Frequency of pattern occurrences in Mozkin words

Massimiliano Goldwurm ${ }^{+}$, Jean-Guy Penaud ${ }^{\sharp}$, Nasser Saheb-Djahromi ${ }^{\#}$
+ Dip. Scienze dell'Informazione, Università degli Studi di Milano Via Comelico 39/41, 20135 Milano - Italy, goldwurm@dsi.unimi.it
\sharp Laboratoire Bordelais de Recherche en Informatique, Université Bordeaux I, 351 cours de la Libération, 33405 Talence - France, \{penaud,saheb\} @labri.fr

June 2005

Abstract

In this work we show that the number of horizontal steps in a Motzkin word of length n, drawn at random under uniform distribution, has a Gaussian limit distribution. We also prove a local limit property for the same random variable which stresses its periodic behaviour. Similar results are obtained for the number of peaks in a word of given length drawn at random from the same language.

1 Introduction

The major problem in pattern statistics is to estimate the frequency of pattern occurrences in a random text. A formal model to define such a statistics is given by a finite alphabte Σ, a language $R \subseteq \Sigma^{*}$ of patterns and stochastic model \mathcal{P} for the generation of a random word $x \in \Sigma^{*}$ of length n. The associated statistics is defined as the number of (positions of) occurrences of strings of R in x. This problems has a variety of applications (see for instance [12]) and it has been studied mainly for Markovian models \mathcal{P} [11], or when \mathcal{P} is a rational model defined by a weighted finite automaton over $\Sigma[2,3]$. Gaussian limit distributions have been obtained both in the global and in the local sense for pattern statistics in rational models defined by powers of primitive rational formal series [3]. These results are obtained by applying general criteria for establishing global and local limit distribution of Gaussian type, based on the properties of moment generating functions [9, 6, 3].

In this work we study the same problem assuming a simple algebraic model defined by the traditional language of Motzkin words. We show that the number of horizontal steps in a Motzkin word of length n, drawn at random under uniform distribution, has a Gaussian limit distribution. We also prove a local limit property for the same random variable which stresses its periodic behaviour. Analogously we consider the statistics representing the number of peaks in a Motzkin word of length n, drawn at random under uniform distribution. Also in this case we prove a Gaussian limit distribution and a corresponding local limit property.

The main goal of this note is to apply the general analytic criteria used in [3] for the analysis of pattern statistics in rational models, to a simple algebraic model. The results we obtain are in line with a more general approach to the symbol frequency problem in context-free languages presented in [4] (see also [6, Sec VII]).

2 Gaussian limit distributions

In this section we recall a simple general criterion to prove that a sequence of random variables has a Gaussian limit distribution.

Consider an nonnegative integer random variable (r.v.) X, i.e. a random variable taking on values in \mathbb{N}, and for every $j \in \mathbb{N}$, set $p_{j}=\operatorname{Pr}\{X=j\}$. The moment generating function of X is defined as

$$
\Psi_{X}(z)=\mathbb{E}\left(e^{z X}\right)=\sum_{k \in \mathbb{N}} p_{k} e^{z x_{k}}
$$

where z is a complex variable. This function is related to the moments of X; in particular we have $\mathbb{E}(X)=$ $\Psi_{X}^{\prime}(0), \mathbb{E}\left(X^{2}\right)=\Psi_{X}^{\prime \prime}(0)$. Moreover, it can be used to show convergence in distribution: given a sequence of random variables $\left\{X_{n}\right\}_{n}$ and a random variable X, if $\Psi_{X_{n}}$ and Ψ_{X} are defined all over \mathbb{C} and $\Psi_{X_{n}}(z)$ tends to $\Psi_{X}(z)$ for every $z \in \mathbb{C}$, then X_{n} converges to X in distribution (see for instance [7] or [6]).

The characteristic function of X is the restriction of $\Psi_{X}(z)$ to the immaginary axis, that is the function $\Psi_{X}(i \theta)$, where $\theta \in \mathbb{R}$. Such a function is well-defined for every $\theta \in \mathbb{R}$ and, as we deal with integer r.v.'s, it is periodic of period 2π.

