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Abstract. In this paper we study the existence of nontrivial solutions for the following
system of coupled semilinear Poisson equations:




−∆u = vp , in Ω,

−∆v = f(u) , in Ω,

u = 0 and v = 0 , on ∂Ω,

where Ω is a bounded domain in RN . We assume that 0 < p < 2
N−2

, and the function f

is superlinear and with no growth restriction (for example f(s) = s es); then the system
has a nontrivial (strong) solution.

1. Introduction

We consider the system of equations




−∆u = g(v) , in Ω

−∆v = f(u) , in Ω

u|∂Ω = v|∂Ω = 0

, (1)

where Ω is a bounded domain in RN . It is known, see [5], [11], [15], that for the ”model case”

f(s) = sq , q > 1 , and g(s) = sp , p > 1 ,

(here and in what follows, sα := sgn(s)|s|α) the system (1) has a nontrivial solution provided
that

1 >
1

p + 1
+

1
q + 1

> 1− 2
N

(2)

For N = 2 this condition is satisfied for any p > 1 and q > 1.
For N ≥ 3, the curve of (p, q) ∈ R2 satisfying 1

p+1 + 1
q+1 = 1 − 2

N is the so-called ”critical
hyperbola”: for points (p, q) on this curve one finds the typical problems of non-compactness,
and non-existence of solutions, as it was proved in [23], [18], using Pohozaev type arguments.

The case N=2

As mentioned above, for N = 2 any pair of powers (p, q) ∈ R+×R+ satisfies the inequality (2).
Actually, even a higher growth than polynomial is admitted: by the inequality of Trudinger-
Moser, see [22], [19], [20], subcritical growth for a single equation is given by the condition (see
[10])

lim
|t|→∞

g(t)
eαt2

= 0 , ∀ α > 0

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIR Universita degli studi di Milano

https://core.ac.uk/display/187795187?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 De Figueiredo and Ruf Mediterr. j. math.

It follows from a result in de Figueiredo-do Ó-Ruf [8] that system (1) has a non-trivial
solution for nonlinearities f and g with such subcritical growth (and satisfying an Ambrosetti-
Rabinowitz condition, see [2]). Also existence results for certain nonlinearities with critical
growth are given in [8]. In this paper we consider a different type of extension of the known
results: We will show that if one nonlinearity, say g, has polynomial growth (of any order),
then, to prove existence of solutions, no growth restriction is required on the other nonlinearity
f (other than the Ambrosetti-Rabinowitz condition).

The case N=3
Note that for N = 3 the critical hyperbola has the asymptotes p∞ = 2 and q∞ = 2. In
particular, if g(s) = sp with 1 < p < 2, then the cited existence results say that there exists
a solution (u, v) for system (1) with f(s) = sq, for any q > 1. Also in this case we show
that existence of solutions can be proved requiring no growth restriction whatsoever on the
nonlinearity f (other than the Ambrosetti-Rabinowitz condition).

The case N ≥ 4
For N ≥ 4 the asymptotes of the critical hyperbola are in the values p∞ = 2

N−2 ≤ 1
and q∞ = 2

N−2 ≤ 1. Note that for an exponent p < 1, the corresponding equation in the
system is sublinear. i.e. we have a system with one sublinear and one superlinear equation.
In this situation, the proposed approach is no longer applicable. However, in this case a
reduction of the system to a single equation is possible (see Clément-Felmer-Mitidieri [6] and
Felmer - Mart́ınez [12]), which allows to prove again a result of the same form; moreover this
approach also allows to extend to the whole range the cases N = 2 and N = 3, that is for
N = 2 : 0 < p < +∞ , and for N = 3 : 0 < p < 2 .

The main result of the paper is stated in the following theorem:

Theorem 1.1. Suppose that

1) g(s) = sp , with
{

0 < p , if N = 2
0 < p < 2

N−2 , if N ≥ 3

2) f ∈ C(R), and set F (s) =
∫ s

0
f(t)dt;

- there exist constants θ >

{
2 , if p ≥ 1
1 + 1

p , if p < 1 and s0 ≥ 0 such that

θF (s) ≤ f(s)s , ∀ |s| ≥ s0

- and for s near 0: f(s) =
{

o(s) , if p ≥ 1
o(s1/p) , if p < 1

Then the system 



−∆u = vp in Ω,

−∆v = f(u) in Ω,

u = 0 , v = 0 on ∂Ω,

(3)

has a nontrivial (strong) solution.

