doi: 10.1111/j.1365-313X.2007.03310.x

The Plant Journal (2008) 53, 53-64

Over-expression of the Arabidopsis *AtMYB41* gene alters cell expansion and leaf surface permeability

Eleonora Cominelli, Tea Sala, Daniele Calvi, Giuliana Gusmaroli[†] and Chiara Tonelli^{*}

Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy

Received 26 July 2007; accepted 23 August 2007.

*For correspondence (fax +39 0250315044; e-mail chiara.tonelli@unimi.it).

[†]Present address: Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8104, USA.

Summary

The Arabidopsis *AtMYB41* gene encodes an R2R3-MYB transcription factor whose expression is not detectable under normal growth conditions in any organ or at any developmental stage analysed. It is expressed at high levels in response to drought, ABA and salt treatments, suggesting a possible role in stress responses. Transgenic lines over-expressing this transcription factor showed a pleiotropic phenotype similar to that exhibited by some mutants that affect cuticle biosynthesis. This includes a dwarf appearance, dependent on smaller cells with abnormal morphology, enhanced sensitivity to desiccation, and enhanced permeability of leaf surfaces, suggesting discontinuity in the cuticle. The expression of genes involved in lipid metabolism and transport, in cell-wall modifications and cell expansion, genes coding for membrane-associated proteins and genes specifically involved in cuticle metabolism was differentially modulated between wild-type and transgenic plants, suggesting a direct or indirect role of AtMYB41 in the regulation of their transcription. Taken together, our results suggest that AtMYB41 is part of a complex network of transcription factors controlling cell expansion and cuticle deposition in response to abiotic stress.

Keywords: MYB, over-expression, cuticle, cell expansion, Arabidopsis thaliana.

Introduction

The cuticle is one of the major barriers in plants that protects aerial organs from damage caused by abiotic and biotic stresses. It is a complex structure, usually composed of several layers: the outermost is formed by crystals of epicuticular waxes and overlies the cuticle membrane layer, which is formed by an outer translucent cuticle proper and an inner opaque cuticular layer, composed primarily of insoluble cutin polyesters (Jeffree, 1996).

Several loss-of-function mutants affecting wax biosynthesis and deposition have been identified in various species (Nawrath, 2006). The most obvious change in many of these mutants is the presence of a shiny, glossy stem instead of a glaucous one, but in some cases these mutants also display pleiotropic phenotypes involving stunted growth, elevated transpiration rate, reduced fertility, increased sensitivity to chemical exposure and to pathogens, organ fusion, morphological irregularities in cell shape, and cell death (Jenks *et al.*, 2002; Nawrath, 2006; Yephremov and Schreiber, 2005). Arabidopsis genes involved in the regulation or synthesis of cutin components, and, in some cases, also synthesis of wax include *LCR*, *WIN1*, *LACS2*, *ATT1*, *WAX2*, *ACE/HTH* and *BDG* (Chen et al., 2003; Kannangara et al., 2007; Kurdyukov et al., 2006a,b; Schnurr et al., 2004; Wellesen et al., 2001; Xiao et al., 2004). These mutants show phenotypic alterations similar to those described for the most severe wax synthesis mutants and very similar to that obtained in Arabidopsis lines over-expressing a fungal cutinase (Sieber et al., 2000). Recently, enhanced resistance to *Botrytis cinerea* has been described for some of these mutants and for the lines over-expressing a fungal cutinase (Bessire et al., 2007; Chassot et al., 2007; Tang et al., 2007).

Many of the mutants described affect genes coding for enzymes involved in cuticle biosynthesis, but very few regulatory or putative regulatory genes controlling these pathways are known (Yephremov and Schreiber, 2005). In some cases, the genes involved have been isolated by genetic approaches through study of the corresponding loss-of-function mutants; in other cases, gain-of-function mutants or over-expression lines have been analysed. Some members of the AP2/EREBP family of transcription factors have been characterized for their possible role in this process, such as WIN1/SHN in Arabidopsis (Aharoni *et al.*, 2004; Broun *et al.*, 2004; Kannangara *et al.*, 2007), WXP1 and WXP2 in *Medicago trunculata* (Zhang *et al.*, 2005, 2007), and GL15 in maize, which is highly similar to the Arabidopsis transcription factor AINTEGUMENTA (Hannoufa *et al.*, 1996; Moose and Sisco, 1996).

In Arabidopsis, the *WIN1/SHN* gene is involved in the regulation of wax and cutin production, as demonstrated by the study of lines in which its expression is up or downregulated (Aharoni *et al.*, 2004; Broun *et al.*, 2004; Kannangara *et al.*, 2007). The maize *gl15* mutation shortens the duration of expression of juvenile epidermal cell traits, among them the transition between the expression of juvenile and adult waxes, which occurs earlier than in wild-type plants (Moose and Sisco, 1996). Moreover, maize lines over-expressing the *GL15* gene show an increased number of leaves expressing juvenile waxes, indicating that *GL15* is involved in the promotion of the juvenile phase (Lauter *et al.*, 2005). For comparison, in Arabidopsis, the *GIS* gene encodes a putative C2H2 transcription factor that plays a role in the juvenile-adult transition of epidermal differentiation (Gan *et al.*, 2006).

WXP1 and WXP2 of the model legume *Medicago truncatula* also belong to the AP2/EREBP transcription factor family. Over-expression of the *WXP1* gene in transgenic alfalfa (*Medicago sativa*) increases cuticular wax accumulation and enhances drought tolerance (Zhang *et al.*, 2005). Transgenic expression of *WXP1* or of its paralog *WXP2* in Arabidopsis also leads to increased wax deposition and enhanced drought tolerance (Zhang *et al.*, 2007).

MYB proteins are a class of transcription factors that are present in all eukaryotes, and share a common DNA-binding domain. In plants, the most highly represented MYB protein group is the R2R3 subfamily, members of which contain two MYB repeats in their DNA-binding domains (Martin and Paz-Ares, 1997). In Arabidopsis thaliana, 126 R2R3-MYB genes have been identified (Stracke et al., 2001), and involvement in the regulation of plant-specific processes has been reported for some of them, such as the regulation of phenylpropanoid metabolism, the control of specialized cell morphology, and the regulation of plant responses to biotic and abiotic stresses, hormones and light (Martin and Paz-Ares, 1997; Petroni et al., 2002; Stracke et al., 2001). Arabidopsis MYB genes involved in the response to abiotic stresses have been described (Abe et al., 1997, 2003; Cominelli et al., 2005; Denekamp and Smeekens, 2003; Jin et al., 2000; Urao et al., 1993; Zhu et al., 2005).

Here we report the characterization of transgenic Arabidopsis lines over-expressing *AtMYB41*, which encodes an R2R3-MYB transcription factor whose expression is specifically induced in response to abiotic stress in wild-type plants. Over-expression of *AtMYB41*, under the control of the CaMV 35S promoter, results in a pleiotropic phenotype resembling that of numerous cuticle mutants, suggesting a possible role for AtMYB41 in the regulation of cuticle biosynthesis. Consistently, at the molecular level, over-expression of *AtMYB41* is accompanied by changes in the level of expression of some genes involved in cuticle biosynthesis and cell expansion.

Results

The AtMYB41 gene is induced in response to abiotic stresses

The predicted protein encoded by the *AtMYB41* (At4g28110) gene belongs to subgroup 11 of the R2R3-MYB transcription factor family of Arabidopsis, together with AtMYB49, AtMYB74 and AtMYB102, as revealed by phylogenetic analysis (Kranz *et al.*, 1998; Stracke *et al.*, 2001). Of the members of this subgroup, only AtMYB102 has been characterized, and a role for it in integrating signals derived from wounding and osmotic stresses has been suggested (Denekamp and Smeekens, 2003). To gain insight into the regulation of the *AtMYB41* gene, quantitative RT-PCR analysis was performed on RNA obtained from several organs and at various stages of development of seedlings, rosette leaves, flowers and siliques. As shown in Figure 1, *AtMYB41* transcript was not detectable, under normal growth conditions in any organs or at any of the developmental stages

Quantitative RT-PCR analysis of *AtMYB41* expression in various organs of wild-type plants grown under standard conditions and in response to various treatments. For the desiccation and cold treatments, 3-week-old wild-type plants, grown on soil, were dehydrated on Whatman 3 MM paper or transferred to 4°C; for ABA and NaCl treatments, 3-week-old wild-type plants grown in liquid MS medium were supplemented with 100 µM ABA or 200 mM NaCl. For light treatment, plants grown under a 16 h light/8 h dark cycle for 3 weeks (L sample) were dark-adapted for 2 days (D sample) and then transferred to continuous white light for up to 24 h. The *TSB1* gene was used as a control (Berlyn *et al.*, 1989).

analysed. However, *AtMYB41* expression was significantly induced in response to desiccation, ABA and salt treatments (Figure 1). Interestingly, in the case of salt treatment, we observed a two-step induction kinetic, with a first peak after 1 h of treatment and a second one after 16 h. *AtMYB41* transcript accumulated in response to these treatments at similar levels both in rosette leaves and in roots (data not shown). *AtMYB41* transcript also accumulated in response to cold (Figure 1), white light (Figure 1) and heat shock (data not shown) treatments, but not in response to wounding, either in terms of the local or the systemic response (data not shown).

Ectopic expression of AtMYB41 confers a dwarf phenotype to plants

Due to the absence of insertion mutants in the T-DNA and transposon databases/germplasm collections, and the inability to efficiently silence AtMYB41 by RNA interference approaches (data not shown), we decided to characterize this transcription factor using an over-expression strategy. We generated 35S::AtMYB41 transgenic Arabidopsis plants in which the AtMYB41 cDNA was over-expressed under the control of the strong CaMV 35S promoter and the tobacco mosaic virus omega sequence, which has been shown to elevate the translation level of the transgene. We selected ten kanamycin-resistant lines. Eight of them showed very severe phenotypic alterations: plants had reduced stature, rosette and cauline leaves had reduced dimensions and were often wrinkled and in some cases had curled-up edges. As shown in Figure 2(a), the expression level of the AtMYB41 gene was examined by quantitative RT-PCR analyses in three of the eight over-expressing lines described above. In all three transgenic lines molecularly analysed, very high AtMYB41 expression levels were detected, and absence of the transcript in wild-type control plants was confirmed (Figure 2a). Comparison between transgenic and wild-type plants showed that over-expression of AtMYB41 is accompanied by impressive phenotypic alterations in plants grown either on Petri dishes for 3 weeks (Figure 2b-e) or on soil under standard conditions for 5 weeks (Figure 2f). To quantify the differences between the 35S::AtMYB41 and wild-type plants grown on soil for 5 weeks, we measured plant height and rosette leaf size: transgenic plants were less

AtMYB41 alters cell expansion and cuticle integrity 55

Figure 2. Molecular characterization and phenotype of 35S::AtMYB41 transgenic Arabidopsis lines.

(a) Quantitative RT-PCR analysis of *AtMYB41* expression from wild-type and three transgenic lines (line number at the top), grown on soil for 3 weeks. The *TSB1* gene was used as a control.

(b, c) 35S::AtMYB41-2 and wild-type plants grown on solid MS for 2 weeks.
(d, e) Detail of the cotyledons and 3rd leaf from a 35S::AtMYB41-2 plant (left) and wild-type plant (right).

(f) 35S::AtMYB41-2 (left), 35S::AtMYB41-7 (right) and wild-type plants (middle) grown on soil for 5 weeks.

(g, h) Adaxial leaf epidermis of 35S::AtMYB41-2 (g) and wild-type plants (h) at the same magnification; bar = 40 μ m.

(i, j) Adaxial leaf palisade parenchyma of 35S::AtMYB41 (i) and wild-type (j) at the same magnification; bar = 40 μ m.

than 2 cm high, while wild-type plants reached 20 cm high (Table 1). The length and the width of the third rosette leaf of 35S::*AtMYB41* plants were 25% of the values for wild-type leaves (Table 1).

