines are jet
prolongations of solutions of E . Then our result associates to any symmetry of I a
first integral for E . Analogous results hold for PDEs and integrable distributions of
vector fields.

We point out that, in order to apply this method to different situations such
as ODEs, PDEs or completely integrable distributions, the first step is to find
the “good” exterior ideal I associated to the problem. The choice of this ideal
may be not unique; for example, in the case of distributions, we exhibit two dif-
ferent choices for I sharing the same symmetries and leading to the same first
integrals.

The second step is to discuss the cases satisfying the closure condition given in
Lemma 1 (see below). For example, in the case of a distribution generated by a sin-
gle vector field Y on a manifold M , this condition is a generalization of div(Y ) = 0.
In fact, in this case, our main condition on I requires that div(e−KY ) = 0, for a
function K on M . Then we recover and slightly generalize (for K �= 0) a result of
Crampin (see [7, 9]) associating to any symmetry of a divergenceless vector field
Y a first integral of Y . Moreover, our general setting allows us to extend to an
n-dimensional integrable distribution (n > 1) the result given by Crampin for a
single vector field. In the general case of an exterior ideal generated by the forms
θ1, . . . , θn ∈ Λ∗(M), we show that the closure condition of Lemma 1 is equiv-
alent to the existence of a function K such that e−Kθ1 ∧ · · · ∧ θn is a closed
form. Then we discuss the relations between this condition and the differential
closure of the ideal, and we provide a coordinate expression for this condition for a
system of ODEs.

In the case of variational ODEs we may consider the ideal I generated by the
exterior differential of the Hamilton–Cartan 1-form, which automatically satisfies
the closure condition. Then, by using our result, we associate to any symmetry of I
a first integral of the Euler–Lagrange equations. In this sense our result is analogous
of Noether’s theorem, albeit the non-trivial first integrals here correspond to non
Noether symmetries (see Appendix A). Any first integral obtained in this way can
also be associated to a Cartan symmetry by using a generalization of Noether’s
theorem [16].

An outline of the paper is as follows. In Sec. 2, in order to fix notations and for
the convenience of the reader, we collect some of the main definitions and proposi-
tions on exterior ideals and distributions of vector fields together with some notions
from the geometric theory of differential equations. In Sec. 3 we present our main
results on exterior ideals (which will be specialized in the further applications). In
Sec. 4 we apply the results of Sec. 3 to distributions of vector fields and differential
equations. In Sec. 5 a number of simple examples are presented in order to show that
the considered class of exterior ideals is nonempty in the case of ODEs, PDEs and
distributions. Finally, in Appendix A we discuss the relations between our approach
and extensions of Noether’s theorem in the case of ODEs of variational type.
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2. Preliminaries

In this section we collect some basic notions from the theory of exterior ideals
and the geometric approach to differential equations. The reader is referred to
[1, 4, 5, 11, 15, 20] for further details.

From now on M will denote a smooth n-dimensional manifold and Λ∗(M) the
graded algebra of differential forms on M .

We say that I ⊂ Λ∗(M) is an exterior ideal (or Cartan ideal) if and only if
(a) it is an ideal in Λ∗(M) under exterior product, and (b) Ik := I ∩ Λk(M) is a
module over Λ0(M) for all k = 0, . . . , n. In other words, (a) for all ψ ∈ Λ∗(M),
η ∈ I, ψ ∧ η ∈ I; and (b) for all fi ∈ Λ0(M), βi ∈ Ik (i = 1, 2), f1β1 + f2β2 ∈ Ik

(for all k = 0, . . . , n).
Let i : S → M be a smooth submanifold of M (here and below i is the canonical

inclusion); S is said to be an integral manifold of the exterior ideal I if and only if
i∗(η) = 0 for all η ∈ I. In other words, S ⊂ M is an integral manifold of I if and
only if all η ∈ I vanish on S.

The exterior ideal I is said to be generated by the forms θ1, . . . , θh, which is
denoted by I = 〈θ1, . . . , θh〉, if each ζ ∈ I can be written as ζ =

∑
i ρi ∧ θi for a

suitable choice of ρi ∈ Λ∗(M), i = 1, . . . , h; when ρi ∈ Λ0(M), by ρi∧θi one simply
means ρiθ

i. If I is generated by a collection of 1-forms it will be called simply
generated.