Remarks
1) It is somewhat surprising that no growth restriction needs to be imposed on f , since for
the single equation −∆u = f(u) growth restrictions are, in general, necessary to prove the
existence of solutions; we refer to the non-existence result in [9] for N = 2, and to [20] for
N ≥ 3.
2) In the cases with p > 1, the nonlinearity g(s) = sp may be replaced by more general
functions, satisfying an Ambrosetti-Prodi type condition like f(s), and the growth restriction

|g(s)| ≤ c|s|p + d , for some constants c, d > 0, and
{

1 < p , N = 2
1 < p < 2 , N = 3
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For the sake of simplicity, we restrict here to the case g(s) = sp.

For completeness we also state the following theorem:

Theorem 1.2. Suppose that

1) (p, q) satisfy 1
p+1 + 1

q+1 > 1− 2
N , and 2

N−2 ≤ p ≤ 1.

2) f ∈ C(R), and there exist constants θ > p+1
p and s0 ≥ 0 such that

θF (s) := θ

∫ s

0

f(t)dt ≤ f(s)s , ∀ |s| ≥ s0 ,

and
|f(s)| ≤ c|s|q + d , for some constants c, d > 0 .

Then the system 



−∆u = vp in Ω,

−∆v = f(u) in Ω,

u = 0 , v = 0 on ∂Ω,

(4)

has a nontrivial (strong) solution.

In the literature we have only found the cases of (p, q) below the critical hyperbola, and
with the restriction that p > 1 and q > 1 (see [5], [15], [11]) and the case 0 < p · q < 1 (see
Felmer-Mart́ınez [12]). This does not cover the whole region below the critical hyperbola. The
above theorem covers also the remaining cases below the critical hyperbola, namely

0 < p ≤ 1 and p · q ≥ 1 ;

note that we need to make the restriction that the sublinear function vp is in the form of a
power, while the superlinear function f(u) may be of more general form.

2. Proof: the case p > 1

In this section we consider the case 1 < p < 2
N−2 , i.e. N = 2, 3.

2.1. The setting

A natural functional associated to system (1) is

J(u, v) =
∫

Ω

∇u∇vdx−
∫

Ω

(F (u) + G(v))dx , (5)

with F (s) =
∫ s

0
f(t)dt and G(s) =

∫ s

0
g(t)dt. The natural space to consider this functional is

the Sobolev space H1
0 (Ω)×H1

0 (Ω); however, in order to have a well-defined C1-functional on
this space, one has to impose certain growth restrictions:

in N = 2: F and G subcritical in the sense of Trudinger-Moser (see above)
in N = 3: |F (s)| ≤ c|s|6 + d , |G(s)| ≤ c|s|6 + d

These conditions are on the one hand too loose for G(s) = 1
p+1sp+1, where a more restrictive

growth is given, and too strong on F (s), where we do not want any growth limitation.
We therefore follow an idea of de Figueiredo-Felmer [11] and Hulshoff-vanderVorst [15],

defining a related functional on suitable fractional Sobolev spaces.

Consider the Laplacian as the operator

−∆ : H2(Ω) ∩H1
0 (Ω) ⊂ L2(Ω) → L2(Ω) ,

and {ei}∞i=1 a corresponding system of orthogonal and L2-normalized eigenfunctions, with
eigenvalues {λi}. Then, writing

u =
∞∑

n=1

anen , with an =
∫

Ω

uendx ,
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we set

Es = {u ∈ L2(Ω) :
∞∑

n=1

λs
n|an|2 < ∞}

and define a linear operator on L2(Ω) by

Asu =
∞∑

n=1

λs/2
n anen , ∀ u ∈ D(As) := Es .