More detailed microscopic investigation of this aspect of the phenotype of the over-expressing lines revealed that the cells in the leaf palisade parenchyma and in the leaf epidermis of the 35S::AtMYB41 plants were much smaller than those of the wild-type leaves (Figure 2g-j). In addition to the differences in cell dimensions, the transgenic plants showed morphological alterations in the shape of their epidermal cells, which were polygonal instead of displaying the characteristic multi-lobed shape, reminiscent of a piece from a jigsaw puzzle (Telfer and Poethig, 1994) (Figure 2g-j). This result suggested that the decreased size of 35S:: AtMYB41 plants is probably the result of smaller cell size rather than decreased cell number. Therefore, whereas cell division does not seem to be compromised, it is possible that AtMYB41 over-expression inhibits plant cell expansion.

Table T Phenolypic analysis of transgenic 355.:Alivit 641 pi	plants
--	--------

	Plant height (cm)	Rosette leaf length (cm)	Rosette leaf width (cm)	Number of siliques	Number of seeds	
		0.7.1.0.0	10.10.1		10 × 4	
Wild-type	20.2 ± 2.4	3.7 ± 0.3	1.2 ± 0.1	93 ± 9	46 ± 4	
35S::AtMYB41-2	1.7 ± 0.4	0.8 ± 0.2	0.4 ± 0.1	19 ± 3	21 ± 1	
35S::AtMYB41-7	1.4 ± 0.5	0.7 ± 0.2	0.4 ± 0.2	20 ± 2	22 ± 1	
35S::AtMYB41-9	$\textbf{1.4} \pm \textbf{0.3}$	$\textbf{0.8} \pm \textbf{0.3}$	$\textbf{0.3}\pm\textbf{0.1}$	18 ± 3	20 ± 2	

© 2007 The Authors Journal compilation © 2007 Blackwell Publishing Ltd, The Plant Journal, (2008), 53, 53–64

Although developmental defects in 35S::AtMYB41 plants were evident at both the vegetative and reproductive phases (Figure 2b-f), we did not observe any detectable alterations at the seedling stage (until the 6th day after germination), either in aerial tissues or in roots (data not shown). Moreover, we did not observe organ fusion or other abnormalities in flowers or trichomes of adult plants (data not shown). However, the transgenic plants showed a severe reduction in seed production, due to the reduced number and size of the siliques (Table 1). No differences were observed in the weight of the seeds between wild-type and transgenic lines (data not shown), even though 35S::AtMYB41 seeds showed a reduced germination rate. To quantify this aspect of the phenotype, seeds were sown on soil and covered with plastic wrap to maintain high humidity. After 3 weeks, 90.4% of the wild-type seeds had germinated and 3% of the developing plants died, whereas only 39.2% of the transgenic seeds had germinated and 10% of the developing transgenic seedlings died.

All the experiments described were performed on transgenic lines 35S::*AtMYB41-2*, 35S::*AtMYB41-7* and 35S:: *AtMYB41-9*, giving similar results.

35S::AtMYB41 plants show higher transpiration rates

As AtMYB41 expression was upregulated in response to drought stress, we investigated the effects of AtMYB41 over-

expression on water loss and transpiration rate during drought. Water loss was measured from detached rosette leaves of wild-type and 35S::*AtMYB41* plants. During the first minutes following the start of the treatment, the transgenic plants showed a more rapid water loss than the wild-type plants, such that almost 80% of the FW of leaves was lost within 2 h following excision, whereas wild-type leaves lost only 35% of their FW in the same period of time (Figure 3a). Although in Figure 3, we only show data obtained from the 35S::*AtMYB41-2* transgenic line, we obtained very similar results for the 35S::*AtMYB41-7* and 35S::*AtMYB41-9* lines also (data not shown).

35S::AtMYB41 plants have a discontinuous cuticle

As the pleiotropic phenotype described for the 35S:: *AtMYB41* plants was reminiscent of that of the most severe wax synthesis and cutin mutants (reviewed by Jenks *et al.*, 2002; Nawrath, 2006; Yephremov and Schreiber, 2005), we investigated the possibility that the cuticle had been altered in these plants. We performed a chlorophyll-leaching experiment in 80% ethanol. As shown in Figure 3(b), chlorophyll was extracted much faster from the rosette leaves of 35S::*AtMYB41* plants than from wild-type leaves. We then analysed the surfaces of leaves and siliques using the toluidine blue (TB) test (Figure 3c–g). Wild-type leaves did not show TB staining, as expected for plants with a complete

Figure 3. Surface permeability of leaves.

(a) Rate of water loss from 35S::*AtMYB41-2* and wild-type plants. Detached rosettes were weighed at the time intervals shown. The results are derived from three independent experiments and are shown with SE for the mean for each time point.

(b) Chlorophyll-leaching assays with mature rosette leaves of 35S::*AtMYB41-2* and wild-type immersed in 80% ethanol for various time intervals. The results are derived from three independent experiments and are shown with SE for the mean for each time point. FW, fresh weight. (c-f) Two-week-old plants [Columbia wild-type (c, d) and 35S::*AtMYB41-2* (e,f)] stained with TB.

(g) Siliques from wild-type (left) and 35S:: *AtMYB41*-2 (right) stained with TB.

cuticle (Figure 3c,d), but the 35S::*AtMYB41* plants exhibited patchy and random staining (Figure 3e,f), as described for class II cutin mutants by Tanaka *et al.* (2004). Analysis of siliques gave similar results (Figure 3g).

Taken together, the TB test results (Figure 3c–g), the greater sensitivity to drought (Figure 3a) and the faster chlorophyll leaching in ethanol (Figure 3b) suggest that over-expression of *AtMYB41* causes a reduction in the insulating properties of the cuticle of 35S::*AtMYB41* plants. We obtained similar results for the three transgenic lines analysed (data not shown).

Effects of AtMYB41 over-expression on gene expression

As phenotypic analysis performed on three transgenic lines suggested the presence of a discontinuous cuticle in the 35S::AtMYB41 plants, quantitative RT-PCR analysis was used to compare the expression level of genes involved in wax and cutin biosynthesis in the wild-type and in transgenic plants of the 35S::AtMYB41-2 line (Figure 4). Total RNA was isolated from rosette leaves of wild-type and transgenic plants. We analysed the expression of KCS1 (Todd et al., 1999), FDH (Yephremov et al., 1999) and CER6 (Fiebig et al., 2000), which are involved in elongation of fatty acyl chains, ATT1 (Xiao et al., 2004), WAX2 (Chen et al., 2003), LACS2 (Schnurr et al., 2004) and LCR (Wellesen et al., 2001), which are involved in biosynthesis of cutin, CER2 (Negruk et al., 1996; St-Pierre et al., 1998; Xia et al., 1996), encoding a putative coenzyme A-dependent acyltransferase involved in cuticle biosynthesis, and WIN1/SHN, encoding an AP2/EREBP transcription activator of epidermal wax accumulation and cutin deposition (Aharoni et al., 2004; Broun et al., 2004; Kannangara et al., 2007).

Of these genes, only *LACS2*, *ATT1* and *WIN1/SHN* showed a change in gene expression in response to *AtMYB41* overexpression. Specifically, whereas their transcripts were present in wild-type plants (as expected), *LACS2* mRNA was completely absent in transgenic 35S::*AtMYB41* plants, *ATT1* was expressed at a lower level, and *WIN1/SHN* showed increased expression.

As 35S::*AtMYB41* cells had very reduced dimensions, suggesting problems in cell expansion, we investigated a possible role of *AtEXP10*, the only Arabidopsis gene encoding an expansin that has been characterized in any detail. In fact, the corresponding antisense lines for *AtEXP10* were significantly smaller than wild-type (Cho and Cosgrove, 2000). Interestingly, as shown in Figure 4, we observed decreased expression levels of *AtEXP10* in 35S::*AtMYB41* lines compared to wild-type plants.

To identify other target genes of the AtMYB41 transcription factor, we used Affymetrix ATH1 GENECHIP arrays, representing approximately 24 000 genes. The expression profile in one 35S::*AtMYB41* line under unstressed conditions was compared with that of wild-type plants. The 25

Figure 4. Expression of genes involved in wax and cutin biosynthesis and of *AtEXP10* in wild-type and the 35S::*AtMYB41*-2 transgenic line. The *TSB1* gene was used as a control.

most up- and downregulated genes are summarized in Table 2. The complete list of regulated genes detected by microarray analysis is provided in Table S1. Some genes were chosen and used to confirm the reliability of the microarray data using quantitative RT-PCR analysis. The results shown in Figure 5 support the reliability of the microarray data.

The transcript levels of 149 genes were induced, and those of 28 genes were suppressed in the 35S::*AtMYB41* plants, compared with wild-type, using a twofold change threshold (*P* value < 0.01, Table S1). The putative target genes of AtMYB41, involved in cuticle deposition and cell expansion, previously identified by the quantitative RT-PCR analysis, as described above, were not identified as significantly differentially regulated in the DNA microarray analysis of the 35S:*AtMYB41* plants. Among the 25 most upregulated genes shown in Table 2 (quantitative RT-PCR analysis is shown in Figure 5 for some of them), one is *AtMYB41*, as expected, and there are genes coding for proteins with a known or possible involvement in lipid biosynthesis or transport, such as the three genes coding for lipid transfer proteins

Table 2 Genes up- or downregulated in 35S::AtMYB41 plants identified by GENECHIP analysis (list of the 25 most up- and downregulated genes)