Moment generating functions can be also used to prove Gaussian limit laws. The following property is a simplification of the so called "quasi-power" theorem introduced in [9] and implicitly used in the previous literature [1] (see also Section IX. 5 in [6]).
Theorem 1 Let $\left\{X_{n}\right\}$ be a sequence of non-negative integer random variables and assume the following conditions hold true:
$\mathbf{C 1}$ There exist two functions $r(z), y(z)$, both analytic at $z=0$ where they take the value $r(0)=y(0)=1$, and a positive constant c, such that for every $|z|<c$

$$
\begin{equation*}
\Psi_{X_{n}}(z)=r(z) \cdot y(z)^{n}\left(1+O\left(n^{-1}\right)\right) \tag{1}
\end{equation*}
$$

$\mathbf{C 2}$ The constant $\sigma=y^{\prime \prime}(0)-\left(y^{\prime}(0)\right)^{2}$ is strictly positive (variability condition).
Also set $\mu=y^{\prime}(0)$. Then $\frac{X_{n}-\mu n}{\sqrt{\sigma n}}$ converges in distribution to a normal random variable of mean 0 and variance 1, i.e., for every $x \in \mathbb{R}$

$$
\lim _{n \longrightarrow+\infty} \operatorname{Pr}\left\{\frac{X_{n}-\mu n}{\sqrt{\sigma n}} \leq x\right\}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-\frac{t^{2}}{2}} d t
$$

The main advantage of this theorem, with respect to other classical statements of this kind, is that it does not require any condition of independence concerning the random variables X_{n}. For instance, the standard central limit theorems assume that each X_{n} is a partial sum of the form $X_{n}=\sum_{j \leq n} U_{j}$, where the U_{j} 's are independent random variables [7].

We recall that the convergence in law of a sequence of r.v.'s $\left\{X_{n}\right\}$ does not yield an approximation of the probability that X_{n} has a specific value. Theorems concerning approximations for expressions of the form $\operatorname{Pr}\left\{X_{n}=x\right\}$ are usually called local limit theorems. A typical example is given by the so-called de MoivreLaplace Local Limit Theorem [7], which intuitively states that, for a sequence of binomial random variables $\left\{X_{n}\right\}$, up to a factor $\Theta(1 / \sqrt{n})$ the probability that X_{n} takes on a value x approximates a Gaussian density at x.

As for convergence in distribution, also for local limit properties general criteria can be established and several of them appear in the literature. For instance a theorem of this kind is given in [6, Sect. IX.9] and a deeper one is presented in [10]. In this work we use the following result, which yields a natural extention of Theorem 1 to local limit properties of lattice random variables.

We recall that, given $d, \rho \in \mathbb{N}$ such that $0 \leq \rho<d$, a lattice random variable X of period d and initial value ρ is an integer r.v. with values in the set $\{x \in \mathbb{Z} \mid x \equiv \rho(\bmod d)\}$. It is well-known that an integer random variable X is a lattice r.v. of period d if and only if $\Psi_{X}(i 2 \pi / d)=1$.

Theorem 2 [3, Th. 13] Given a positive integer d, let $\left\{X_{n}\right\}$ be a sequence of lattice random variables of period d such that, for every n, X_{n} takes on values in the interval $[0, n]$ and has initial value ρ_{n}, for some integer $0 \leq \rho_{n}<d$. Let Conditions $\mathbf{C 1}$ and $\mathbf{C} 2$ of Theorem 1 hold true and let μ and σ be the positive constants defined therein. Moreover assume the following property:
C3 For all $0<t<\pi / d \quad \lim _{n \rightarrow+\infty}\left\{\sqrt{n} \sup _{|\theta| \in[t, \pi / d]}\left|\Psi_{X_{n}}(i \theta)\right|\right\}=0$
Then, as n grows to $+\infty$ the following relation holds uniformly for every $j=0,1, \ldots, n$.

$$
\operatorname{Pr}\left\{X_{n}=j\right\}= \begin{cases}\frac{d e^{-\frac{(j-\mu n)^{2}}{2 \sigma n}}}{\sqrt{2 \pi \sigma n}} \cdot(1+o(1)) & \text { if } j \equiv \rho_{n}(\bmod d) \tag{2}\\ 0 & \text { otherwise }\end{cases}
$$

Condition C3 states that, for every constant $0<t<\pi / d$, as n grows to $+\infty$, the value $\Psi_{X_{n}}(i \theta)$ is of the order $o\left(n^{-1 / 2}\right)$ uniformly with respect to $\theta \in[-\pi / d,-t] \cup[t, \pi / d]$. Note that relation (2) is meaningful for j lying in an interval $\mu n-a \sqrt{\sigma n} \leq j \leq \mu n+a \sqrt{\sigma n}$, where $a>0$ is a constant.