The spaces Es are fractional Sobolev spaces with the inner product

(u, v)s =
∫

Ω

AsuAsvdx ,

see Lions-Magenes [16], and we have

Es = Hs(Ω) if 0 ≤ s < 1
2 , E1/2 ⊂ H1/2(Ω) ,

Es = {u ∈ Hs(Ω) | u|∂Ω = 0} if 1
2 < s ≤ 2 , s 6= 3

2 , and

E3/2 ⊂ {u ∈ H3/2(Ω) | u|∂Ω = 0}
By the Sobolev imbedding theorem we therefore have continuous imbeddings

Es ⊂ Lp(Ω) , if
1
p
≥ 1

2
− s

N
,

and these imebbedings are compact if 1
p > 1

2 − s
N .

2.2. The functional

With these definitions, we now define the Hilbert space E := Et×Es, endowed with the norm

‖(u, v)‖E = (‖u‖2Et + ‖v‖2Es)
1
2

On the space E we consider the functional

I : E → R ,

I(u, v) =
∫

Ω

AtuAsv −
∫

Ω

(
1

p + 1
|v|p+1 + F (u))dx

(6)

with s and t such that s + t = 2; loosely speaking, this means that we distribute the two
derivatives given in the first term of the functional J , see (5), differently on the variables
u and v. Of course, it is crucial to recuperate from critical points (u, v) of this functional
solutions of system (3). We state this in the following

Proposition 2.1. Suppose that (u, v) ∈ Et × Es is a critical point of the functional I, i.e. u
and v are weak solutions of the system





∫

Ω

AtuAsφ =
∫

Ω

vpφ , ∀ φ ∈ Es

∫

Ω

AtψAsv =
∫

Ω

f(u)ψ , ∀ ψ ∈ Et .

(7)

Then v ∈ W 2, p+1
p (Ω) ∩W

1, p+1
p

0 (Ω) and u ∈ W 2,q(Ω) ∩W 1,q
0 (Ω), ∀ q ≥ 1, and hence u and v

are ”strong” solutions of (3), i.e.




∫

Ω

(−∆u)φ =
∫

Ω

vpφ , ∀ φ ∈ C∞0 (Ω)

∫

Ω

(−∆v)ψ =
∫

Ω

f(u)ψ , ∀ ψ ∈ C∞0 (Ω).

(8)
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From this proposition follows by standard bootstrap arguments that u and v are classical
solutions of (3) if f and Ω are smooth.

The proof of this proposition follows ideas of de Figueiredo - Felmer [11], and will be
given in subsection 2.5.

In the following subsection we prove that there exist values s and t with s + t = 2 such
that the functional I is a well-defined C1 functional, and that it has a non-trivial critical level.

2.3. The choice of the spaces Es and Et

We begin by proving the following Lemma:

Lemma 2.2.

Let 1 < p (N = 2), or 1 < p < 2 (N = 3). Then there exist parameters s > 0 and t > 0 with
s + t = 2 such that the following embeddings are continuous and compact:

Es(Ω) ⊂ Lp+1(Ω) , Et(Ω) ⊂ C0(Ω)

Proof. Note that Hs(Ω) ⊂ Lp+1(Ω) compactly, iff 1
p+1 > 1

2 − s
N .

For N = 2, we get thus the condition

s > 1− 2
p + 1

Choose s < 1 satisfying the previous condition, and set t = 2 − s > 1. We have a compact
embedding Et(Ω) ⊂ C0(Ω) for

t

N
>

1
2

, i.e. for t > 1 ;

and hence the Lemma holds for N = 2.

For N = 3, we get the condition

s >
3
2
− 3

p + 1
.

Since

sup{3
2
− 3

p + 1
| 1 < p < 2} =

1
2

,

we can choose s < 1
2 , and then t > 3

2 , and hence Et(Ω) ⊂ C0(Ω) compactly.
¤

Thus, we now fix s and t as in Lemma 2.2, and define the functional I(u, v) given by (6)
on the space Et × Es =: E.

In the next Lemma we collect a few properties of the operators As and the spaces Es.

Lemma 2.3. Let s > 0 and t > 0.

1) z ∈ Es iff Asz ∈ L2, and ‖z‖Es = ‖Asz‖L2

2) Let z ∈ Es+t = E2 = H2; then As+tz = AsAtz = AtAsz.

Proof. 1) follows immediately from the definitions.