Upregulated genes Integral membrane family protein 256905_st Al3g06330 242.6 + NA - Hypothetical protein 260230_st Al1g645640 83.3 + + + myb family transcription factor (MYB41) 253861_art Al1g645640 83.3 + + + GDSL motif lipasehydrolase family protein 260324_art Al1g74480 79.8 + - Hydroxypoline-ich glycoprotein family protein 261231_att Al2g64140 53.8 + + NA	Description	Affymetrix ID ^a	AGI ^b	FC ^c	O ^d	A ^e	N^f
Integral membrane family protein 25896_att At5g1800 84.5 + NA Hypothetical protein 250320_att At16j1800 88.5 + + myb family transcription factor (MYB41) 253861_att At4g2110 83.0 + + GDSL motif lipasehydrolase family protein 263857_att At5g68400 73.8 + + - Hydroxyonline-ich glycoprotein family protein 261721_att At2g25840 58.3 NA NA NA GDSL motif lipasehydrolase family protein 262917_att At2g25440 58.3 + + + Transferase family protein 269019_att At2g38110 37.6 + + + Poticin kinase, putative 26919_att At2g38110 37.6 + + + Rodinase family protein 26007_att At1g5890 34.2 + + + Glycine-rich protein 26037_att At3g22620 32.8 + + + Glycine-rich protein 26037_att <	Upregulated genes						
Lipid transfer protein family protein 260230_at Atfsg13900 88.5 + + N Mypothetical protein 260035_at Atfsg6440 83.3 + + + myb family transcription factor (MYB41) 250381_at Atfsg74400 78.8 + - - Hydroxyproline-rich glycoprotein family protein 247857_at Atfsg74400 78.8 + + - Lipid transfer protein family protein 26712_at Atfsg7440 58.3 + + - Lipid transfer protein family protein 267056_at Atfsg74104 38.8 + + NA NA Protein kinase, putative 267056_at Atf2g7140 38.8 + + + + Protein kinase, putative 267076_at Atf2g7590 34.2 + + NA NA Qivian-rich protein 267077_at Atf2g7580 34.2 + + NA + + + + + + + + +	Integral membrane family protein	258905_at	At3g06390	242.6	+	NA	-
Hypotherical protein 263005_at At1g64540 83.3 + + + myb family transcription factor (MYB41) 253851_at At4g6410 83.0 + + - Hydroxyporitein-rich glycoprotein family protein 245859_at At5g58400 64.3 NA NA NA GDSL mortli ipase/hydrolase family protein 24757_at At2g4840 52.8 + + NA Chonclease/sexonuclease/phosphatase family protein 262017_at At2g4910 38.8 + + NA Potein kinase, putative 266196_at At2g49110 38.6 + + NA Potein kinase, putative 266196_at At2g39110 35.6 - NA - Glycine-rich protein 266196_at At2g2910 32.2 + + + + Glycine-rich protein 265437_at At2g2510 25.5 + + + Glycine-rich protein 263936_at At1g5680 24.4 + + + <td< td=""><td>Lipid transfer protein family protein</td><td>250230_at</td><td>At5g13900</td><td>88.5</td><td>+</td><td>+</td><td>NA</td></td<>	Lipid transfer protein family protein	250230_at	At5g13900	88.5	+	+	NA
myb family transcription (attor (MYB41) 25851_at At4q28110 83.0 + + + Hydroxyproline-rich glycoprotein family protein 26028.1 At15g0480 79.8 + - - - Hydroxyproline-rich glycoprotein family protein 247857.3 At5g6840 63.3 + + + NA NA NA GDSL motif lipase/hydrolase family protein 247827.3 At2g6810 58.3 + + + NA NA NA NA NA NA NA NA NA S3.3 + + + NA	Hypothetical protein	263005_at	At1g54540	83.3	+	+	+
GDSL motif lipase/hydrolase family protein 240234_att Att_074400 79.8 + + - Peroxidase, putative 247857_att At5095400 73.8 + + - Peroxidase, putative 247857_att At2923540 58.3 + + - Lipid transfer protein 267121_att At2923540 58.3 + + + Transferase family protein 267121_att At2923740 38.8 + + + Endonuclease/exonuclease/phosphatase family protein 266196_att At2937100 37.6 + + + Pertinestresse family protein 267097_att At19237140 38.8 + + + Glycine-rich protein 267097_att At1926100 32.1 + + + Glycine-rich glycoprotein family protein 262097_att At392620 22.5 + + + Lipid transfer protein family protein 263988_att At1961580 24.4 + + + Lipid	myb family transcription factor (MYB41)	253851_at	At4g28110	83.0	+	+	+
Hydroxyproline-rich glycoprotein family protein 245889_att At5095400 73.8 + - - Peroxidase, putative 247875 r.at At5095400 F3.8 + + - Lipid transfer protein family protein 262317 att At2923540 58.3 + + - Transferses family protein 262317 att At293740 38.8 + + NA Protein Kinase, putative 266161, att At293110 37.6 + + + Protein Kinase, putative 266161, att At293110 37.6 + + + Protein Kinase, putative 26617, att At4917800 33.2 + + NA Lipid transfer protein 256037, att At49175600 33.2 + + + Hydroxporoline-rich glycoprotein family protein 256397, att At49175040 32.1 + + + Hydroxporoline-rich glycoprotein family protein 260393, att At49175040 18.8 + + +	GDSL motif lipase/hydrolase family protein	260234_at	At1g74460	79.8	+	+	-
peroxidase, putative 24785 ⁻ at At5g5840 64.3 NA NA NA GDSL motif lipase/hydrolase family protein 267121 at At2g43140 52.8 + + Transferase family protein 26317 at At2g43140 52.8 + + Transferase family protein 266196 at At2g43140 52.8 + + Protein family protein 266196 at At2g37440 38.8 + + + Protein family protein 266196 at At2g37440 38.8 + + + NA Auxin-responsive family protein 266097 at At1g52620 32.9 + + + Glutamine amidotransferase-related 260741 at At1g62850 25.4 + + Feroxidase, putative 26035 at At1g62850 23.8 + + + Peroxidase, putative 26035 at At1g688610 18.8 + + + Auxin-responsive family protein 25638 at At1g626610 18.4	Hydroxyproline-rich glycoprotein family protein	245889 at	At5q09480	73.8	+	-	_
GDSL motif lipase/hydrolase family protein 267121_at A12q249140 58.3 + + - Lipid transfer protein family protein 269371_at A12q34140 58.3 + + NA Transfers family protein 249289_at At5g41040 39.8 + + + + Endonuclesse/exonuclesse/phosphatase family protein 266011_at At2g3110 37.6 + + + Protein kinase, putative 267464_at At2g19160 32.2 + + NA Olycine-rich protein 26707_at At4025500 32.9 + + + Gutamine amidotransferase-related 260741_at At4q172600 32.1 + + + Glutamine amidotransferase-related 26071_at At1g6880 25.3 + + + Protein kinase, putative 26033_at At1g6880 25.4 + + Acy CoAr Acducase, putative 25023_at At4g0810 18.8 + + + Acy CoAr Ac	Peroxidase, putative	247857_at	At5g58400	64.3	NA	NA	NA
Lipid transfer protein family protein 26317_at A12g4140 52.8 + + NA Transferase family protein 26011_at A12g3740 38.8 + + NA Protein kinase, putative 266196_at A12g37140 38.8 + + NA Protein kinase, putative 266196_at A12g37110 37.6 + + NA Glycine-rich protein 267046_at A12g17150 35.6 - NA + NA Lipid transfer protein family protein 265097_at A14g17280 32.2 + + NA Lipid transfer protein family protein 256937_at A14g17280 32.2 + + + Glutarine-rich glycoprotein family protein 256937_at A14g17280 32.1 + + + ABC transporter family protein 260035_at A11g8850 25.3 + + + Protein kinase, putative 267372_at A12g26200 13.8 + + + +	GDSL motif lipase/hydrolase family protein	267121 at	At2g23540	58.3	+	+	_
Transferase family protein 249289 at At5g11400 39.8 + + Endonuclease/phosphatase family protein 266011_at At2g371400 38.8 + + NA Protein kinase, putative 266196_at At2g39110 37.6 + + NA Protein kinase, putative 267464_at At2g39110 37.6 + + NA Qivicine-rich protein 267464_at At2g39210 37.6 + + NA Lipid transfer protein family protein 26937_at At3g22620 32.2 + + + Hydroxyproline-rich glycoprotein family protein 269398_at At2g22510 25.5 + + + Peroxidase, putative 260373_at At1968850 25.3 + + + Abg Cransporter family protein 266035_at At42g2620 2.3 + + + Protein kinase, putative 26737_at At42g3620 2.3 + + + Abg Cransporter family protein 266423_s.at At3g4440 18.8 + + + </td <td>Lipid transfer protein family protein</td> <td>262317 at</td> <td>At2g48140</td> <td>52.8</td> <td>+</td> <td>+</td> <td>NA</td>	Lipid transfer protein family protein	262317 at	At2g48140	52.8	+	+	NA
Endonuclease/science/lease/phosphatase family protein 266116_at At2g39110 37.8 + + NA Protein kinase, putative 2671464_at At2g39110 37.6 + + + Glycine-rich protein 267047_at At2g19150 35.6 - NA - Glycine-rich protein 265097_at At1g5590 34.2 + + NA Lipid transfer protein family protein 265097_at At3g2220 32.9 + + + Hydroxyproline-rich glycoprotein family protein 265398_at At3g222510 25.5 + + + Peroxidase, putative 260035_at At1g6850 25.3 + + + Protein kinase, putative 26033_at At2g22510 25.5 + + + Pactostrasere-related 26013_at At2g22510 23.8 + + + AbC transport family protein 26633_at At2g20200 13.8 + + + + Calciur dep	Transferase family protein	249289 at	At5a41040	39.8	+	+	+
Protein kinase, putative 266196_at A12033110 37.6 + + Pectinesterase family protein 267464_at At2039110 35.6 - NA - Glycine-rich protein 26709_at At1g55990 34.2 + + NA Auxin-responsive family protein 26937_at At1g17280 33.2 + + NA Lipid transfer protein family protein 26937_at At3g22820 32.9 + + + Hydroxyproline-rich glycoprotein family protein 269398_at At2g23510 25.5 + + + Hydroxyproline-rich glycoprotein family protein 250239_at At1g6880 25.3 + + + ASC ransporter family protein 246203_at At2g23500 18.8 + + + Hydrolase, vgl fold family protein 266541_at At2g02060 17.3 NA + + Calcium-dependent protein kinase-related 26081_at At1g08630 - - - - - -	Endonuclease/exonuclease/phosphatase family protein	266011 at	At2q37440	38.8	+	+	NA
Pectinesterase family protein 257464_at At2g19150 35.6 - NA - Glycine-rich protein 262097_at At1g55990 34.2 + + NA Lipid transfer protein family protein 266097_at At4g17280 32.9 + + + Lipid transfer protein family protein 266997_at At4g22800 32.9 + + + Hydroxyproline-rich glycoprotein family protein 263998_at At12g22510 25.5 + + + Peroxidase, putative 260035_at At12g36800 28.4 + + + Protein kinase, putative 267372_at At2g36810 19.4 + + Apd CoA reductase, putative 26738_at At4g36810 19.4 + + + Late-embryogenesis-abundant group 1 domain-containing protein 266541_at At2g02000 18.1 + + + Downregulated genes - - - - - - - - - <td< td=""><td>Protein kinase, putative</td><td>266196 at</td><td>At2q39110</td><td>37.6</td><td>+</td><td>+</td><td>+</td></td<>	Protein kinase, putative	266196 at	At2q39110	37.6	+	+	+
Glycine-rich protein 262097_att At1g55990 34.2 + + NA Auxin-responsive family protein 256937_att At4g17280 33.2 + + NA Auxin-responsive family protein 256937_att At4g22500 32.9 + + + Hydroxyproline-rich glycoprotein family protein 269398_att At2g22510 25.5 + + + Hydroxyproline-rich glycoprotein family protein 26035_att At4g168680 25.3 + + + ABC transporter family protein 26035_att At4g4640 18.8 + + + Hydrolsee, putative 267372_att At4g36610 19.4 + + NA Acyl CoA reductase, putative 25638_att At4g4640 18.8 + + + Calicum-dependent protein kinase-related 26611_att At2g37800 -7.4 -	Pectinesterase family protein	267464 at	At2a19150	35.6	_	NA	_
Auxin-responsive family protein 245412_st At4g17280 33.2 + + NA Lipid transfer protein family protein 256937_at At3g22620 32.9 + + + Hydroxyproline-rich glycoprotein family protein 263988_at At1g15500 25.5 + + + Peroxidase, putative 260035_at At1g68850 25.3 + + + Peroxidase, putative 260372_at At2g26290 23.8 + + + Protein kinase, putative 267372_at At2g26290 18.1 + + NA Actor CoAr reductase, putative 26638_at At3g4540 18.8 + + + Late-embryogenesis-abundant group 1 domain-containing protein 26644_at At2g02060 17.3 NA + + Oducardoxin family protein 260831_at At1g0680 -5.7 - NA + Calcium-dependent protein family protein 260831_at At1g06800 -5.2 NF NF NF <	Glycine-rich protein	262097 at	At1a55990	34.2	+	+	NA