Also observe that if $d=1$, i.e. the values of X_{n} have no periodicity, then relation (2) reduces to state that, as $n \rightarrow+\infty$,

$$
\begin{equation*}
\operatorname{Pr}\left\{X_{n}=j\right\}=\frac{e^{-\frac{(j-\mu n)^{2}}{2 \sigma n}}}{\sqrt{2 \pi \sigma n}}(1+\mathrm{o}(1)) \tag{3}
\end{equation*}
$$

holds uniformly for every $j=0,1, \ldots, n$. Moreover, if the X_{n} 's are independent binomial random variables of parameter n, p, then Theorem 2 coincides with the classical de Moivre-Laplace Local Limit Theorem.

3 Symbol frequency in a Motzkin word

Let us consider the language $L \subseteq\{a, b, \bar{b}\}$ defined by the grammar

$$
\begin{equation*}
S=\varepsilon+a S+b S \bar{b} S \tag{4}
\end{equation*}
$$

We want to study the frequency of of occurrences of a in a word drawn at random under uniform distribution in the set of all strings of length n in L. To this end we first study the asymptotic behaviour of the associated single and bivariate sequences $\left\{m_{n}\right\}$ and $\left\{r_{n k}\right\}$ defined by

$$
\begin{equation*}
m_{n}=\sharp\{\omega \in L| | \omega \mid=n\} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
r_{n k}=\sharp\left\{\omega \in L| | \omega\left|=n,|\omega|_{a}=k\right\} .\right. \tag{6}
\end{equation*}
$$

The analysis of these sequences is based on the corresponding generating functions and can be achieved by applying analytic methods presented in [5, 6]).

The context-free grammar (4) can be trasformed into an algebraic equation by the map ϕ associating the terminal symbols a, b, \bar{b} with the complex variable z. This equation is given by

$$
\begin{equation*}
1+(z-1) S+z^{2} S^{2}=0 \tag{7}
\end{equation*}
$$

and it implicitely defines an algebraic function S of the variable z. Such a function has a unique branch non-singular at $z=0$ given by

$$
\begin{equation*}
S(z)=\frac{1-z-\sqrt{(1+z)(1-3 z)}}{2 z^{2}} \tag{8}
\end{equation*}
$$

and hence, since grammar (4) is unambiguous, its power series expansion at the point $z=0$ is $S(z)=$ $\sum_{n=1}^{+\infty} m_{n} z^{n}$.

Then an asymptotic expression for $\left\{m_{n}\right\}$ can be obtained by applying a well-known analytic method (here called transfer method) based on the behaviour of generating functions near the singularities of smallest modulus [5] (see also [6, Ch. VI]). This method relies on classical Cauchy's formula for Taylor coefficients of an analytic function and on the choice of a particular contour of the corresponding integral. It allows us to translate the expansion of a function around a dominant singularity into an asymptotic expression for its Taylor coefficients. If the function we consider is a branch of an algebraic curve the asymptotic expansion around a singular point is called Puiseux expansion and a general procedure is known to derive its main terms from the polynomial equation defining the function [6, Sec. VII.4].

In our case, the branch $S(z)$ has a unique singularity of smallest modulus at $z=1 / 3$. At that point $S(z)$ admits the Puiseux expansion

$$
S(z)=3-3 \sqrt{3} \sqrt{1-3 z}+\mathrm{O}\left((1-3 z)^{3 / 2}\right)
$$

This allows us to transfer the well-known series expansion

$$
\begin{equation*}
(1-u)^{1 / 2}=1-\sum_{n \geq 1}\binom{2 n-2}{n-1} \frac{u^{n}}{n 2^{2 n-1}}=1-\sum_{n \geq 1} \frac{1+\mathrm{O}(1 / n)}{2 \sqrt{\pi n^{3}}} u^{n} \quad(|u|<1) \tag{9}
\end{equation*}
$$

and get

$$
\begin{equation*}
m_{n}=3 \sqrt{\frac{3}{4 \pi}} \cdot \frac{3^{n}}{n^{3 / 2}}(1+\mathrm{O}(1 / n)) \tag{10}
\end{equation*}
$$