2) we have

As+tz =
∑

i∈N
αiλ

(s+t)/2
i ei =

∑

i∈N
αiλ

s/2
i λ

t/2
i ei = As

∑

i∈N
αiλ

t/2
i ei = AsAtz

¤
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2.4. Existence of a non-trivial critical point

The functional I(u, v) : E = Et × Es is strongly indefinite near zero, in the sense that there
exist infinite dimensional subspaces E+ and E− with E+ ⊕E− = E such that the functional
is (near zero) positive definite on E+ and negative definite on E−. Li-Willem [17] prove the
following general existence theorem for such situations, which can be applied in our case:

Theorem 2.4 (Li-Willem, 1995).
Let Φ : E → R be a strongly indefinite C1-functional satisfying
A1) Φ has a local linking at the origin, i.e. for some r > 0:

Φ(z) ≥ 0 for z ∈ E+ , ‖z‖E ≤ r , Φ(z) ≤ 0 , for z ∈ E− , ‖z‖E ≤ r .

A2) Φ maps bounded sets into bounded sets.
A3) Let E+

n be any n-dimensional subspace of E+; then φ(z) → −∞ as ‖z‖ → ∞,
z ∈ E+

n ⊕ E−.
A4) Φ satisfies the Palais-Smale condition (PS) (Li-Willem [17] require a weaker ”(PS∗)-
condition”, however, in our case the classical (PS) condition will be satisfied).
Then Φ has a nontrivial critical point.

We now verify that our functional satisfies the assumptions of this theorem.

First, it is clear, with the choices of s and t made above, that I(u, v) is a C1-functional on
Es × Et.

A1) Following de Figueiredo-Felmer [11] we can define the spaces

E+ = {(u,At−su) | u ∈ Et} , and E− = {(u,−At−su) | u ∈ Et}
which give a natural splitting E+ ⊕E− = E. It is easy to see that I(u, v) has a local linking
with respect to E+ and E− at the origin.

A2) Let B ⊂ Et × Es be a bounded set, i.e. ‖u‖Et ≤ c, ‖v‖Es ≤ c, for all (u, v) ∈ B. Then

|I(u, v)| ≤ ‖Atu‖L2‖Asv‖L2 +
∫

Ω

|v|p+1 +
∫

Ω

|f(u)|

≤ ‖u‖Et‖v‖Es + c‖v‖p+1
Es + sup

x∈Ω
|f(u(x))| · |Ω| ≤ C

A3) Let zk = z+
k + z−k ∈ E = E+

n ⊕ E− denote a sequence with ‖zk‖E → ∞. By the above,
zk may be written as

zk = (uk, At−suk) + (wk,−At−swk) , with uk ∈ Et
n, wk ∈ Et ,

where Et
n denotes an n−dimensional subspace of Et. Thus, the functional I(zk) takes the

form

I(zk) =
∫

Ω

AtukAsAt−suk −
∫

Ω

AtwkAsAt−swk−

− 1
p + 1

∫

Ω

|At−s(uk − wk)|p+1 −
∫

Ω

F (uk + wk)

=
∫

Ω

|Atuk|2 −
∫

Ω

|Atwk|2 − 1
p + 1

∫

Ω

|At−s(uk − wk)|p+1 −
∫

Ω

F (uk + wk)

Note that ‖zk‖ → ∞⇐⇒ ∫ |Atuk|2 +
∫ |Atwk|2 = ‖uk‖2Et + ‖wk‖2Et →∞.

Now, if

1) ‖uk‖Et ≤ c, then ‖wk‖Et →∞, and then I(zk) → −∞
2) ‖uk‖Et → ∞, then we estimate (c, c1 and c2 are positive constants) using the fact that
t− s > 0 and p > 1