Lipid transfer protein family protein 256937_at At3g2260 32.9 + + + Glutamine amidotransferase-related 260741_at At13g2260 32.9 + + + Peroxidase, putative 260398_at At2g22510 25.5 + + + Peroxidase, putative 260335_at At1g68850 25.3 + + + ABC transporter family protein 250239_at At5g13580 24.4 + + + Protein Kinase, putative 2607372_at At2g26200 13.8 + + + Acyl CoA reductase, putative 25638_at At3g4260 18.8 + + + Calcium-dependent protein kinase-related 266111_at At2g02060 17.3 NA + + Capila like retortaransposin family 254542_at At4g137800 -5.7 - NA - Glutaredoxin family protein 26482_at At1g06830 -7.4 - - - - Glutared	Auxin-responsive family protein	245412 at	At4a17280	33.2	+	+	NA
Glutamine amidotransferase-related 260741_at Attg15040 32.1 + + Hydroxyproline-rich glycoprotein family protein 260398_at Attg6860 25.3 + + ABC transporter family protein 250239_at Attg6860 25.3 + + + ABC transporter family protein 250239_at Attg26290 23.8 + + + Hydrolase, ydf fold family protein 246031_at Attg26610 19.4 + + + Acyl CoA reductase, putative 252638_at Attg26300 18.1 + + + Calcium-dependent protein kinase-related 266111_at At2g02060 17.3 NA + Copia-like retrotransposon family 26684_at At1g06830 -7.4 - - - Xyloglucan:xyloglucosyl transferase, putative (XTH7) 253040_at At1g06830 -7.4 - - - Xyloglucan:xyloglucosyl transferase, putative (XTH7) 254804_at At1g1545 -4.2 - - - - Cytoglucosyl transferase, putative 254807_at At2g2030 -3.6	l ipid transfer protein family protein	256937 at	At3a22620	32.9	+	+	+
Distantia dimensional construction 200 Figure 100 Figure<	Glutamine amidotransferase-related	260741 at	At1a15040	32.1	+	+	+
Tyron yn on han of gyroch fam family protein 26003_at Attgd2805 22.3 + + + ABC transporter family protein 25003_at Attgd28050 28.3 + + + Protein kinase, putative 261372_at At2g26290 28.8 + + + Protein kinase, putative 26238_at At2g483610 19.4 + + NA Acyl CoA reductase, putative 252638_at At2g43501 18.1 + + + Late-embryogenesis-abundant group 1 domain-containing protein 26641_at At2g30301 17.3 NA + + Colutaredoxin family protein 260831_at At1g06830 -7.4 - - - Xyloglucan:xyloglucosyl transferase, putative (XTH7) 253040_at At4g37800 -5.7 - NA - Copia-like retrotransposon family 254542_s_at At4g19790 -5.2 NF NF NF Xyloglucan:xyloglucosyl transferase, putative (XTH8) 261825_at At4g1970 2 - - - - - - - - -	Hydroxyproline-rich alycoprotein family protein	263998 at	Δt2a22510	25.5			' +
ABC transporter family protein 250002_at Attg13580 24.4 + + Protein kinase, putative 267372_at Attg13580 24.4 + + Hydrolase, a/β fold family protein 246203_at Attg136610 19.4 + + Acyl CoA reductase, putative 256283_at Att3344540 18.8 + + + Late-embryogenesis-abundant group 1 domain-containing protein 266544_at Att234500 18.1 + + + Calcium-dependent protein kinase-related 260111_at Att202060 17.3 NA + + Ownregulated genes -	Peroxidase nutative	260035 at	At1a68850	25.3	+	+	+
The displayed in the protein 26205_2 at AtQ26209 23.8 + + + Protein kinase, putative 26737_2 at AtQ26209 23.8 + + + Hydrolase, a/l fold family protein 246203_at At4g26200 19.4 + + NA Acyl CoA reductase, putative 252638_at At3g44540 18.8 + + + Late-embryogenesis-abundant group 1 domain-containing protein 266544_at At2g35300 18.1 + + + Calutaredoxin family protein 260831_at At1g06830 -7.4 - - - Copia-like retrotransposon family 253040_at At4g37800 -5.7 NF NF Kyloglucan:xyloglucosyl transferase, putative (XTH8) 261825_at At1911545 -4.2 - - - Expansin, putative (EXP5) 258003_at At3g29030 -3.6 -	ABC transporter family protein	250035_at	At 1900000	23.5	т _	т _	т _
Library Ninkay, <i>xlf</i> fold family protein 240372_at At22203 21.0 + + + Mydrolase, <i>xlf</i> fold family protein 252638_at At3944540 18.8 + + + Late-embryogenesis-abundant group 1 domain-containing protein 266544_at At2g02060 18.1 + + + Calcium-dependent protein kinase-related 266111_at At2g02060 17.3 NA + Downregulated genes - - NA - - - Glutaredoxin family protein 260831_at At1g06830 -7.4 - - - Xyloglucan:xyloglucosyl transferase, putative (XTH7) 25040_at At437800 -5.7 NA - Copia-like retrotransposon family 254542_s_at At1g11545 -4.2 -<	Protein kinase, putative	250255_at	At2g75200	24.4	т 1	т ,	- -
Typicolase, up tool haming protein 24263_at At49001 13.4 + + Hu Acyl CoA reductase, putative 252638_at At1293700 18.8 + + + Late-embryogenesis-abundant group 1 domain-containing protein 266544_at At2920200 17.3 NA + + Calcium-dependent protein kinase-related 260111_at At290200 -7.4 - - - Opwmregulated genes - - 253040_at At4937800 -5.7 - NA + copia-like retrotransposon family 254542_s_at At191754 -4.2 - - - Kyloglucan:xyloglucosyl transferase, putative (XTH7) 254542_sat At191754 -4.2 - - - Expansin, putative (EXP5) 258003_at At3929030 -3.6 - - - Ubiquitin family protein 249367_at At1920270 -2.6 + + - Peptidase M20/M25/M40 family protein 25115_at At1926400 -2.5 - - - Non-specific lipid transfer protein 5 252115_at	Hydrolase, gulalive	20/3/2_at	At2g20230	10 /	т ,	т ,	
Actyr COA reductase, putative 252052_at At3g44340 16.0 + + + Cate-embryogenesis-abundant group 1 domain-containing protein 266544_at At2g35300 18.1 + + + Calcium-dependent protein kinase-related 266111_at At2g35300 18.1 + + + Copia-like retrotransposon family 256342_at At1g06830 -7.4 - - - Xyloglucan:xyloglucosyl transferase, putative (XTH7) 253040_at At4g19790 -5.2 NF NF NF Xyloglucan:xyloglucosyl transferase, putative (XTH8) 261825_at At1g11545 -4.2 -	And CoA reductees putative	240203_at	A14930010	19.4	+	+	
Late-entrolyogenesis-adultidarity group in contraining protein 266044_at At2g93300 16.1 + + + Calcium-dependent protein kinase-related 266111_at At2g02060 17.3 NA + + Downregulated genes 266831_at At1g06830 -7.4 - - - Xyloglucan:xyloglucosyl transferase, putative (XTH7) 253040_at At4g37800 -5.7 - NA + Expansin, putative (EXP5) 254542_s_at At1g11545 -4.2 - - - Ubiquit findnily protein 29367_at At5g4003 -3.6 - - - Trehalose-6-phosphate phosphatase, putative 263452_at At2g2070 -2.8 NA + + Peptidase M20/M25/M40 family protein 254496_at At4g2070 -2.6 + + - Non-specific lipid transfer protein 5 252115_at At3g5100 -2.5 - - + Plastocyanin-like domain-containing protein 266820_at At2g35500 -2.5 - - + AP2 domain-containing transcription factor TINY, putative 2	Acyl COA reduciase, pulative	202030_dl	AL3944540	10.0	+	+	+
Catchin-dependent protein frotein kinkse-related 260 FTT_at At 20000 17.3 NA + + Downregulated genes 5 5 -	Calaium dependent protein kingen related	200344_dl	A12935300	10.1	+ NA	+	+
Glutared genes 260831_at At1g06830 -7.4 - - - - Xyloglucan:xyloglucosyl transferase, putative (XTH7) 253040_at At4g37800 -5.7 - NA - copia-like retrotransposon family 254542_s_at At4g19790 -5.2 NF NF NF Xyloglucan:xyloglucosyl transferase, putative (XTH8) 261825_at At1g11545 -4.2 - - - Expansin, putative (EXP5) 258003_at At1g29030 -3.6 - - - - Ubiquitin family protein 249367_at At5g40630 -2.9 - - - - Non-specific lipid transfer protein 5 252115_at At3g51600 -2.6 + + - Non-specific lipid transfer protein 5 252115_at At1g64640 -2.5 - - - Shikimate kinase-related 266608_at At1g235100 -2.4 + + Expressed protein 263287_at At1g46460 -2.3 - - -	Calcium-dependent protein kindse-related	200111_dl	ALZYUZUUU	17.5	ΝA	+	+
Cluidateuoxin faining protein 2003.241 At190630 -7.4 - <t< td=""><td>Cluteradovia familu protein</td><td>260021 at</td><td>A+1~06020</td><td>7 4</td><td></td><td></td><td></td></t<>	Cluteradovia familu protein	260021 at	A+1~06020	7 4			
Aylogucan:xylogucosyl transferase, putative (XTH7) 25340_at At4g37800 ,7 - NA - copia-like retrotransposon family 254542_s_at At4g19790 -5.2 NF NF NF Xyloglucan:xyloglucosyl transferase, putative (XTH8) 261825_at At1g19790 -5.2 NF NF NF Expansin, putative (EXP5) 258003_at At3g29030 -3.6 - - - Ubiquitin family protein 249367_at At5g40630 -2.9 - - - Non-specific lipid transfer protein 5 252115_at At3g51600 -2.6 + + + Peptidase M20/M25/M40 family protein 5 252115_at At3g51600 -2.6 - NA NA Cytochrome P450, putative 246380_at At1g57750 -2.5 - - - - Plastocyanin-like domain-containing protein 261975_at At1g64640 -2.5 - - - - Sulfate adenylyltransferase 3/ATP-sulfurylase 3 (APS3) 245254_at At2g36145 -2.3 - + + + Sulfate adeny	Giularedoxin family protein	200831_at	AL 1906830	-7.4	-		-
Copia-like retrotransposon tamily 26422_sat At4g19790 -9.2 NF NF NF Xyloglucan:xyloglucosyl transferase, putative (XTH8) 261825_at At1g11545 -4.2 - - - - Ubiquitin family protein 249367_at At5g40630 -2.9 - - - - Trehalose-6-phosphate phosphatase, putative 263452_at At2g22190 -2.8 NA + + Peptidase M20/M25/M40 family protein 252115_at At3g51800 -2.6 - NA NA Cytochrome P450, putative 266808_at At1g57750 -2.5 - - + Plastocyanin-like domain-containing protein 261975_at At1g64640 -2.5 - - + AP2 domain-containing transcription factor TINY, putative 266820_at At2g35500 -2.3 - + + Sulfate adenylyltransferase 3/ATP-sulfurylase 3 (APS3) 245254_at At4g14680 -2.3 - - - Imorganic carbon transport protein-related 262288_at	Aylogiucan: Xylogiucosyl transferase, putative (XTH7)	253040_at	At4g37800	-5./	-		-
Avioglucanxyloglucosyl transferase, putative (XTHs) 261825_at Artig 11545 -4.2 -	copia-like retrotransposon family	254542_S_al	At4g19790	-5.2	INF	INF	INF
Expansin, putative (EXPS) 258003_at At3229030 -3.6 -	Xyloglucan:Xyloglucosyl transferase, putative (XTH8)	201825_at	At 1g 1 1545	-4.2	-	-	-
Ubiquitin family protein 24936/_aft At5g40630 -2.9 - <td>Expansin, putative (EXP5)</td> <td>258003_at</td> <td>At3g29030</td> <td>-3.0</td> <td>-</td> <td>-</td> <td>-</td>	Expansin, putative (EXP5)	258003_at	At3g29030	-3.0	-	-	-
Trenatose-b-prospnate prospnatese, putative 263432_at At2g22190 -2.8 NA + + Peptidase M20/M25/M40 family protein 254496_at At4g20070 -2.6 + + - Non-specific lipid transfer protein 5 252115_at At3g51600 -2.6 - NA NA Cytochrome P450, putative 246380_at At1g67750 -2.5 - - + Plastocyanin-like domain-containing protein 261975_at At1g64640 -2.5 - - - Shikimate kinase-related 266082_at At2g35500 -2.5 - - - AP2 domain-containing transcription factor TINY, putative 266820_at At2g36145 -2.3 - NA - Sulfate adenylyltransferase 3/ATP-sulfurylase 3 (APS3) 245254_at At4g14680 -2.3 - - + Inorganic carbon transport protein-related 262288_at At1g70760 -2.3 - - - Haloacid dehalogenase-like hydrolase family protein 256013_at At1g18170 -2.2 - - - Horophyll a/b binding protein, putative	Ubiquitin family protein	249367_at	At5g40630	-2.9	-	-	-