A simple consequence of definitions is that if I = 〈θ1, . . . , θh〉, then i : S → M

is an integral manifold for I if and only if i∗(θi) = 0 for all i = 1, . . . , h.
The exterior ideal I is said to be differentially closed if it is closed under exterior

differentiation, i.e., if dη ∈ I for all η ∈ I. In this case one can also say that I is a
differential ideal.

In the applications usually one considers, without loss of generality, only exterior
ideals which do not include 0-forms. In fact, if f ∈ I0, then the equation f = 0
defines locally a submanifold N ⊂ M and any integral manifold of I must be
contained in N . Thus, instead of I, one can consider the ideal I|N , obtained by
restricting the forms of I to N .

A distribution D ={Dx ⊂ TxM : x ∈ M} on M is called a smooth distribution of
dimension r if and only if for each x ∈ M there is a neighborhood U of x and there
are r smooth vector fields Y1, . . . , Yr which span D at any point of U . Further on
we will consider only smooth distribution of constant dimension. A vector field Y is
said to belong to D, i.e., Y ∈ D, if and only if Yx ∈ Dx for any x ∈ M . An integral
manifold of D is a submanifold i : N → M such that i∗(TaN) ⊂ Di(a) for all a ∈ N .
In other words, any vector field tangent to N belongs to D. A first integral of D is
a function which is constant along the orbits of vector fields belonging to D.

Given an exterior ideal I, we associate to any point x ∈ M the subspace
Charx(I) ⊂ TxM defined by

Charx(I) := {ξ ∈ TxM : ξ Ix ⊂ Ix},
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where denotes the interior product, and we call the distribution Char(I) =
{Charx(I), x ∈ M} the characteristic distribution of I. If Char(I) is a smooth
distribution of dimension r, by definition, I is said to be nonsingular. In the fol-
lowing we will consider only nonsingular ideals. A vector field Y ∈ Char(I) is said
to be a characteristic field for I.

Note that, any smooth r-dimensional distribution D coincides with the char-
acteristic distribution Char(ID) of the exterior ideal ID generated by the n − r

independent 1-forms ωi annihilating all the vector fields belonging to D. Hence, the
integral manifolds of D coincide with those of ID.

An r-dimensional distribution D on M is said to be completely integrable if
through each point x ∈ M passes an r-dimensional integral manifold. Hence, in
this case, integral manifolds provide a local foliation on M .

One has the following

Proposition 1. If I is a nonsingular differential ideal, then Char(I) is completely
integrable.

In particular, for a simply generated exterior ideal I, Frobenius theorem states
that Char(I) is completely integrable if and only if I is differentially closed.

For later use, let us consider the notion of infinitesimal symmetry for a distri-
bution D and an exterior ideal I.

Definition 1. A vector field X on M is called an infinitesimal symmetry of the
distribution D if and only if LXD ⊂ D, i.e. LXY ∈ D for any Y ∈ D.

Definition 2. A vector field X on M is called an infinitesimal symmetry of the
exterior ideal I if and only if LXI ⊂ I, i.e. LXθ ∈ I for any θ ∈ I.

In the sequel infinitesimal symmetries of D or I will be referred to simply as
symmetries. Given an exterior ideal I, it is easy to check that any symmetry X of
I is also a symmetry of the distribution Char(I).

In order to give some applications of our results to the problem of determining
first integrals of differential equations, we also recall here some basic definitions from
the geometric approach to differential equations in the language of jet bundles.

Let π : E → M be a smooth fiber bundle with dimM = n, fiber dimension
m, and local coordinates (xi, u

a), 1 ≤ i ≤ n, 1 ≤ a ≤ m. We denote by Jk(π)
the kth order jet bundle with induced natural coordinates (xi, u

a
σ), where σ =

(σ1, σ2, . . . , σn) is a multi-index with |σ| =
∑

σi ≤ k and 0 ≤ σi ≤ n. We recall
that Jk(π) is equipped with the exterior ideal C generated by the contact forms

θa
σ = dua

σ −
n∑

i=1

ua
σ+1i

dxi,

where σ + 1i := (σ1, σ2, . . . , σi + 1, . . . , σn). The ideal C is called the contact ideal
and a section sk of Jk(π) is the k-order prolongation of a section s of π if and only
if s∗k(θa

σ) = 0 for any a = 1, . . . , m and |σ| ≤ k.
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In this framework a kth order system of differential equations can be regarded
as a submanifold E ⊂ Jk(π) and any solution of E is a section of π whose k-order
prolongation is an integral manifold of C = 〈θa

σ〉, where θ
a

σ denotes the contact
forms restricted to E . A symmetry of the contact ideal C which is tangent to E is
called, by definition, a symmetry of E .