∫

Ω

|At−s(uk − wk)|p+1 ≥ c

(∫

Ω

|At−s(uk − wk)|2
) p+1

2

≥ c1‖uk − wk‖p+1
L2
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and ∫

Ω

F (uk + wk) ≥ c2

∫

Ω

|uk + wk|p+1 − d ≥ c1‖uk + wk‖p+1
L2 − d

and hence we obtain the estimate

I(zk) ≤ 1
2
‖uk‖2Et − c1(‖uk − wk‖p+1

L2 + ‖uk + wk‖p+1
L2 ) + d

Since φ(t) = tp+1 is convex, we have 1
2 (φ(t) + φ(s)) ≥ φ( 1

2 (s + t)), and hence

I(zk) ≤ 1
2
‖uk‖2Et − c1

1
2p

(‖uk − wk‖L2 + ‖uk + wk‖L2)p+1 + d

≤ 1
2
‖uk‖2Et − c1

1
2p
‖uk‖p+1

L2 + d

Since on Et
n the norms ‖uk‖Et and ‖uk‖L2 are equivalent, we conclude that also in this case

J(zk) → −∞.

A4) Let {zn} ⊂ E denote a (PS)-sequence, i.e. such that

|I(zn)| → c , and |(Φ′(zn), η)| ≤ εn‖η‖E , ∀ η ∈ E, and εn → 0 (9)

We first show:

Lemma 2.5. The (PS)-sequence {zn} is bounded in E.

Proof. By (9) we have for zn = (un, vn)

I(un, vn) =
∫

Ω

AtunAsvn − 1
p + 1

∫

Ω

vp+1
n −

∫

Ω

F (un) → c (10)

I ′(un, vn)(φ, ψ) =
∫

Ω

AtunAsψ +
∫

Ω

AsvnAtφ−
∫

Ω

vp
nψ −

∫

Ω

f(un)φ = εn‖(φ, ψ)‖E (11)

Choosing (φ, ψ) = (un, vn) ∈ Et × Es we get by (11)

2
∫

Ω

AtunAsvn −
∫

vp+1
n −

∫

Ω

f(un)un = εn(‖un‖Et + ‖vn‖Es) (12)

and subtracting this from 2 I(un, vn) we obtain, using assumption 2) of Theorem 1.1

(1− 2
p + 1

)
∫

Ω

vp+1
n + (1− 2

θ
)
∫

Ω

f(un)un ≤ C + εn(‖un‖Et + ‖vn‖Es) (13)

and thus ∫

Ω

vp+1
n ≤ C + εn(‖un‖Et + ‖vn‖Es) (14)

∫

Ω

f(un)un ≤ C + εn(‖un‖Et + ‖vn‖Es) (15)

Choosing (φ, ψ) = (0, At−sun) ∈ Et × Es in (11) we get∫

Ω

|Atun|2 =
∫

Ω

vp
nAt−sun + εn‖At−sun‖Es

and hence by Hölder

‖un‖2Et = ‖Atun‖2L2 ≤ (
∫

Ω

|vn|p+1)
p

p+1 (
∫

Ω

|At−sun|p+1)
1

p+1 + εn‖un‖Et

Noting that

(
∫

Ω

|At−sun|p+1)
1

p+1 ≤ c‖At−sun‖Es = c‖Atun‖L2 = c‖un‖Et

we obtain, using (14)

‖un‖2Et ≤ [C + εn(‖un‖Et + ‖vn‖Es)]p/(p+1) · c‖un‖Et + εn‖un‖Et

and thus
‖un‖Et ≤ C + εn(‖un‖Et + ‖vn‖Es)p/(p+1) (16)
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Similarly as above we note that As−tvn ∈ Et, and thus, choosing (φ, ψ) = (As−tvn, 0) ∈
Et × Es in (11) we get

∫

Ω

|Asvn|2 =
∫

Ω

f(un)As−tvn + εn‖As−tvn‖Et ≤ ‖As−tvn‖∞
∫

Ω

|f(un)|+ εn‖vn‖Es

Using that ‖As−tvn‖Et = ‖Asvn‖L2 = ‖vn‖Es , and the fact that Et ⊂ C0 we then obtain,
using (15)

‖vn‖Es ≤ c
∫
Ω
|f(un)|+ εn =

∫
[|un|≤s0]

max|t|≤s0 |f(t)|+ ∫
[|un|>s0]

f(un)un + εn

≤ C + εn(‖un‖Et + ‖vn‖Es)
(17)

Joining (16) and (17) we finally get

‖un‖Et + ‖vn‖Es ≤ C + 2εn(‖un‖Et + ‖vn‖Es)

Thus, ‖un‖Et + ‖vn‖Es is bounded. ¤

With this it is now possible to complete the proof of the (PS)-condition: since ‖un‖Et

is bounded, we find a weakly convergent subsequence un ⇀ u in Et. Since the mappings
At : Et → L2 and A−s : L2 → Es are continuous isomorphisms, we get At(un − u) ⇀ 0 in L2

and At−s(un−u) ⇀ 0 in Es. Since Es ⊂ Lp+1 compactly, we conclude that At−s(un−u) → 0
strongly in Lp+1.