Now, let us use the same method to study the generating function of the bivariate sequence $\left\{r_{n k}\right\}$. To this end, let us consider the map associating the symbol a with the monomial $x z$ and both b and \bar{b} with z. This map transforms grammar (4) into the algebraic equation

$$
\begin{equation*}
z^{2} S^{2}+(x z-1) S+1=0 \tag{11}
\end{equation*}
$$

which implicitely defines an algebraic function S of the complex variables x, z. It is easy to see that, for every x, the only branch of S that is non-singular at $z=0$ is

$$
\begin{equation*}
S(x, z)=\frac{1-x z-\sqrt{(1+(2-x) z)(1-(2+x) z)}}{2 z^{2}} \tag{12}
\end{equation*}
$$

Again, since grammar (4) is unambiguous, for every $x, S(x, z)$ admits at the point $z=0$ the series expansion $S(x, z)=\sum_{n, k} r_{n k} x^{k} z^{n}$. Observe that, for every $x \neq 2,-2, S(x, z)$ is singular only at the points $z=$ $(x-2)^{-1}$ and $z=(2+x)^{-1}$. In particular, for x near 1 , the singularity of smallest modulus is $z=(2+x)^{-1}$, where $S(x, z)$ admits the Puiseux expansion

$$
S(x, z)=2+x-(2+x)^{3 / 2} \sqrt{1-(2+x) z}+\mathrm{O}\left((1-(2+x) z)^{3 / 2}\right)
$$

Then, applying the transfer method we get the power series expansion

$$
S(x, z)=\sum_{n \geq 0} S_{n}(x) z^{n}=2+x-(2+x)^{3 / 2}\left(1-\sum_{n \geq 1} \frac{(2+x)^{n}}{2 \sqrt{\pi n^{3}}}(1+\mathrm{O}(1 / n)) z^{n}\right)
$$

This proves the following

Proposition 3 For every constant x near 1, function $S(x, z)$ admits at $z=0$ an expansion $S(x, z)=$ $\sum_{n \geq 0} S_{n}(x) z^{n}$ such that

$$
S_{n}(x)=(2+x)^{3 / 2} \frac{(2+x)^{n}}{2 \sqrt{\pi n^{3}}}(1+O(1 / n)) .
$$

Now, let us study the limit distribution of the sequence of random variables $\left\{Y_{n}\right\}$, where each Y_{n} is the number of occurrences of a in a word drawn at random in the set $L \cap\{a, b, \bar{b}\}^{n}$ under uniform distribution. This means that such a word is generated in the probabilistic model defined by the characteristic series $\chi_{L} \in$ $\mathbb{R}_{+}\langle\langle a, b, \bar{b}\rangle\rangle$. Then, for every $n \in \mathbb{N}$ and each $k=0,1, \ldots, n$, we have

$$
\operatorname{Pr}\left\{Y_{n}=k\right\}=\frac{r_{n k}}{m_{n}}
$$

The moment generating function of Y_{n} is

$$
\Psi_{Y_{n}}(u)=\sum_{k=0}^{n} \frac{r_{n k} e^{k u}}{m_{n}}=\frac{S_{n}\left(e^{u}\right)}{m_{n}}
$$

As a consequence, by Proposition 3 end Equation (10), $\Psi_{Y_{n}}(u)$ admits at the point $u=0$ the expansion

$$
\begin{equation*}
\Psi_{Y_{n}}(u)=\left(\frac{2+e^{u}}{3}\right)^{3 / 2}\left(\frac{2+e^{u}}{3}\right)^{n}(1+\mathrm{O}(1 / n)) \tag{13}
\end{equation*}
$$

which allows us to apply Theorem 1 where

$$
y(u)=\left(\frac{2+e^{u}}{3}\right) \quad \text { and } \quad r(u)=\left(\frac{2+e^{u}}{3}\right)^{3 / 2}
$$

Clearly, here $r(u)$ is the "positive" branch of the corresponding algebraic function and hence $r(0)=1$. Also note that the main part of $\Psi_{Y_{n}}(u)$, i.e. $y(u)^{n}$, is the moment generating function of the sum of n independent, identically distributed Bernoullian random variables, having success probability $1 / 3$: an evocative interpretation of this property is that in a long Motzkin word the occurrence of an horizontal step in a given position can be simulated by a simple (biased) coin tossing. Then, applying Theorem 1 we get the following

Theorem 4 As n tends to $+\infty$ the random variable

$$
\frac{Y_{n}-\frac{1}{3} n}{\sqrt{\frac{2}{9} n}}
$$

has a Gaussian limit distribution of mean value 0 and variance 1.