Since contact forms are 1-forms, integral manifolds of C coincide with those of
Char(C). Hence solutions of E can also be regarded as sections of π whose k-order
prolongations are integral manifolds of Char(C). First integrals of Char(C) will be
also called first integrals of E .

3. Main Results

In this section we present our main results; these relate, under suitable conditions,
symmetries of an exterior ideal I to first integrals of Char(I). A key role will be
played by condition (1) of Lemma 1 below; we also discuss relations between this
condition and differential closure of I.

Lemma 1. Let I be an exterior ideal of Λ∗(M) generated by θ1, . . . , θk such that

(i) if k > 1, θi ∧ θi = 0 for any i = 1, . . . , k;
(ii) θ1 ∧ θ2 ∧ · · · ∧ θk �= 0 and

d(θ1 ∧ θ2 ∧ · · · ∧ θk) = dK ∧ θ1 ∧ θ2 ∧ · · · ∧ θk (1)

for some K ∈ C∞(M).

Then, for any symmetry X of I there exists a function K0 ∈ C∞(M) such that

LX(θ1 ∧ θ2 ∧ · · · ∧ θk) = K0θ
1 ∧ θ2 ∧ · · · ∧ θk. (2)

Moreover, the function G = K0 − X(K) satisfies

dG ∧ θ1 ∧ θ2 ∧ · · · ∧ θk = 0. (3)

Proof. Since the Lie derivative is a derivation of Λ∗(M) one gets

LX(θ1 ∧ θ2 ∧ · · · ∧ θk) = LXθ1 ∧ θ2 ∧ · · · ∧ θk + θ1 ∧ LXθ2 ∧ · · · ∧ θk

+ · · · + θ1 ∧ θ2 ∧ · · · ∧ LXθk. (4)

On the other hand, X is a symmetry of I, i.e. for any i = 1, . . . , k

LXθi = αiθi + ηi (5)

with some αi ∈ C∞(M) and ηi belonging to the ideal I(i) = 〈θs : s �= i〉 ⊂ I.
Therefore, by plugging (5) into (4) and taking into account assumption (i) on

θ1, . . . , θk, one gets

LX(θ1 ∧ θ2 ∧ · · · ∧ θk) =

(
k∑

s=1

αs

)
θ1 ∧ θ2 ∧ · · · ∧ θk.
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Hence, by setting K0 :=
∑k

s=1 αs one gets (2). Moreover, since LX ◦ d = d ◦ LX ,
assumption (ii) on θ1, . . . , θk and (2) give (3).

Note that condition (1) is equivalent to the existence of a function K such that
d(e−Kθ1 ∧ θ2 ∧ · · · ∧ θk) = 0. Function K depends on the choice of the generators
θ1, . . . , θk of I, however one can easily verify that conditions (i)–(ii) and function
G = K0 − X(K) are invariant under a change of generators.

Remark 1. Whenever I is simply generated, Eq. (3) is equivalent to dG ∈ I. In
fact, if the differential forms θ1, . . . , θk are all of degree 1, the independence Lemma
(see [6] or [4]) guarantees that dG∧θ1∧θ2∧· · ·∧θk = 0 if and only if dG is linearly
dependent from θ1, . . . , θk. More in general, for any exterior ideal I satisfying (i),
dG ∈ I implies (3) but generically the converse is not true (see for example the
ideal I = 〈dx, dy∧dz〉 and dG = dy +dz). Moreover, dG never belongs to I if none
of the forms θ1, . . . , θk has degree 1.