Similarly, we find a subsequence of {vn} which is weakly convergent in Es and such that
vp

n is strongly convergent in L
p+1

p

Choosing (φ, ψ) = (0, At−s(un − u) ∈ Et × Es in (11) we thus conclude
∫

Ω

AtunAt(un − u) =
∫

Ω

vp
nAt−s(un − u) + εn‖At−s(un − u)‖Es (18)

By the above considerations, the righthand-side converges to 0, and thus
∫

Ω

|Atun|2 →
∫

Ω

|Atu|2

Thus, un → u strongly in Et.
To obtain the strong convergence of {vn} in Es, one proceeds similarly: as above, one

finds a subsequence {vn} converging weakly in Es to v, and then As−tvn ⇀ As−tv weakly in
At and As−tvn → As−tv strongly in C0. Choosing in (9) (φ, ψ) = (As−t(vn − v), 0), we get

∫

Ω

As(vn − v)Asvn =
∫

f(un)As−t(vn − v) + εn(‖As−t(vn − v)‖) (19)

The first term on the right is estimated by ‖As−t(vn − v)‖C0

∫
Ω
|f(un)| → 0, and thus one

concludes again that ∫

Ω

|Asvn|2 →
∫

Ω

|Asv|2

and hence also vn → v strongly in Es.

Thus, the conditions of Theorem 2.4 are satisfied; hence, we find a positive critical point
(u, v) for the functional I, which yields a weak solution to system (3).
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2.5. Strong solutions

In this section we prove Proposition 2.1.

Consider the first equation in the system (7). We can follow the arguments of [11]: If
φ ∈ H2(Ω) ∩H1

0 (Ω), then
∫

Ω

AtuAsφ =
∫

Ω

uA2φ =
∫

Ω

u(−∆φ) (20)

On the other hand, vp ∈ L
p+1

p (Ω), and hence (see [13]) there exists a unique solution

y ∈ W 2, p+1
p (Ω) of −∆y = vp .

By the choice of s we have 1
p+1 > 1

2 − s
N , which is equivalent to 1

2 > p
p+1 − s

N , which in turn

implies that W 2, p+1
p (Ω) ⊂ L2(Ω). Thus, we conclude that

∫

Ω

vpφ =
∫

Ω

(−∆y)φ =
∫

Ω

y(−∆φ) , ∀ φ ∈ H2(Ω) ∩H1
0 (Ω) (21)

Comparing (20) and (21) yields
∫

Ω

(y − u)(−∆φ) = 0 , ∀ φ ∈ H2(Ω) ∩H1
0 (Ω)

and hence u = y; thus u ∈ W 2, p+1
p (Ω).

Consider now the second equation in system (7). Again, for ψ ∈ H2(Ω)∩H1
0 (Ω) we have

∫

Ω

(−∆ψ)v =
∫

Ω

AtψAsv =
∫

Ω

f(u)ψ , ∀ ψ ∈ Et .

On the other hand, Et ⊂ {u ∈ Ht(Ω) | u|∂Ω = 0} ⊂ Cλ(Ω), with λ = t− N
2 .

By our choices of s and t we have{
1 < t < 2 , N = 2
3
2 < t < 2 , N = 3

and hence in both cases u ∈ Cλ(Ω) with λ > 0. This implies that f(u) ∈ L∞(Ω), and hence
there exists a unique solution

w ∈ W 2,q(Ω) , ∀ q ≥ 1 , of −∆w = f(u)

Note that if f ∈ Cλ and ∂Ω is sufficiently smooth, then w ∈ C2,λ(Ω).
We finish by concluding as above that w = v, and that therefore v ∈ W 2,q, ∀ q ≥ 1, respectively
v ∈ C2,λ(Ω).