Peptidase M20/M25/M40 tamily protein 25449_at At4g200/0 -2.6 + + - Non-specific lipid transfer protein 5 252115_at At3g51600 -2.6 - NA NA Cytochrome P450, putative 246380_at At1g57750 -2.5 - - + Plastocyanin-like domain-containing protein 261975_at At1g64640 -2.5 - - - AP2 domain-containing transcription factor TINY, putative 266820_at At2g35500 -2.3 - + + Expressed protein 263287_at At2g36145 -2.3 - + + Inorganic carbon transport protein-related 262288_at At1g170760 -2.3 - - + Photosystem II reaction centre W (PsbW) family protein 253790_at At4g28660 -2.3 - - - Haloacid dehalogenase-like hydrolase family protein 259603_at At1g18170 -2.2 - - - Hotosystem II reaction center PsbP family protein 256015_at At1g19150 -2.2 - NA - Chlorophyll <i>a/b</i> binding protein, putati	I renalose-6-phosphate phosphatase, putative	263452_at	At2g22190	-2.8	NA	+	+
Non-specific lipid transfer protein 5252 lib_atAt3g5 1600-2.6-NANACytochrome P450, putative246380_atAt1g57750-2.5+Plastocyanin-like domain-containing protein261975_atAt1g64640-2.5Shikimate kinase-related266088_atAt2g35500-2.5AP2 domain-containing transcription factor TINY, putative266820_atAt2g44940-2.4-++Expressed protein263287_atAt2g36145-2.3++Inorganic carbon transport protein-related262288_atAt1g70760-2.3++Inorganic carbon transport protein-related253719_atAt4g28660-2.3Inorganic carbon transport protein related256130_atAt1g18170-2.2Inorganic carbon transport protein, putative/LHCI type II, putative256015_atAt1g18170-2.2Haloacid dehalogenase-like hydrolase family protein25903_atAt1g18170-2.2Membrane protein, putative/LHCI type II, putative256015_atAt1g19150-2.1Photosystem II reaction center PsbP family protein245368_atAt4g15510-2.1Photosystem II reaction center PsbP family protein245368_atAt4g15750-2.1-NA-Ex	Peptidase M20/M25/M40 family protein	254496_at	At4g20070	-2.6	+	+	-
Cytochrome P450, putative 246380_at At1g5/750 -2.5 - - + Plastocyanin-like domain-containing protein 261975_at At1g64640 -2.5 - - - Shikimate kinase-related 266608_at At2g35500 -2.5 - - - - AP2 domain-containing transcription factor TINY, putative 266820_at At2g44940 -2.4 - + + Expressed protein 263287_at At2g36145 -2.3 - NA - Sulfate adenylyltransferase 3/ATP-sulfurylase 3 (APS3) 245254_at At4g14680 -2.3 - - + Inorganic carbon transport protein-related 262288_at At1g70760 -2.3 - - - Photosystem II reaction centre W (PsbW) family protein 253790_at At4g28660 -2.2 - NA - Haloacid dehalogenase-like hydrolase family protein 256013_at At1g19170 -2.2 - - - Haloacid dehalogenase-like hydrolase family protein 256015_at At1g19150 -2.2 - NA - Membrane protein,	Non-specific lipid transfer protein 5	252115_at	At3g51600	-2.6	-	NA	NA
Plastocyanin-like domain-containing protein 261975_at At1g64640 -2.5 - - - Shikimate kinase-related 266608_at At2g35500 -2.5 - - - AP2 domain-containing transcription factor TINY, putative 266820_at At2g44940 -2.4 - + + Expressed protein 263287_at At2g36145 -2.3 - NA - Sulfate adenylyltransferase 3/ATP-sulfurylase 3 (APS3) 245254_at At4g14680 -2.3 - + + Inorganic carbon transport protein-related 262288_at At1g70760 -2.3 - - - Photosystem II reaction centre W (PsbW) family protein 253790_at At4g28660 -2.3 - - - Haloacid dehalogenase-like hydrolase family protein 256130_at At1g18170 -2.2 - - - Henbrane protein, putative/LHCI type II, putative 256015_at At1g19150 -2.2 - NA - Photosystem II reaction center PsbP family protein 255719_at At1g2080 -2.1 - - - -	Cytochrome P450, putative	246380_at	At1g57750	-2.5	-	-	+
Shikimate kinase-related266608_atAt2g35500-2.5AP2 domain-containing transcription factor TINY, putative266820_atAt2g44940-2.4-++Expressed protein263287_atAt2g36145-2.3-NA-Sulfate adenylyltransferase 3/ATP-sulfurylase 3 (APS3)245254_atAt4g14680-2.3-++Inorganic carbon transport protein-related262288_atAt1g70760-2.3+Photosystem II reaction centre W (PsbW) family protein253790_atAt4g28660-2.3Immunophilin256130_atAt1g18170-2.2Haloacid dehalogenase-like hydrolase family protein259603_atAt1g56500-2.2-NA-Chlorophyll <i>a/b</i> binding protein, putative/LHCl type II, putative256015_atAt1g19150-2.2-NA-Photosystem II reaction center PsbP family protein245368_atAt4g15510-2.1Photosystem II reaction center PsbP family protein245368_atAt4g15510-2.1-NA-Expressed protein261422_atAt1g17750-2.1-NA-Expressed protein262785_atAt1g10750-2.1Expressed protein249120_atAt5g43750-2.1	Plastocyanin-like domain-containing protein	261975_at	At1g64640	-2.5	-	-	-
AP2 domain-containing transcription factor TINY, putative266820_atAt2g44940-2.4-++Expressed protein263287_atAt2g36145-2.3-NA-Sulfate adenylyltransferase 3/ATP-sulfurylase 3 (APS3)245254_atAt4g14680-2.3+Inorganic carbon transport protein-related262288_atAt1g70760-2.3-NA-Photosystem II reaction centre W (PsbW) family protein253790_atAt4g28660-2.3Immunophilin256130_atAt1g18170-2.2Haloacid dehalogenase-like hydrolase family protein259603_atAt1g56500-2.2-NA-Chlorophyll <i>a/b</i> binding protein, putative/LHCl type II, putative256015_atAt1g19150-2.2-NA-Photosystem II reaction center PsbP family protein245368_atAt4g15510-2.1Chlorophyll <i>a/b</i> binding protein245368_atAt4g15510-2.1-NA-Expressed protein262785_atAt1g10750-2.1-NA-Expressed protein262785_atAt1g10750-2.1Expressed protein24526_atAt5g43750-2.1Expressed protein249120_atAt5g43750-2.1	Shikimate kinase-related	266608_at	At2g35500	-2.5	-	-	-
Expressed protein 263287_at At2g36145 -2.3 - NA - Sulfate adenylyltransferase 3/ATP-sulfurylase 3 (APS3) 245254_at At4g14680 -2.3 - + Inorganic carbon transport protein-related 262288_at At1g70760 -2.3 - NA - Photosystem II reaction centre W (PsbW) family protein 253790_at At4g28660 -2.3 - - - Immunophilin 256130_at At1g18170 -2.2 - - - Haloacid dehalogenase-like hydrolase family protein 259603_at At1g56500 -2.2 - NA - Chlorophyll <i>a/b</i> binding protein, putative/LHCI type II, putative 256015_at At1g19150 -2.2 - NA - Photosystem II reaction center PsbP family protein 255719_at At1g32080 -2.1 - - - Photosystem II reaction center PsbP family protein 245368_at At4g15510 -2.1 - NA - Expressed protein 261422_at At1g18730 -2.1 - NA - Expressed protein 262785_at	AP2 domain-containing transcription factor TINY, putative	266820_at	At2g44940	-2.4	-	+	+
Sulfate adenylyltransferase 3/ATP-sulfurylase 3 (APS3) 245254_at At4g14680 -2.3 - + Inorganic carbon transport protein-related 262288_at At1g70760 -2.3 - NA - Photosystem II reaction centre W (PsbW) family protein 253790_at At4g28660 -2.3 - - - Immunophilin 256130_at At1g18170 -2.2 - - - Haloacid dehalogenase-like hydrolase family protein 259603_at At1g56500 -2.2 - NA - Chlorophyll a/b binding protein, putative/LHCI type II, putative 256015_at At1g19150 -2.2 - NA - Photosystem II reaction center PsbP family protein 255719_at At1g32080 -2.1 - - - Photosystem II reaction center PsbP family protein 245368_at At4g15510 -2.1 - NA - Expressed protein 261422_at At1g17750 -2.1 - NA - Expressed protein 262785_at At1g10750 -2.1 - - - Expressed protein 249120_at <t< td=""><td>Expressed protein</td><td>263287_at</td><td>At2g36145</td><td>-2.3</td><td>-</td><td>NA</td><td>-</td></t<>	Expressed protein	263287_at	At2g36145	-2.3	-	NA	-
Inorganic carbon transport protein-related262288_atAt1g70760-2.3-NA-Photosystem II reaction centre W (PsbW) family protein253790_atAt4g28660-2.3Immunophilin256130_atAt1g18170-2.2Haloacid dehalogenase-like hydrolase family protein259603_atAt1g56500-2.2-NA-Chlorophyll a/b binding protein, putative/LHCl type II, putative256015_atAt1g19150-2.2-NA-Membrane protein, putative255719_atAt1g32080-2.1Photosystem II reaction center PsbP family protein245368_atAt4g15510-2.1-NA-Expressed protein261422_atAt1g10750-2.1-NA-Expressed protein262785_atAt1g10750-2.1Expressed protein249120_atAt5g43750-2.1-NA-	Sulfate adenylyltransferase 3/ATP-sulfurylase 3 (APS3)	245254_at	At4g14680	-2.3	-	-	+
Photosystem II reaction centre W (PsbW) family protein 253790_at At4g28660 -2.3 - - - Immunophilin 256130_at At1g18170 -2.2 - - - Haloacid dehalogenase-like hydrolase family protein 259603_at At1g56500 -2.2 - NA - Chlorophyll a/b binding protein, putative/LHCl type II, putative 256015_at At1g19150 -2.2 - NA - Membrane protein, putative 255719_at At1g32080 -2.1 - - - Photosystem II reaction center PsbP family protein 245368_at At4g15510 -2.1 - NA - Expressed protein 261422_at At1g1730 -2.1 - NA - Expressed protein 262785_at At1g10750 -2.1 - - - Expressed protein 249120_at At5g43750 -2.1 - - - -	Inorganic carbon transport protein-related	262288_at	At1g70760	-2.3	-	NA	-
Immunophilin 256130_at At1g18170 -2.2 - - - Haloacid dehalogenase-like hydrolase family protein 259603_at At1g56500 -2.2 - NA - Chlorophyll a/b binding protein, putative/LHCl type II, putative 256015_at At1g19150 -2.2 - NA - Membrane protein, putative 255719_at At1g32080 -2.1 - - - Photosystem II reaction center PsbP family protein 245368_at At4g15510 -2.1 - NA - Expressed protein 261422_at At1g10750 -2.1 - NA - Expressed protein 262785_at At1g10750 -2.1 - NA - Expressed protein 249120_at At5g43750 -2.1 - NA -	Photosystem II reaction centre W (PsbW) family protein	253790_at	At4g28660	-2.3	-	-	-
Haloacid dehalogenase-like hydrolase family protein259603_atAt1g56500-2.2-NA-Chlorophyll a/b binding protein, putative/LHCl type II, putative256015_atAt1g19150-2.2-NA-Membrane protein, putative255719_atAt1g32080-2.1Photosystem II reaction center PsbP family protein245368_atAt4g15510-2.1-NA-Expressed protein261422_atAt1g18730-2.1-NA-Expressed protein262785_atAt1g10750-2.1Expressed protein249120_atAt5g43750-2.1-NA-	Immunophilin	256130_at	At1g18170	-2.2	-	-	-
Chlorophyll a/b binding protein, putative/LHCl type II, putative 256015_at At1g19150 -2.2 - NA - Membrane protein, putative 255719_at At1g32080 -2.1 - - - Photosystem II reaction center PsbP family protein 245368_at At4g15510 -2.1 - NA - Expressed protein 261422_at At1g18730 -2.1 - NA - Expressed protein 262785_at At1g10750 -2.1 - - - Expressed protein 249120_at At5g43750 -2.1 - NA -	Haloacid dehalogenase-like hydrolase family protein	259603_at	At1g56500	-2.2	-	NA	-
Membrane protein, putative 255719_at At1g32080 -2.1 - - - Photosystem II reaction center PsbP family protein 245368_at At4g15510 -2.1 - NA - Expressed protein 261422_at At1g18730 -2.1 - NA - Expressed protein 262785_at At1g10750 -2.1 - - - Expressed protein 249120_at At5g43750 -2.1 - NA -	Chlorophyll a/b binding protein, putative/LHCl type II, putative	256015_at	At1g19150	-2.2	-	NA	-
Photosystem II reaction center PsbP family protein 245368_at At4g15510 -2.1 - NA - Expressed protein 261422_at At1g18730 -2.1 - NA - Expressed protein 262785_at At1g10750 -2.1 - NA - Expressed protein 249120_at At5g43750 -2.1 - NA -	Membrane protein, putative	255719_at	At1g32080	-2.1	-	-	-
Expressed protein 261422_at At1g18730 -2.1 - NA - Expressed protein 262785_at At1g10750 -2.1 - - - - Expressed protein 249120_at At5g43750 -2.1 - NA -	Photosystem II reaction center PsbP family protein	245368_at	At4g15510	-2.1	-	NA	-
Expressed protein 262785_at At1g10750 -2.1 - - - Expressed protein 249120_at At5g43750 -2.1 - NA -	Expressed protein	261422_at	At1g18730	-2.1	-	NA	-
Expressed protein 249120_at At5g43750 -2.1 - NA -	Expressed protein	262785_at	At1g10750	-2.1	-	-	-
	Expressed protein	249120_at	At5g43750	-2.1	-	NA	-