For a simply generated ideal I, the assumptions of Lemma 1 are satisfied if and
only if θ1, . . . , θk are linearly independent and d(θ1 ∧ θ2 ∧ · · · ∧ θk) = dK ∧ θ1 ∧
θ2 ∧ · · · ∧ θk. Therefore, if {θ1, . . . , θk} is completed to a coframe by adding some
1-forms τ1, . . . , τh, for any s = 1, . . . , k one has

dθs =
∑

As
ijτ

i ∧ τ j + ξs (6)

with some As
ij ∈ C∞(M) and ξs ∈ I. On the other hand

0 = d(θs ∧ (θ1 ∧ θ2 ∧ · · · ∧ θk)) = dθs ∧ θ1 ∧ θ2 ∧ · · · ∧ θk (7)

and by using (6) and linear independence of τ i∧τ j ∧θ1∧θ2∧· · ·∧θk, i, j = 1, . . . , h,
one readily gets As

ij = 0 and dθs = ξs.
Hence, any simply generated ideal I satisfying the assumptions of Lemma 1

is differentially closed. Nevertheless, in general condition (ii) of Lemma 1 is not
equivalent to the closure of I: just consider the ideal J = 〈θ1 = xdu + tdy, θ2 =
dx ∧ dy ∧ dt〉 (satisfying (ii) but not differentially closed) and the ideal K = 〈θ =
(y2/2)dx + dy〉 (differentially closed but not satisfying (ii)).

In the particular case of an ideal generated by a 1-form θ and its differential dθ,
Lemma 1 can also be proved under weaker assumptions.

Lemma 2. Let I be an exterior ideal of Λ∗(M) generated by a 1-form θ and its
differential dθ such that θ ∧ dθ �= 0 and

d(θ ∧ dθ) = dK ∧ θ ∧ dθ (8)

for some K ∈ C∞(M). For any symmetry X of I there exists a function K0 ∈
C∞(M) such that

LX(θ ∧ dθ) = K0θ ∧ dθ.

Moreover, function G = K0 − X(K) satisfies

dG ∧ θ ∧ dθ = 0.
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Proof. Analogous to that of Lemma 1.

Now we prove the following:

Theorem 1. Let I = 〈θ1
, . . . , θk〉 be as in Lemma 1 (or Lemma 2) and X a sym-

metry of I. Then, function G associated to X by Lemma 1 (or Lemma 2) is a first
integral of Char(I), i.e., is such that Y (G) = 0 for any Y ∈ Char(I).

Proof. In view of (3),

0 = Y (dG ∧ θ1 ∧ θ2 ∧ · · · ∧ θk)

= Y (G)θ1 ∧ θ2 ∧ · · · ∧ θk − dG ∧ (Y θ1) ∧ θ2 ∧ · · · ∧ θk

− (−1)δ1dG ∧ θ1 ∧ (Y θ2
) ∧ · · · ∧ θk − · · ·

− (−1)δ1+δ2+···+δkdG ∧ θ1 ∧ θ2 ∧ · · · ∧ (Y θk
)
, (9)

where δi is the degree of θi. Moreover, for any i ∈ {1, . . . , k}, let us denote by Ji

and Ii, respectively, the (possibly void) subsets of {1, . . . , k} such that for j ∈ Ji

(respectively j ∈ Ii), θj has degree equal to (respectively less than) δi − 1.
Therefore, since Y I ⊂ I, one has

Y θi =
∑
j∈Ji

bi
jθ

j +
∑
j∈Ii

βi
j ∧ θj (10)

with some (possibly null) bi
j ∈ C∞(M), βi

j ∈ Λ∗(M).
Then, by plugging (10) into (9) and recalling that θs ∧ θs = 0, (9) reduces to

0 = Y
(
dG ∧ θ1 ∧ θ2 ∧ · · · ∧ θk

)
= Y (G)

(
θ1 ∧ θ2 ∧ · · · ∧ θk

)
.

Now, since θ1 ∧ θ2 ∧ · · · ∧ θk �= 0, the thesis readily follows.

Remark 2. Condition (1) of Lemma 1 can be weakened by requiring that d(θ1 ∧
θ2 ∧ · · · ∧ θk) = α ∧ θ1 ∧ θ2 ∧ · · · ∧ θk for a 1-form α such that Y dα = 0 for
any Y ∈ Char(I). In this case we can find the first integral G = K0 − Y α. An
analogous result holds also for condition (8) of Lemma 2.

4. Applications to Distributions and Differential Equations

In this section, we provide some applications of Theorem 1 to distributions of vector
fields and differential equations.