3.1 Local limit property

To determine a local limit property first observe that Y_{n} is a lattice random variable of period 2 and initial value $[n]_{2}$ (and hence $\Psi_{Y_{n}}(i \pi)=1$). Our aim is to apply Theorem 2. Note that Equation (13) is a local property of $\Psi_{Y_{n}}(u)$ for u near 0 and hence it cannot be used to prove Condition [C3] of Theorem 2, which concernes the values of $\Psi_{Y_{n}}(i \theta)$ for $0 \leq \theta \leq 2 \pi$.

Proposition 5 For every $0<t<\pi / 2$ there exists $0<\varepsilon<1$ such that as $n \rightarrow+\infty$,

$$
\sup _{t \leq|\theta| \leq \pi-t}\left|\Psi_{Y_{n}}(i \theta)\right|=O\left(\varepsilon^{n}\right)
$$

Proof. We study the singular points of the branch $S(x, z)$ defined by (12) for $x=e^{i \theta}, 0 \leq \theta \leq 2 \pi$. For every such θ, the singularities of $S\left(e^{i \theta}, z\right)$ are at $z=\left(e^{i \theta}-2\right)^{-1}$ and $z=\left(e^{i \theta}+2\right)^{-1}$. We distinguish three cases:

1. $\theta \in[0, \pi / 2) \cup(3 \pi / 2,2 \pi]$,
2. $\theta \in(\pi / 2,3 \pi / 2)$,
3. $\theta \in\{\pi / 2,3 \pi / 2\}$.

In the first interval $\left(e^{i \theta}+2\right)^{-1}$ is the singularity of smallest modulus and we can can reason as in the proof of equation (13), getting the relation

$$
\Psi_{Y_{n}}(i \theta)=\left(\frac{2+e^{i \theta}}{3}\right)^{3 / 2}\left(\frac{2+e^{i \theta}}{3}\right)^{n}(1+\mathrm{O}(1 / n))
$$

Now, given $0<t<\pi / 2$, in the set $\left\{\theta \in \mathbb{R}|t \leq|\theta|<\pi / 2\}\right.$ function $\left|e^{i \theta}+2\right|$ attains the maximum value at points $\theta=t$ and $\theta=-t$. This implies

$$
\begin{equation*}
\sup _{t \leq|\theta|<\pi / 2}\left|\Psi_{Y_{n}}(i \theta)\right|=\mathrm{O}\left(\frac{\left|e^{i t}+2\right|}{3}\right)^{n}=\mathrm{O}\left(\varepsilon^{n}\right) \tag{14}
\end{equation*}
$$

for some $0<\varepsilon<1$.
In the second interval $\theta \in(\pi / 2,3 \pi / 2), S\left(e^{i \theta}, z\right)$ has the smallest singularity in modulus at $z=\left(e^{i \theta}-2\right)^{-1}$, where it admits a Puiseux expansion

$$
S\left(e^{i \theta}, z\right)=2-e^{i \theta}-\left(e^{i \theta}-2\right)^{3 / 2} \sqrt{1-\left(e^{i \theta}-2\right) z}+\mathbf{O}\left(\left(1-\left(e^{i \theta}-2\right) z\right)^{3 / 2}\right)
$$

Applying the transfer method from the previous equation we get

$$
S_{n}\left(e^{i \theta}\right)=\left(e^{i \theta}-2\right)^{3 / 2} \frac{\left(e^{i \theta}-2\right)^{n}}{2 \sqrt{\pi n^{3}}}(1+\mathrm{O}(1 / n))
$$

and hence

$$
\Psi_{Y_{n}}(i \theta)=\frac{S_{n}\left(e^{i \theta}\right)}{m_{n}}=\left(\frac{e^{i \theta}-2}{3}\right)^{3 / 2}\left(\frac{e^{i \theta}-2}{3}\right)^{n}(1+\mathrm{O}(1 / n))
$$