^aIdentification number on the Affymetrix Arabidopsis GENECHIP (ATH1).

^bArabidopsis gene index number.

^cFold change: genes from 35S::*AtMYB41* RNA samples that have normalized data values that are greater or less than those in wild-type samples by a factor of twofold were selected (*P* value < 0.01).

^{d,e,f} Response to osmotic stress (O), ABA (A) and salt (N) treatments as collected from Genevestigator website using the Meta Analyzer tool. '+' corresponds to a positive response to the treatment (red colour in red/green coding in Genevestigator website); '-' corresponds to a negative response (green); 'NA', not affected by the treatment (black); 'NF', gene not found.

Figure 5. RT-PCR analysis of some genes identified as differentially modulated between 35S::*AtMYB41* and wild-type plants by microarray analysis.

(At5g13900, At2g48140 and At3g22620), two for GDSL motif lipase/hydrolase family proteins (At1g74460 and At2g23540), one for a putative acyl CoA reductase

AtMYB41 alters cell expansion and cuticle integrity 59

(At3g44540), and four for membrane proteins (At3g06390, At5g09480, At2g22510 and At5g13580) with unknown function, as predicted by the 'gene ontology cellular component' (data not shown) (one belongs to the ABC transporter family). Among the most downregulated genes in 35S:: AtMYB41 plants, there are three genes that have a possible role in cell expansion (At4g37800, At1g11545 and At3q29030), in lipid biosynthesis and transport, such as a gene encoding a cytochrome P450 (At1g57750), and one for a lipid transfer protein (At3q51600). If we consider all the genes that are either upregulated or downregulated in 35S::AtMYB41 plants (Table S1), many encode for proteins belonging to the same families as encoded by the genes listed in Table 2. Among the genes not represented in Table 2 (but showing changes in expression in response to AtMYB41 over-expression), there are 22 genes coding for transcription factors (belonging to the MYB, NAM, zinc finger, AP2, WRKY, HB and MADS families).

As AtMYB41 expression is highly induced in response to desiccation, ABA and salt treatments, we used the Genevestigator website (http://www.genevestigator.ethz.ch; Zimmermann et al., 2004) to obtain data on expression of all the genes listed in Table 2. Strikingly, we found that many of the genes upregulated in the 35S::AtMYB41 line are also induced in response to these treatments, particularly in response to osmotic stress; conversely the expression of many genes downregulated in the transgenic line is also repressed or unaffected in response to these treatments.

Discussion

The complete absence of *AtMYB41* transcript under normal growth conditions, accompanied by its rapid induction soon after the onset of stress signals, suggests a role for this transcription factor in regulation of plant responses to these abiotic stresses.

Recent reports suggest that over-expression of some stress-inducible transcription factors belonging to different families can increase the tolerance of plants to drought, salinity or low temperature (reviewed by Umezawa *et al.*, 2006). However, over-expression of *AtMYB41* led to higher rates of water loss from leaves, although this gene is normally induced in response to desiccation stress. Moreover, when we monitored the expression of some genes specifically induced by various types of abiotic stress and commonly used as markers for the drought response, we did not observe any difference between lines over-expressing *AtMYB41* and wild-type plants (data not shown).

The pleiotropic phenotype of our over-expression lines is reminiscent of that of some cuticle mutants that have already been described (reviewed by Nawrath, 2006). However, it is important to note that 35S::*AtMYB41* plants did not show either the glossy phenotype or the organ fusion that are characteristic of many wax mutants (Nawrath, 2006). These defects are also absent in some cutin mutants such as *lacs2* or *att1* (Xiao *et al.*, 2004).

So far, there has been no evidence of involvement of MYB proteins in the regulation of cuticle biosynthesis, although comparison of the promoter sequences of two genes encoding putative β -ketoacyl CoA synthases, *FDH* of Arabidopsis and *AFI* of *Antirrhinum*, involved in fatty acid metabolism, suggests a possible role of members of this family of transcription factors in the regulation of this process (Efremova *et al.*, 2004). In fact, analysis of defined portions of both promoters, which confer identical expression patterns to reporter genes in the heterologous species, revealed the presence of three conserved regions, two of which contain putative binding sites for MYB transcription factors (Efremova *et al.*, 2004).

The expression data that we obtained support our hypothesis of involvement of AtMYB41 in wax and cutin biosynthesis or deposition and in cell expansion, because many genes differentially modulated between 35S:: *AtMYB41* and wild-type plants are directly involved or similar to other genes that have a role in these processes.

Because of the opposite effects of AtMYB41 on transcript levels of various genes, it is possible that this MYB protein might act as both a transcriptional activator and a repressor, depending on the context of the target sequence, which might influence its interaction with other regulatory proteins, as previously suggested for AtMYB15, for example (Agarwal *et al.*, 2006). Alternatively AtMYB41 may always act as a positive regulator, and the genes negatively regulated may be its indirect targets. Interestingly, expression data collected from the Genevestigator website (http:// www.genevestigator.ethz.ch; Zimmermann *et al.*, 2004) for genes present in Table 2, in response to various abiotic stresses, clearly correlate in many cases with their expression levels in 35S::*AtMYB41* plants.

As previously mentioned, the putative targets of AtMYB41 are principally genes involved in the synthesis and transport of cuticle components and in cell-wall modification. With regard to the synthesis of cuticle components, through single gene expression analysis (Figure 4), we found that LACS2, which codes for a long-chain acyl CoA synthetase (Schnurr et al., 2004), and ATT1, involved in cutin-related fatty acid oxidation (Xiao et al., 2004), are downregulated in 35S::AtMYB41 plants, while WIN1/SHN, a positive regulator of some wax and cutin biosynthetic genes (Aharoni et al., 2004; Broun et al., 2004; Kannangara et al., 2007), was upregulated. The pleiotropic phenotype of 35S::AtMYB41 lines is very similar to that previously described for the lacs2 mutant (Schnurr et al., 2004), and there was a good correlation between the phenotype of our transgenic lines and the lack of detectable expression of the LACS2 gene in these plants. The att1 mutant does not exhibit phenotypic alterations under normal growth conditions, but has a higher transpiration rate (Xiao et al., 2004), similar to the AtMYB41 over-expression lines, in which *ATT1* gene expression is reduced. It has been shown that WIN1/SHN regulates the expression of some wax and cutin genes including *KCS1*, *CER2* and *LACS2* (Broun *et al.*, 2004; Kannangara *et al.*, 2007). However, in the case of our transgenic line, despite higher *WIN1/SHN* transcript levels, we did not observe an increase in the expression of its putative targets, *KCS1*, *CER2* and *LACS2*. This apparent discrepancy might be explained by a complex regulatory network, in which *AtMYB41* overexpression might deregulate other factors required for the expression of these genes.

Through microarray analysis, we found that some genes with a demonstrated or putative role in cuticle component synthesis are differentially modulated in transgenic and wild-type plants in response to AtMYB41 expression. A gene coding for an alcohol-forming fatty acvl CoA reductase (FAR, At3g44540), which shows a high degree of homology with Arabidopsis CER4, which is involved in the acyl reduction pathway of wax biosynthesis (Rowland et al., 2006), is upregulated in 35S::AtMYB41 plants (Table 2 and Figure 5). We also found two genes coding for GDSL motif lipases that were upregulated to high levels in the transgenic line (At1g74460 and At2g23540, Table 2 and Figure 5). For this kind of enzyme, there is no precise information available about a possible role in wax or cutin biosynthesis, but one of these genes has been reported to be a target of WIN1/SHN transcription factors (Kannangara et al., 2007). These authors made some interesting suggestions about its possible role in remodelling of monoacyl glycerol or transferring additional fatty acid moieties to the glycerol backbone. A similar role might be suggested for the two GDSL motif lipases that we identified as induced by AtMYB41 expression. We also identified At4g36610 as positively regulated by AtMYB41 that codes for an α/β fold hydrolase, similar to BDG, which is involved in polymerization of carboxylic esters in the cuticular layer of the cell wall or the cuticle proper (Kurdyukov et al., 2006a).

There is strong evidence supporting involvement of lipid transfer proteins (LTPs) and ABC transporters in cuticle deposition, even if, to date, it is not known exactly how this process takes place (Cameron et al., 2006; Pighin et al., 2004). In particular, the LTPs identified in our microarray analysis are of types 1 and 5 (Beisson et al., 2003), the two groups that are considered the best candidates for a function in cuticle synthesis (Suh et al., 2005). Furthermore, the ABC transporter belongs to the WBC sub-family and was suggested as a good candidate for wax export to the cuticle, because it is upregulated in the epidermis and belongs to the same group as CER5, a protein shown to have this function (Pighin et al., 2004; Suh et al., 2005). Furthermore, many LTP and ABC genes are induced by drought stress (Colmenero-Flores et al., 1997; Jang et al., 2004; Rea, 2007). In tobacco, it was recently shown that there is a strong induction of LTP gene expression and a concomitant increase in wax deposition in response to drying events (Cameron et al., 2006). Interestingly, among the four LTP genes, those that are upregulated (all belonging to the type 5 group) in the 35S::AtMYB41 line (Table 2 and Figure 5) are also induced in response to osmotic stress and ABA (as shown by the Genevestigator website; Zimmermann et al., 2004), as is the gene coding for the ABC transporter, which is also induced by salt stress (Table 2). Our data suggest that AtMYB41 regulates the expression of genes that may be involved in cuticle component transport in response to stress. On the other hand, LTP5, which encodes an LTP belonging to the type 1 group, is expressed at lower levels in the transgenic line than in wild-type (Table 2 and Figure 5), and is also downregulated in response to osmotic stress (Table 2). LTP5 might be involved in the transport of other lipids that are not required in response to stress, and AtMYB41 might negatively regulate its expression (either directly or indirectly).