4.1. Completely integrable distributions

Let D be a k-dimensional distribution on an n-dimensional manifold M . A first
application of Theorem 1 to distributions can be given when the exterior ideal ID,
generated by the 1-forms annihilating any vector field of D, satisfies condition (ii)
of Lemma 1. This requirement on ID is independent on the choice of the system of
generators θ1, . . . , θn−k.
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One has the following:

Theorem 2. Let D be a k-dimensional distribution on a manifold M . If ID satisfies
condition (ii) of Lemma 1, then D is completely integrable and to any symmetry of
D corresponds the first integral G of D (defined in Theorem 1).

Proof. By assumption ID = 〈θ1, . . . , θn−k〉 satisfies condition (ii) of Lemma 1.
Then ID = 〈θ1, . . . , θn−k〉 is differentially closed and, by Proposition 1, D is com-
pletely integrable. Moreover, in this case, any symmetry of D is also a symmetry
of ID. Therefore, by Theorem 1, to any symmetry of D corresponds a first integral
of D.

Another application of Theorem 1 to distributions can be given when M is an
orientable manifold with a volume form Ω.

In this case, if we consider a system Y1, . . . , Yk of vector fields generating D, we
apply Theorem 1 to the exterior ideal I generated by the (n− k)-form ω defined as

ω = Y1 · · · Yk Ω. (11)

Clearly, ω depends on the choice of Y1, . . . , Yk, but we still note that condition
(ii) of Lemma 1 is independent from the particular choice of Y1, . . . , Yk. Moreover,
by nondegeneracy of Ω, it is easy to check that D = Char(I).

Now, we give the following:

Theorem 3. Let M be an orientable manifold with a volume form Ω and D be a
k-dimensional distribution on M generated by vector fields Y1, . . . , Yk. If the form ω

defined by (11) satisfies condition (ii) of Lemma 1, then D is completely integrable
and to any symmetry of D corresponds a first integral G of D.

Proof. By assumption, one has that dω = dK ∧ω for some function K. Therefore,
I is a differential ideal and in view of Proposition 1, the distribution D = Char(I)
is completely integrable. Moreover, any symmetry of D is also a symmetry of I. In
fact, if X is a symmetry of D there exist some functions aj

i ∈ C∞(M) such that
LXYi =

∑
aj

iYj and

LXω = LX (Y1 · · · Yk Ω) = LXY1 · · · Yk Ω + · · ·
Y1 · · · LXYk Ω + Y1 · · · Yk LXΩ

=

(∑
i

ai
i + divX

)
ω,

where we have used Yi Yi Ω = 0 and LXΩ = (divX)Ω as Ω is a volume form.
Hence, symmetries of I and of Char(I) coincide. Finally, by Lemma 1, the first
integral G of D corresponding to a symmetry X has the form G =

∑
i ai

i + divX −
X(K).
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Remark 3. Consider the 1-dimensional distribution D generated by a single vector
field Y on an orientable manifold M . If div Y = 0, then one has dω = 0. In this
sense Theorem 3 extends a result of Crampin (see [7]) associating to any symmetry
X of a divergenceless vector field Y a first integral of Y . In this case, if LXY = aY

we find G = a + div X .

When M is orientable, one can prove that ID satisfies assumption (ii) of
Lemma 1 if and only if I = 〈ω〉 does. Moreover, Theorems 2 and 3 associate the same
first integral to any given symmetry Y of D. In fact, given ID = 〈θ1, . . . , θn−k〉, by
extending {θ1, . . . , θn−k} to a co-frame 〈θ1, . . . , θn−k, τ1, . . . , τk〉 one can write Ω as
Ω = τ1∧· · ·∧τk ∧θ1∧· · ·∧θn−k. Hence ω can be written as ω = fθ1∧· · ·∧θn−k for
some f ∈ C∞(M). It readily follows that ID satisfies assumption (ii) with K = K1

if and only if I = 〈ω〉 does with K = K1 + ln |f |. We have proved that any symme-
try X of D is also a symmetry of ID and I. Hence, if LX(θ1 ∧ θ2 ∧ · · · ∧ θn−k) =
K0θ

1 ∧ θ2 ∧ · · · ∧ θn−k, by applying Theorem 1 to ID we find the first integral
G = K0 − X(K1), whereas by applying Theorem 1 to I we find the first integral
G = X(f)/f + K0 − X(K1 + ln |f |) = G.