Observe that, in the set $\left\{\theta \in \mathbb{R}|\pi / 2<|\theta| \leq \pi-t\},\left|e^{i \theta}-2\right|\right.$ takes on the maximum value at $\theta=\pi-t$ and $\theta=-\pi+t$. As a consequence, for some $0<\varepsilon<1$, we have

$$
\begin{equation*}
\sup _{\pi / 2<|\theta| \leq \pi-t}\left|\Psi_{Y_{n}}(i \theta)\right|=\mathrm{O}\left(\frac{\left|e^{i(\pi-t)}-2\right|}{3}\right)^{n}=\mathrm{O}\left(\varepsilon^{n}\right) \tag{15}
\end{equation*}
$$

Finally, for $\theta \in\{\pi / 2,3 \pi / 2\}, S\left(e^{i \theta}, z\right)$ has two singularities of modulus $5^{-1 / 2}$, which implies $S_{n}\left(e^{i \theta}\right)=$ $\mathrm{O}(\sqrt{5})^{n}$ and hence $\left|\Psi_{Y_{n}}(i \theta)\right|=\mathrm{O}(\sqrt{5} / 3)^{n}=\mathrm{O}\left(\varepsilon^{n}\right)$.

From Theorem 2 and Proposition 5 we get
Theorem 6 As n grows to $+\infty$ the following relation holds uniformly for every $j=0,1, \ldots, n$:

$$
\operatorname{Pr}\left\{Y_{n}=j\right\}= \begin{cases}\frac{3 e^{-9 \frac{(j-n / 3)^{2}}{4 n}}}{\sqrt{\pi n}} \cdot(1+o(1)) & \text { if } j \equiv n(\bmod 2) \tag{16}\\ 0 & \text { otherwise }\end{cases}
$$

4 Frequency of peaks in Motzkin words

In this section we determine the limit distribution of the number of peaks in a Motzkin word of length n drawn at random under uniform distribution. Representing the peaks by a terminal symbol t, we consider the language $\mathcal{L} \subseteq\{a, b, \bar{b}, t\}^{*}$ of all words ω obtained from a Motzkin word $x \in L$ by replacing every factor $b \bar{b}$ by $b t \bar{b}$. The language \mathcal{L} is generated by the context-free grammar

$$
\begin{align*}
& S=1+a S+b T \bar{b} S \tag{17}\\
& T=t+a S+b T \bar{b} S \tag{18}
\end{align*}
$$

We now consider the morphism from the free monoid $\{a, b, \bar{b}, t\}^{*}$ into the commutative monoid $\{x, z\}^{\oplus}$ associating t with x and the symbols a, b, \bar{b} with z. This transforms the previous grammar into the following system of algebraic equations

$$
\begin{align*}
& S=1+z S+z^{2} T S \tag{19}\\
& T=x+z S+z^{2} T S \tag{20}
\end{align*}
$$

Note that (a branch of) the solution $S=S(x, z)$ is the generating function of the bivariate sequence $\left\{r_{n k}\right\}$ such that $r_{n k}=\sharp\left\{\omega \in L| | \omega\left|=n,|\omega|_{b \bar{b}}=k\right\}\right.$. Hence we study such a solution to get an asymptotic evaluation of the corresponding sequence.

Eliminating T from the previous system we get the algebraic equation

$$
1+\left(z-1-z^{2}+x z^{2}\right) S+z^{2} S^{2}=0
$$

yielding the following non-singular (at $z=0$) branch

$$
S(x, z)=\frac{1-z+(1-x) z^{2}-\sqrt{\left(1+z+(1-x) z^{2}\right)\left(1-3 z+(1-x) z^{2}\right)}}{2 z^{2}}
$$

For $x=1$ such a function reduces to $N(z)$ studied in the previous section. So we assume $x \neq 1$. In this case $S(x, z)$ is singular at points α, β, γ and δ given by

$$
\begin{equation*}
\alpha=\frac{3-\sqrt{5+4 x}}{2(1-x)}, \quad \beta=\frac{3+\sqrt{5+4 x}}{2(1-x)}, \quad \gamma=\frac{-1-\sqrt{4 x-3}}{2(1-x)}, \quad \delta=\frac{-1+\sqrt{4 x-3}}{2(1-x)} \tag{21}
\end{equation*}
$$