In our expression analysis, we found that, in the transgenic line, the expression of genes coding for two expansins (AtEXP5 and AtEXP10) and for two xyloglucan:xyloglucosyl transferases (XTH7 and XTH8, Becnel et al., 2006), all enzymes involved in cell wall modification, is downregulated (Figures 4 and 5, and Table 2). These data suggest a direct or indirect role for AtMYB41 in the negative regulation of AtEXP5 and AtEXP10, and are completely consistent with the reduced dimensions and abnormal morphology of the cells observed in 35S::AtMYB41 plants. Abnormalities in morphology of epidermal cells have also been shown for some cuticle mutants, such as Icr, Iacs2, pel1, pel3, cer10 and ace/hth (Kurdyukov et al., 2006a; Schnurr et al., 2004; Tanaka et al., 2004, 2007; Yephremov et al., 1999; Zheng et al., 2005), but a possible link between expansins and cuticle synthesis or deposition has not been described previously.

The relationship between cuticle composition and structure and the tolerance to water stress is not very clear. In fact, there are some data suggesting that greater amounts of waxes enable plants to have lower transpiration rates, and there are many examples in which defects in the synthesis of cuticular components enhance plant transpiration (reviewed by Jenks *et al.*, 2002; Shepherd and Griffiths, 2006). On the other hand, in some cases, greater amounts of waxes do not improve transpiration rates (Jenks *et al.*, 2002; Shepherd and Griffiths, 2006).

A clear link between drought stress and inhibition of leaf growth is well established, and growth inhibition under these conditions generally results from decreases in cell-wall extensibility, a process mediated by expansins (Cosgrove *et al.*, 2002).

Genes described as differentially expressed between 35S::*AtMYB41* and wild-type plants may all be part of a molecular network that is important for cell-wall modification, cuticle synthesis and deposition, in response to osmotic stress, directed by the activity of AtMYB41.

Experimental procedures

Plant material

Seeds of wild-type *A. thaliana* ecotype Columbia were used in this study.

Seeds were incubated for 4 days at 4° C in the dark, to break seed dormancy, then transferred to 22° C with a 16 h light/8 h dark cycle, and plants were grown for the various periods indicated.

For *in vitro* experiments, seeds were surface-sterilized with ethanol for 2 min, then with a solution of sodium hypoclorite (0.5% v/v) for 5 min, rinsed three times with sterilized distilled water, and then seeds were sown on Petri dishes or on Phytatray II[®] (Sigma, http://www.sigmaaldrich.com/) with solid MS medium (Sigma M-5519) containing 1% w/v sucrose, 0.5 g I⁻¹ MES (Sigma M-8652) and 0.8% w/v agar (Bactoagar, Difco; http://www.vgdusa.com).

Treatments and RT-PCR analysis

Samples were collected for expression analysis from various organs and at various developmental stages as previously described (Gusmaroli *et al.*, 2001).

Desiccation, ABA and white light treatments were performed as described by Cominelli *et al.* (2005). For cold treatment, seeds were sown on Einhietserde soil (Manna-Italia; http://www.manna.it), then plants were grown for 4 weeks and subsequently incubated at 4°C for up to 24 h in the dark. The entire aerial part of the plants was collected after 1, 2, 4, 6, 8 and 24 h. For NaCl treatments, plants were grown in liquid MS medium as previously described for ABA treatment (Cominelli *et al.*, 2005), then NaCl was added at a final concentration of 200 mm; samples were collected after 1, 2, 4, 6, 8, 16 and 24 h. All collected organs and treated plants were frozen in liquid nitrogen and stored at -80° C.

RNA extraction and RT-PCR analysis were performed as previously described (Cominelli *et al.*, 2005). The sequences of the primers used in this study are listed in Table S2. For each experiment, the RT-PCR analysis was repeated at least three times giving similar results.

Transgene construction and generation of transgenic plants

The *AtMYB41* cDNA was amplified from cDNA of drought-stressed plants, using MYB41F4 and MYB41R3 primers (see Table S2), and cloned in the pCR-Blunt II-TOPO vector (Invitrogen, http://www.invitrogen.com/). The fragment was then excised using *Bam*HI and *Xb*al and cloned in the corresponding sites of pRT- Ω /*Not*/*Asc*l under the control of the CaMV 35S promoter and the Ω untranslated sequence of TMV (Überlacker and Werr, 1996). The chimeric expression cassette was then transferred into the *Asc*l site of the binary vector pGPTV-KAN-*Asc* (Überlacker and Werr, 1996). Arabidopsis plants were transfected with *Agrobacterium tumefaciens* strain GV3101 by the vacuum infiltration method (Bechtold and Pelletier, 1998), and transgenic plants were grown on agar plates containing kanamycin.

Microscopy

Adaxial surface shapes of the leaf epidermis and palisade parenchyma cells of fully expanded 3rd true leaves were examined. The samples, rendered transparent by incubation overnight in a chloral hydrate solution (200 g chloral hydrate, 20 g glycerol, 50 ml H_2O),

were then observed with a Zeiss Axioskop 20 microscope (Zeiss, http://www.zeiss.com/).

Transpirational water loss

For measurement of transpirational water loss, detached rosette leaves of 3-week-old plants grown on soil were placed on 3 mm filter papers set in 9 cm Petri dishes at 22°C for the indicated time periods. The degree of dehydration was measured by comparing the fresh weight (FW) of the leaves before and after the dehydration treatment. The assay was performed in triplicate. Ten plants were used for each time point in each assay.

Chlorophyll-leaching assay and staining with toluidine blue (TB test)

The chlorophyll-leaching assay was performed using rosettes of 3-week-old plants. For each experiment, three samples of four 35S::*AtMYB41* plants and four wild-type plants were prepared. Chlorophyll extraction and the determination of chlorophyll content were performed as previously described (Lolle *et al.*, 1997).

The TB test was performed using 2-week-old plants grown on plates solidified with 0.4% w/v gellan gum, as described by Tanaka *et al.* (2004). The same staining and wash were used for the analysis of green siliques of plants grown on soil.

Affymetrix ATH1 GENECHIP experiment

For total RNA isolation, wild-type and 35S::AtMYB41 plants were grown for 21 days on soil under long-day conditions (16 h light/8 h dark). The plant samples (aerial parts) were pooled from several batches of plants to minimize variation in gene expression patterns caused by subtle changes in environmental conditions. For reproducibility, all samples were duplicated. Total RNA was extracted using TRIzol reagent (Invitrogen), followed by clean-up on RNeasy mini/midi kits (Qiagen, http://www.qiagen.com/). All methods for the preparation of cRNA, starting from 3 µg of total RNA, as well as the subsequent steps leading to hybridization and scanning of the ATH1 GENECHIP Arrays, were performed according to the methods supplied by Affymetrix (http://www.affymetrix.com). The average difference and expression call for each of the duplicated samples was computed using GENECHIP operating software, version 1.4 (GCOS1.4), using default parameters, scaling all images to a value of 500. Full details of microarray methods are available online (http:// services.ifom-ieo-campus.it/).

For each of the two experimental conditions tested, two Arabidopsis ATH1 genome arrays were used, with a total of four GENECHIP arrays.

Data analysis was performed using the software GENESPRING GX version 7.3.1 (Agilent Technologies; http://www.agilent.com).

Acknowledgements

We thank Cathie Martin (John Innes Centre, Norwich, UK) for critically reviewing the manuscript. This work was supported by grants from the European Regulatory Gene Initiative in Arabidopsis (REGIA) project (QLRT-1999-00876) and the Italian 'Ministero dell'Istruzione, dell'Università e della Ricerca-Fondo per gli Investimenti della Ricerca di Base' (MIUR-FIRB) and 'Programmi di ricerca scientifica di Rilevante Interesse Nazionale' (PRIN) projects to C.T.

Supplementary Material

The following supplementary material is available for this article online:

Table S1. Genes up- or downregulated in 35S::AtMYB41 plants identified by GENECHIP analysis (complete list).

 Table S2. Primers used in this study

This material is available as part of the online article from http://www.blackwell-synergy.com

Please note: Blackwell Publishing are not responsible for the content or functionality of any supplementary materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.

References

- Abe, H., Yamaguchi-Shinozaki, K., Urao, T., Iwasaki, T., Hosokawa, D. and Shinozaki, K. (1997) Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. *Plant Cell*, 9, 1859–1868.
- Abe, H., Urao, T., Ito, T., Seki, M., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. *Plant Cell*, **15**, 63–78.
- Agarwal, M., Hao, Y., Kapoor, A., Dong, C.H., Fujii, H., Zheng, X. and Zhu, J.K. (2006) A R2R3-type myb transcription factor is involved in the cold-regulation of *CBF* genes and in acquired freezing tolerance. J. Biol. Chem. 8, 37636–37645.
- Aharoni, A., Dixit, S., Jetter, R., Thoenes, E., van Arkel, G. and Pereira, A. (2004) The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in *Arabidopsis*. *Plant Cell*, 16, 2463–2480.
- Bechtold, N. and Pelletier, G. (1998) In planta Agrobacteriummediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. *Methods Mol. Biol.* 82, 259–266.
- Becnel, J., Natarajan, M., Kipp, A. and Braam, J. (2006) Developmental expression patterns of *Arabidopsis XTH* genes reported by transgenes and Genevestigator. *Plant Mol. Biol.* 61, 451–467.
- Beisson, F., Koo, A.J., Ruuska, S. et al. (2003) Arabidopsis genes involved in acyl lipid metabolism. A 2003 census of the candidates, a study of the distribution of expressed sequence tags in organs, and a web-based database. Plant Physiol. 132, 681–697.
- Berlyn, M.B., Last, R.L. and Fink, G.R. (1989) A gene encoding the tryptophan synthase beta subunit of *Arabidopsis thaliana*. Proc. Natl Acad. Sci. U.S.A. 86, 4604–4608.
- Bessire, M., Chassot, C., Jacquat, A.C., Humphry, M., Borel, S., Petetot, J.M., Metraux, J.P. and Nawrath, C. (2007) A permeable cuticle in *Arabidopsis* leads to a strong resistance to *Botrytis cinerea. EMBO J.* 26, 2158–2168.
- Broun, P., Poindexter, P., Osborne, E., Jiang, C.Z. and Riechmann, J.L. (2004) WIN1, a transcriptional activator of epidermal wax accumulation in *Arabidopsis. Proc. Natl Acad. Sci. U.S.A.* 101, 4706–4711.
- Cameron, K.D., Teece, M.A. and Smart, L.B. (2006) Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco. *Plant Physiol.* 140, 176–183.
- Chassot, C., Nawrath, C. and Metraux, J.P. (2007) Cuticular defects lead to full immunity to a major plant pathogen. *Plant J.* 49, 972– 980.
- Chen, X., Goodwin, S.M., Boroff, V.L., Liu, X. and Jenks, M.A. (2003) Cloning and characterization of the WAX2 gene of Arabidopsis

involved in cuticle membrane and wax production. *Plant Cell*, **15**, 1170–1185.