4.2. Ordinary differential equations

In this subsection we give an application of Theorem 1 to systems of ODEs; in the
notation above this corresponds to the choice I = C.

Since in the case of under-determined systems C cannot be differentially closed,
we only consider the case of k-order systems of m ODEs in m unknown functions.
Moreover, when such a system is solved with respect to higher order derivatives, a
coordinate description of condition (1) of Lemma 1 will be given. Let us start with
the following application of Theorem 2:

Theorem 4. Let E ⊂ Jk(π) be a determined system of m ordinary differential
equations of order k and C the corresponding contact ideal restricted to E. If C
satisfies assumption (ii) of Lemma 1, then to any symmetry X of C is associated
the first integral G defined by formula (2).

Proof. The contact ideal C satisfies the assumptions of Lemma 1. Therefore, to
any symmetry X of C it is associated a function G which is invariant under the
flow of any vector field in Char(C). Hence G is constant along integral manifolds
of Char(C) and in particular along any solution of E .

For the sake of completeness we also provide a coordinate description of assump-
tion (1) when I = C and E can be solved with respect to higher derivatives.

Since any k-order system of ODEs E ⊂ Jk(π) can always be reduced to a first
order one, we consider only this case. In local coordinates (t, ua, ua

t ), a first-order
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system in normal form reads


u1
t = f1(t, ua, ua

t ),
...

um
t = fm(t, ua, ua

t ).

(12)

for some functions f1, . . . , fm, with a = 1, . . . , m. Thus, the contact forms restricted
to E are

θ
a

= dua − fadt

and a straightforward computation shows that condition (1) of Lemma 1 reads

∂K

∂t
+ f1 ∂K

∂u1
+ · · · + fm ∂K

∂um
=

∂f1

∂u1
+

∂f2

∂u2
+ · · · + ∂fm

∂um
. (13)

Note that the left-hand side of (13) is the total derivative of function K restricted
to E .

4.3. First-order PDE

In this subsection we present an application of Theorem 1 to first-order PDEs.
Given a first-order PDE E = {F (xi, u, uxi) = 0, i = 1, . . . , n} we consider the exte-
rior ideal I = 〈θ, dθ〉 generated by the restricted contact form θ and its differential
dθ. Theorem 5 below associates to any symmetry of I a first integral of E , i.e., a
function which is constant along any characteristic vector field of I. Note that, by
means of the Lagrange–Charpit method (see [19,20]), one can use first integrals to
construct complete integrals of E . Now, we have the following

Theorem 5. Given a first order PDE E , if I = 〈θ, dθ〉 satisfies assumptions of
Lemma 2, then to any symmetry X of I is associated a first integral of E.

Proof. This is a straightforward consequence of Theorem 1 since the assumptions
of Lemma 2 are satisfied and Char(I) is one-dimensional.

Remark 4. The ideal I = 〈θ, dθ〉 satisfies the assumptions of Lemma 2 with
K =constant iff Fu = 0 and n = 2, i.e., E is an Hamilton–Jacobi type equation
with only two independent variables. On the other hand, as observed in Remark 2,
Theorem 5 can be applied to a wider class of PDEs (see Example 4).

5. Examples

In this section we collect some simple examples, related to Theorems 3, 4, and 5,
in order to show that the considered class of exterior ideal I is not void.
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Example 1. Consider the distribution on R
3 − {x = 0} generated by the vector

fields

Y1 = (1 − ex)∂x + y(ex + 1)∂y + (2y − 2yex − z)∂z,

Y2 =
ex

(1 − ex)2
∂y +

ex

1 − ex
∂z

and the volume form Ω = dx∧ dy ∧ dz. In this case θ = Y1 Y2 Ω is closed and
the vector field

X =
(z − y + yex)ex

2
∂x +

y(z − y + yex)e2x

2(1 − ex)
∂y

is a symmetry of θ such that

LX(θ) = ex

(
z − y + yex

ex − 1

)
θ.

Therefore, one gets the joint invariant G = ex
(

z−y+yex

ex−1

)
for Y1, Y2.