For x near 1 (and $x \neq 1$), both modulus of β and γ grow to $+\infty$, while α and δ approach $1 / 3$ and -1 , respectively. Hence, for x near $1, S(x, z)$ has a unique singularity of smallest modulus at $z=\alpha$, where it admits a Puiseux expansion of the form

$$
S(x, z)=\frac{1-\alpha}{2 \alpha^{2}}+\frac{1-x}{2}-\sqrt{1-\frac{z}{\alpha}} \frac{\sqrt{\left(1+\alpha+(1-x) \alpha^{2}\right)\left(1-\frac{2(1-x)}{3+\sqrt{5+4 x}} \alpha\right)}}{2 \alpha^{2}}+\mathrm{O}\left(1-\frac{z}{\alpha}\right)^{3 / 2}
$$

This leads to the following expression

$$
S(x, z)=\frac{1-\alpha}{2 \alpha^{2}}+\frac{1-x}{2}-\left(1-\frac{3+\sqrt{5+4 x}}{2} z\right)^{1 / 2} F(x)+\mathrm{O}\left(1-\frac{z}{\alpha}\right)^{3 / 2}
$$

where

$$
\begin{equation*}
F(x)=(5+4 x)^{1 / 4} \frac{3+\sqrt{5+4 x}}{2} . \tag{22}
\end{equation*}
$$

Therefore, by the transfer method we obtain the following

Proposition 7 For every constant x near $1, x \neq 1$, function $S(x, z)$ admits at $z=0$ an expansion $S(x, z)=$ $\sum_{n \geq 0} S_{n}(x) z^{n}$ such that

$$
S_{n}(x)=\left(\frac{3+\sqrt{5+4 x}}{2}\right)^{n} \frac{F(x)}{2 \sqrt{\pi n^{3}}}(1+O(1 / n))
$$

where $F(x)$ is defined in (22).
Now, let us study the limit distribution of the sequence of random variables $\left\{V_{n}\right\}$, where each V_{n} is the number of occurrences of the factor $b \bar{b}$ in a word ω drawn at random in the set $L \cap\{a, b, \bar{b}\}^{n}$ under uniform distribution. Then, for every $n \in \mathbb{N}$ and each $k=0,1, \ldots, n$, we have

$$
\operatorname{Pr}\left\{V_{n}=k\right\}=\frac{r_{n k}}{m_{n}}
$$

The moment generating function of V_{n} is

$$
\Psi_{V_{n}}(u)=\sum_{k=0}^{n} \frac{r_{n k} e^{k u}}{m_{n}}=\frac{S_{n}\left(e^{u}\right)}{m_{n}}
$$

As a consequence, by Proposition 7 end Equation (10), $\Psi_{V_{n}}(u)$ admits at the point $u=0$ the expansion

$$
\begin{equation*}
\Psi_{V_{n}}(u)=\left(\frac{3+\sqrt{5+4 e^{u}}}{6}\right)^{n} \frac{F\left(e^{u}\right)}{3 \sqrt{3}}(1+\mathrm{O}(1 / n)) \tag{23}
\end{equation*}
$$

Such an expansion allows us to apply Theorem 1 with

$$
y(u)=\frac{3+\sqrt{5+4 e^{u}}}{6} \quad \text { and } \quad r(u)=\frac{F\left(e^{u}\right)}{3 \sqrt{3}}
$$

Therefore we get the following
Theorem 8 As n tends to $+\infty$ the random variable

$$
\frac{V_{n}-\frac{1}{9} n}{\sqrt{\frac{2}{27} n}}
$$

has a Gaussian limit distribution of mean value 0 and variance 1.

4.1 Local limit property

To apply Theorem 2 we compare the modulus of singularities of $S(x, z)$ given in equations (21), for complex values of x such that $|x|=1$.