3. Proof: the case p ≤ 1

In this section we consider the cases 0 < p ≤ 1 (N = 2, 3) and 0 < p < 2
N−2 (N ≥ 4), i.e. we

consider the situation where one equation has a sublinear nonlinearity in the form of a power,
and the other equation has a superlinear nonlinearity.

3.1. The functional

We consider now the system{ −∆u = vp , with 0 < p ≤ 1

−∆v = f(u)
(22)

System (22) can be written as
{

(−∆u)1/p = v , with 0 < p ≤ 1

−∆v = f(u)
(23)
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and thus we have the equivalent equation
{ −∆(−∆u)1/p = −∆v = f(u)

u = ∆u = 0 ∂Ω
(24)

To equation (24) we may associate the following functional

I(u) =
p

p + 1

∫

Ω

|∆u| p+1
p −

∫

Ω

F (u) . (25)

Indeed, the derivative of I(u) in direction v yields

I ′(u) v =
∫

Ω

(−∆u)1/p(−∆v)−
∫

Ω

f(u)v ,

and thus critical points of I correspond to weak solutions of equation (23) and thus of system
(22).

3.2. Existence of critical points

Note that the first term of the functional I is defined on the space E = W 2, p+1
p (Ω)∩W

1, p+1
p

0 (Ω).
Since by assumption p < 2

N−2 we have p+1
p > 1 + N−2

2 > N
2 , and thus

W 2, p+1
p (Ω) ⊂⊂ C(Ω)

Thus, the second term of the functional I is defined if F is continuous, and no growth
restriction on F is necessary. Since F is differentiable, the functional I is a well-defined
C1-functional on the space E.

We now show that the classical mountain-pass theorem of Ambrosetti-Rabinowitz may
be applied to the functional I. Indeed, I has a local minimum in the origin:

I(u) =
p

p + 1

∫

Ω

|∆u| p+1
p −

∫

Ω

F (u) ≥ c
p

p + 1
‖u‖

p+1
p

C − o(‖u‖
p+1

p

C )

Next, let u1 be any fixed element of E. Then

I(su1) ≤ p

p + 1
s

p+1
p

∫

Ω

|∆u1|
p+1

p − sθ‖u‖θ
C + d

with θ > p+1
p (by assumption), and thus I(su1) → −∞ as s →∞.

Finally, we show that I satisfies the Palais-Smale condition (PS). Let (un) ⊂ E be a
(PS)-sequence, i.e.

|I(un)| ≤ c , and |I ′(un)v| ≤ εn‖v‖E , εn → 0 , ∀ v ∈ E .

We have

c + εn‖un‖E ≥ |θI(un)− I ′(un)un|
≥ (θ p

p+1 − 1)
∫
Ω
|∆un|

p+1
p − θ

∫
Ω

F (un) +
∫
Ω

f(un)un

≥ (θ p
p+1 − 1)

∫
Ω
|∆un|

p+1
p − c

≥ δ‖u‖
p+1

p

E − c ,

and thus (un) is bounded in E. Since E is compactly imbedded in C(Ω), we find a convergent
subsequence in C(Ω), and then it is standard to conclude that un converges strongly also in
E.

Thus, by the Mountain-Pass theorem we obtain a (non-trivial) critical point u, which
gives rise to a solution to system (3).
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3.3. Proof of Theorem 1.2
The proof follows the same lines as in section 3.2. We just observe that for 2

N−2 ≤ p ≤ 1

W 2, p+1
p (Ω) ⊂ L

N(p+1)
Np−2(p+1) (Ω) .

The exponent N(p+1)
Np−2(p+1) satisfies

1
p + 1

+
1

N(p+1)
Np−2(p+1)

= 1− 2
N

,

i.e. we are on the critical hyperbola. Hence, for q+1 < N(p+1)
Np−2(p+1) we are below the hyperbola,

and we have E ⊂⊂ Lq+1(Ω) compactly. We can then proceed exactly as above, to obtain a
critical point via the Mountain-Pass theorem.
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