Example 2. Consider the Hamiltonian system E ⊂ J1(π), with π : R
5 → R,

defined by

q̇1 = p1,

q̇2 = p2,

ṗ1 = −q1,

ṗ2 = −q2,

(14)

with (q1, q2, p1, p2) fiber coordinates and t coordinate on the base R. It is easy to
check that (14) satisfy (13). Moreover, the vector field

X = q1 sin t∂t + q2
1 cos t∂q1 + q1q2 cos t∂q2 +

(
q1p1 cos t − q2

1 sin t − p2
1 sin t

)
∂p1

+ (q2p1 cos t − p1p2 sin t − q1q2 sin t)∂p2

is a symmetry of the ideal C generated by

θ
1

= dq1 − p1dt, θ
2

= dq2 − p2dt, θ
3

= dp1 + q1dt, θ
4

= dp2 + q2dt.

Then, one gets that

LX(θ
1 ∧ θ

2 ∧ θ
3 ∧ θ

4
) = 4(q1 cos t − p1 sin t)θ

1 ∧ θ
2 ∧ θ

3 ∧ θ
4
,

i.e. G = 4(q1 cos t − p1 sin t).

Example 3. Consider the equation E = {F (x, y, ux, uy) = 0} with

F := h

(
y,

uy

ux

)
− 1

ux
+ x,

where h(y, uy/ux) is an arbitrary function. The differential ideal I is generated by
θ and dθ, with

θ = du + ux

(
dh +

1
u2

x

dux

)
− uydy.
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It is easy to check that the vector field

X = eu
(
∂x − u2

x∂ux − uxuy∂uy

)
is a symmetry of I, and

LX

(
θ ∧ dθ

)
= −uxeu

(
θ ∧ dθ

)
i.e. G = uxeu is a first integral of E .

Example 4. Consider the nonlinear wave equation E = {F (x, y, u, ux, uy) = 0}
with

F := ux − uuy.

The differential ideal I, generated by θ and dθ with

θ = du − uuydx − uydy

satisfies condition d(θ̄ ∧ dθ̄) = α ∧ θ̄ ∧ dθ̄ with, for example, α = dx + (1/u)dy +
(x/u)du + (2/uy)duy. In this case the characteristic vector field is Y = ∂x − u∂y +
u2

y∂uy and Y dα = 0. Hence (see Remark 2) to any symmetry X of I one can
associate the first integral G = K0 − X α. In particular, if we consider the
symmetry (see [14])

X = y∂x + u2∂u + uuy∂uy ,

we get the first integral G = 2u + ux + y.
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Appendix A. ODEs of Variational Type

In this appendix, we apply the results of Lemma 1 to a system E of ordinary
Euler–Lagrange equations. In this case, we associate to E an exterior ideal which,
exploiting the variational structure of E , automatically satisfies condition (ii) of
Lemma 1. In fact, in this case one can consider the ideal I generated by the exterior
derivative of the Hamilton–Cartan form associated to the Lagrangian L.

We recall that in the case of a first-order variational problem on a bundle π :
E → N with dim(N) = 1, the Hamilton–Cartan form reads Θ = (∂L/∂q̇i)(dqi −
q̇idt) + Ldt, where t is the base coordinate and (qi), (q̇i) are fiber coordinates and
first-order jet coordinates, respectively.

Here follows an application of Theorem 1 to this case.

Theorem 6. Let Θ be the Hamilton–Cartan form for a first-order variational prob-
lem on a bundle π : E → N, where dim(N) = 1, with a regular Lagrangian. Then
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to any symmetry of the ideal I =〈dΘ〉 corresponds a first integral for the Euler–
Lagrange equations of Θ.

Proof. The distribution Char(I) is one-dimensional and, as the Lagrangian is
regular, is generated by the vector field assigning the Euler–Lagrange equations.
Therefore, since I satisfies the assumptions of Lemma 1, by Theorem 1 one gets
the thesis.

Note that, as shown by Prince in [16], any first integral of E corresponds to
a Cartan symmetry X , i.e. a field such that LXdΘ = 0. Hence, the first integral
of Theorem 6 can also be obtained by using this extension of Noether theorem.
However, since in our framework Cartan symmetries leads to identically zero first
integrals, in order to find non-trivial first integral we have to look for non-Cartan
symmetries. A limit of our approach is that not any first integral G of E can be
obtained by Theorem 6 since in that case Eq. (3) reads dG ∧ dΘ = 0.
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