As α, β, γ and δ have the same denominator, we consider the corresponding numerators, say $\hat{\alpha}, \hat{\beta}, \hat{\gamma}, \hat{\delta}$, respectively. It is easy to see that, for $|x|=1$ and $x \neq 1$, we have $0<|\hat{\alpha}| \leq 2,4 \leq|\hat{\beta}|<6,0<|\hat{\gamma}| \leq 2 \sqrt{2}$, $0<|\hat{\delta}| \leq 2 \sqrt{2}$, where the values of $\hat{\gamma}$ and $\hat{\delta}$ interchange while x moves over the circle of radius 1 . Hence $|\hat{\alpha}|<|\hat{\beta}|$ for every $|x|=1$. Moreover, a direct inspection shows that $|\hat{\alpha}| \leq|\hat{\delta}|$ for every $|x|=1$, the equality being true only for $x=1$. Since the comparison with $\hat{\gamma}$ is similar, we can state that α is the unique singularity of smallest modulus of $S(x, z)$ for x varying the required domain.

As a consequence Proposition 7 holds for every complex x such that $|x|=1$ and $x \neq 1$, and we get

$$
\Psi_{V_{n}}(i \theta)=\left(\frac{3+\sqrt{5+4 e^{i \theta}}}{6}\right)^{n} \frac{F\left(e^{i \theta}\right)}{3 \sqrt{3}}(1+\mathrm{O}(1 / n))
$$

This proves that, for every $0<t<\pi$,

$$
\sup _{t \leq \theta \leq 2 \pi-t} \Psi_{V_{n}}(i \theta)=\left(\frac{3+\sqrt{5+4 e^{i t}}}{6}\right)^{n} \mathrm{O}(1)=\mathrm{O}\left(\varepsilon^{n}\right)
$$

for some $0<\varepsilon<1$. Therefore, Condition [C3] of Theorem 2 holds true in our case with $d=1$ and we can state the following

Theorem 9 As n grows to $+\infty$ the following relation holds uniformly for every $j=0,1, \ldots, n$:

$$
\operatorname{Pr}\left\{V_{n}=j\right\}=\frac{3 \sqrt{3} e^{-27 \frac{(j-n / 9)^{2}}{4 n}}}{2 \sqrt{\pi n}} \cdot(1+o(1))
$$

References

[1] E. A. Bender. Central and local limit theorems applied to asymptotic enumeration. J. Combin. Theory Ser. A, 15:91-111, 1973.
[2] A. Bertoni, C. Choffrut, M. Goldwurm, and V. Lonati. On the number of occurrences of a symbol in words of regular languages. Theoret. Comput. Sci., 302(1-3):431-456, 2003.
[3] A. Bertoni, C. Choffrut, M. Goldwurm, and V. Lonati. Local limit properties for pattern statistics and rational models. Rapporto Interno n. 301-04, Dip. Scienze dell'Informazione, Università degli Studi di Milano, November 2004, available at http://www.dsi.unimi.it/~goldwurm/index.html.
[4] M. Drmota. Systems of functional equations. Random Structures and Algorithms 10(1-2):103-124, 1997.
[5] P. Flajolet and A. Odlyzko. Singularity analysis of generating functions. SIAM Journal on Discrete Mathematics 3:216-240, 1990.
[6] P. Flajolet and R. Sedgewick. Analytic Combinatorics. Preliminary version available at http://algo.inria.fr/flajolet/Publications/books.html, April 2005.
[7] B.V. Gnedenko. The theory of probability (translated by G. Yankovsky). Mir Publishers - Moscow, 1976.
[8] P. Henrici. Applied and computational complex analysis, vol. 1, John Wiley, 1974.
[9] H. K.Hwang. Large deviations for combinatorial distributions. I: central limit theorems, Ann. Appl. Probab., vol. 6(1):297-319, 1996.
[10] H. K.Hwang. Large deviations for combinatorial distributions II. Local limit theorems, Ann. Appl. Probab., 8(1):163-181, 1998.
[11] P. Nicodeme, B. Salvy, and P. Flajolet. Motif statistics. Theoret. Comput. Sci., 287(2):593-617, 2002.
[12] M. Régnier and W. Szpankowski. On pattern frequency occurrences in a Markovian sequence. Algorithmica, 22 (4):621-649, 1998.
[13] A. Salomaa and M. Soittola. Automata-Theoretic Aspects of Formal Power Series, Springer-Verlag, 1978.