- Cho, H.T. and Cosgrove, D.J. (2000) Altered expression of expansin modulates leaf growth and pedicel abscission in *Arabidopsis thaliana. Proc. Natl Acad. Sci. U.S.A.* **97**, 9783–9788.
- Colmenero-Flores, J.M., Campos, F., Garciarrubio, A. and Covarrubias, A.A. (1997) Characterization of *Phaseolus vulgaris* cDNA clones responsive to water deficit: identification of a novel late embryogenesis abundant-like protein. *Plant Mol. Biol.* 35, 393–405.
- Cominelli, E., Galbiati, M., Vavasseur, A., Conti, L., Sala, T., Vuylsteke, M., Leonhardt, N., Dellaporta, S.L. and Tonelli, C. (2005) A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance. *Curr. Biol.* **15**, 1196–1200.
- Cosgrove, D.J., Li, L.C., Cho, H.T., Hoffmann-Benning, S., Moore, R.C. and Blecker, D. (2002) The growing world of expansins. *Plant Cell Physiol.* **43**, 1436–1444.
- Denekamp, M. and Smeekens, S.C. (2003) Integration of wounding and osmotic stress signals determines the expression of the *AtMYB102* transcription factor gene. *Plant Physiol.* **132**, 1415– 1423.
- Efremova, N., Schreiber, L., Bar, S., Heidmann, I., Huijser, P., Wellesen, K., Schwarz-Sommer, Z., Saedler, H. and Yephremov, A. (2004) Functional conservation and maintenance of expression pattern of *FIDDLEHEAD-like* genes in *Arabidopsis* and *Antirrhinum. Plant Mol. Biol.* 56, 821–837.
- Fiebig, A., Mayfield, J.A., Miley, N.L., Chau, S., Fischer, R.L. and Preuss, D. (2000) Alterations in *CER6*, a gene identical to *CUT1*, differentially affect long-chain lipid content on the surface of pollen and stems. *Plant Cell*, **12**, 2001–2008.
- Gan, Y., Kumimoto, R., Liu, C., Ratcliffe, O., Yu, H. and Broun, P. (2006) GLABROUS INFLORESCENCE STEMS modulates the regulation by gibberellins of epidermal differentiation and shoot maturation in *Arabidopsis. Plant Cell*, **18**, 1383–1395.
- Gusmaroli, G., Tonelli, C. and Mantovani, R. (2001) Regulation of the CCAAT-binding NF-Y subunits in *Arabidopsis thaliana*. *Gene*, 264, 173–185.
- Hannoufa, A., Negruk, V., Eisner, G. and Lemieux, B. (1996) The CER3 gene of Arabidopsis thaliana is expressed in leaves, stems, roots, flowers and apical meristems. *Plant J.* **10**, 459–467.
- Jang, C.S., Lee, H.J., Chang, S.J. and Seo, Y.W. (2004) Expression and promoter analysis of the *TaLTP1* gene induced by drought and salt stress in wheat (*Triticum aestivum L.*). *Plant Sci.*, 167, 995–1001.
- Jeffree, C.E. (1996) Structure and ontogeny of plant cuticles. In *Plant Cuticles: An Integrated Functional Approach* (Kerstiens, G., ed). Oxford, UK: BIOS Scientific Publishers, pp. 33–82.
- Jenks, M.A., Eigenbrodeb, S.D. and Lemieuxc, B. (2002) Cuticular waxes of Arabidopsis. In The Arabidopsis Book (Somerville, C.R. and Meyerowitz, E.M., eds). Rockville, MD: American Society of Plant Biologists, pp. 1–22, http://www.aspb.org/ publications/arabidopsis/.
- Jin, H., Cominelli, E., Bailey, P., Parr, A., Mehrtens, F., Jones, J., Tonelli, C., Weisshaar, B. and Martin, C. (2000) Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in *Arabidopsis. EMBO J.* **19**, 6150–6161.
- Kannangara, R., Branigan, C., Liu, Y., Penfiel, D.T., Rao, V., Mouille, G., Hofte, H., Pauly, M., Riechmann, J.L. and Broun, P. (2007) The transcription factor WIN1/SHN1 regulates cutin biosynthesis in *Arabidopsis thaliana. Plant Cell*, **19**, 1278–1294.
- Kranz, H.D., Denekamp, M., Greco, R. et al. (1998) Towards functional characterisation of the members of the R2R3-MYB gene family from Arabidopsis thaliana. Plant J. 16, 263–276.

- Kurdyukov, S., Faust, A., Nawrath, C. et al. (2006a) The epidermisspecific extracellular BODYGUARD controls cuticle development and morphogenesis in Arabidopsis. Plant Cell, 18, 321–339.
- Kurdyukov, S., Faust, A., Trenkamp, S., Bar, S., Franke, R., Efremova, N., Tietjen, K., Schreiber, L., Saedler, H. and Yephremov, A. (2006b) Genetic and biochemical evidence for involvement of HOTHEAD in the biosynthesis of long-chain alpha-,omega-dicarboxylic fatty acids and formation of extracellular matrix. *Planta*, 224, 315–329.
- Lauter, N., Kampani, A., Carlson, S., Goebel, M. and Moose, S.P. (2005) microRNA172 down-regulates *glossy15* to promote vegetative phase change in maize. *Proc. Natl Acad. Sci. U.S.A.* 102, 9412–9417.
- Lolle, S.J., Berlyn, G.P., Engstrom, E.M., Krolikowski, K.A., Reiter, W.D. and Pruitt, R.E. (1997) Developmental regulation of cell interactions in the *Arabidopsis fiddlehead-1* mutant: a role for the epidermal cell wall and cuticle. *Dev. Biol.* 189, 311–321.
- Martin, C. and Paz-Ares, J. (1997) MYB transcription factors in plants. *Trends Genet.* **13**, 67–73.
- Moose, S.P. and Sisco, P.H. (1996) *Glossy15*, an *APETALA2-like* gene from maize that regulates leaf epidermal cell identity. *Genes Dev.* **10**, 3018–3027.
- Nawrath, C. (2006) Unraveling the complex network of cuticular structure and function. *Curr. Opin. Plant Biol.* 9, 281–287.
- Negruk, V., Eisner, G. and Lemieux, B. (1996) Addition-deletion mutations in transgenic *Arabidopsis thaliana* generated by the seed co-cultivation method. *Genome*, **39**, 1117–1122.
- Petroni, K., Tonelli, C. and Paz-Ares, J. (2002) The MYB transcription factor family: from maize to *Arabidopsis. Maydica*, 47, 213–232.
- Pighin, J.A., Zheng, H., Balakshin, L.J., Goodman, I.P., Western, T.L., Jetter, R., Kunst, L. and Samuels, A.L. (2004) Plant cuticular lipid export requires an ABC transporter. *Science*, 306, 702–704.
- Rea, P.A. (2007) Plant ATP-binding cassette transporters. Annu. Rev. Plant Biol. 58, 347–375.
- Rowland, O., Zheng, H., Hepworth, S.R., Lam, P., Jetter, R. and Kunst, L. (2006) CER4 encodes an alcohol-forming fatty acylcoenzyme A reductase involved in cuticular wax production in Arabidopsis. Plant Physiol. 142, 866–877.
- Schnurr, J., Shockey, J. and Browse, J. (2004) The acyl-CoA synthetase encoded by LACS2 is essential for normal cuticle development in Arabidopsis. Plant Cell, 16, 629–642.
- Shepherd, T. and Griffiths, D.W. (2006) The effects of stress on plant cuticular waxes. New Phytol. 171, 469–499.
- Sieber, P., Schorderet, M., Ryser, U., Buchala, A., Kolattukudy, P., Metraux, J.P. and Nawrath, C. (2000) Transgenic Arabidopsis plants expressing a fungal cutinase show alterations in the structure and properties of the cuticle and postgenital organ fusions. *Plant Cell*, **12**, 721–738.
- St-Pierre, B., Laflamme, P., Alarco, A.M. and De Luca, V. (1998) The terminal O-acetyltransferase involved in vindoline biosynthesis defines a new class of proteins responsible for coenzyme A-dependent acyl transfer. *Plant J.* 14, 703–713.
- Stracke, R., Werber, M. and Weisshaar, B. (2001) The *R2R3-MYB* gene family in *Arabidopsis thaliana*. *Curr. Opin. Plant Biol.* **4**, 447–456.
- Suh, M., Samuels, A.L., Jetter, R., Kunst, L., Pollard, M., Ohlrogge, J. and Beisson, F. (2005) Cuticular lipid composition, surface structure, and gene expression in *Arabidopsis* stem epidermis. *Plant Physiol.* 139, 1649–1665.
- Tanaka, T., Tanaka, H., Machida, C., Watanabe, M. and Machida, Y. (2004) A new method for rapid visualization of defects in leaf

cuticle reveals five intrinsic patterns of surface defects in *Arabidopsis*. *Plant J.* **37**, 139–146.

- Tanaka, H., Watanabe, M., Sasabe, M., Hiroe, T., Tanaka, T., Tsukaya, H., Ikezaki, M., Machida, C. and Machida, Y. (2007) Novel receptor-like kinase ALE2 controls shoot development by specifying epidermis in *Arabidopsis. Development*, **134**, 1643– 1652.
- Tang, D., Simonich, M.T. and Innes, R.W. (2007) Mutations in LACS2, a long chain acyl-CoA synthetase, enhance susceptibility to avirulent *Pseudomonas syringae*, but confer resistance to *Botrytis cinerea* in *Arabidopsis. Plant Physiol.* **144**, 1093–1103.
- Telfer, A. and Poethig, R.S. (1994) Leaf development in *Arabidopsis*. In *Arabidopsis* (Meyerowitz, E.M. and Somerville, C.R., eds). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, pp. 379– 401.
- Todd, J., Post-Beittenmiller, D. and Jaworski, J.G. (1999) *KCS1* encodes a fatty acid elongase 3-ketoacyl-CoA synthase affecting wax biosynthesis in *Arabidopsis thaliana*. *Plant J.* **17**, 119–130.
- Überlacker, B. and Werr, W. (1996) Vectors with rare-cutter restriction enzyme sites for expression of open reading frames in transgenic plants. *Mol. Breeding*, **2**, 293–295.
- Umezawa, T., Fujita, M., Fujita, Y., Yamaguchi-Shinozaki, K. and Shinozaki, K. (2006) Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. *Curr. Opin. Biotechnol.* 17, 113–122.
- Urao, T., Yamaguchi-Shinozaki, K., Urao, S. and Shinozaki, K. (1993) An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. *Plant Cell*, **5**, 1529–1539.
- Wellesen, K., Durst, F., Pinot, F., Benveniste, I., Nettesheim, K., Wisman, E., Steiner-Lange, S., Saedler, H. and Yephremov, A. (2001) Functional analysis of the LACERATA gene of Arabidopsis provides evidence for different roles of fatty acid omegahydroxylation in development. Proc. Natl Acad. Sci. U.S.A. 98, 9694–9699.

- Xia, Y., Nikolau, B.J. and Schnable, P.S. (1996) Cloning and characterization of CER2, an Arabidopsis gene that affects cuticular wax accumulation. Plant Cell, 8, 1291–1304.
- Xiao, F., Goodwin, S.M., Xiao, Y., Sun, Z., Baker, D., Tang, X., Jenks, M.A. and Zhou, J.M. (2004) Arabidopsis CYP86A2 represses *Pseudomonas syringae* type III genes and is required for cuticle development. *EMBO J.* 23, 2903–2913.
- Yephremov, A. and Schreiber, L. (2005) The dark side of the cell wall: molecular genetics of plant cuticle. *Plant Biosyst.* 139, 74–79.
- Yephremov, A., Wisman, E., Huijser, P., Huijser, C., Wellesen, K. and Saedler, H. (1999) Characterization of the *FIDDLEHEAD* gene of *Arabidopsis* reveals a link between adhesion response and cell differentiation in the epidermis. *Plant Cell*, **11**, 2187–2201.
- Zhang, J.Y., Broeckling, C.D., Blancaflor, E.B., Sledge, M.K., Sumner, L.W. and Wang, Z.Y. (2005) Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). Plant J. 42, 689–707.
- Zhang, J.Y., Broeckling, C.D., Sumner, L.W. and Wang, Z.Y. (2007) Heterologous expression of two *Medicago truncatula* putative ERF transcription factor genes, *WXP1* and *WXP2*, in *Arabidopsis* led to increased leaf wax accumulation and improved drought tolerance, but differential response in freezing tolerance. *Plant Mol. Biol.* 64, 265–278.
- Zheng, H., Rowland, O. and Kunst, L. (2005) Disruptions of the Arabidopsis enoyl-CoA reductase gene reveal an essential role for very-long-chain fatty acid synthesis in cell expansion during plant morphogenesis. *Plant Cell*, **17**, 1467–1481.
- Zhu, J., Verslues, P.E., Zheng, X. et al. (2005) HOS10 encodes an R2R3-type MYB transcription factor essential for cold acclimation in plants. Proc. Natl Acad. Sci. U.S.A. 102, 9966–9971.
- Zimmermann, P., Hirsch-Hoffmann, M., Hennig, L. and Gruissem, W. (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. *Plant Physiol.* 136, 2621–2632.