
Dynamic programming for the orienteering

problem with time windows

Giovanni Righini, Matteo Salani

Dipartimento di Tecnologie dell’Informazione

Università degli Studi di Milano, Via Bramante 65, 26013 Crema (CR), Italy

fax.: +39 0373 898010, e-mail: {righini,salani}@dti.unimi.it

March 29, 2006

Abstract

We present an exact optimization algorithm for the Orienteering Problem with Time Win-

dows (OPTW). The algorithm is based on bi-directional and bounded dynamic programming

with decremental state space relaxation. We compare different strategies proposed in the

literature to guide decremental state space relaxation: our experiments on instances derived

from the literature show that there is no dominance between these strategies. We also pro-

pose a new heuristic technique to initialize the critical vertex set and we provide experimental

evidence of its effectiveness.

Keywords: Combinatorial optimization, traveling salesman problem, shortest path problem,

dynamic programming.

1 Introduction

The Orienteering Problem with Time Windows (OPTW) is a combinatorial problem falling into

the realm of Traveling Salesman Problems with Profits. It can be formulated as a special case of the

Resource Constrained Elementary Shortest Path Problem (RCESPP), for which effective dynamic

programming algorithms have been recently proposed by Boland et al. [3] and by Righini and

Salani [19]. These algorithms exploit a new technique, called decremental state space relaxation

[19] or state space augmentation [3]. The purpose of this paper is twofold: first, to apply dynamic

programming with decremental state space relaxation (DSSR) to solve the OPTW; second, to

present some new ideas concerning the heuristic initialization of the critical vertex set in DSSR

algorithms.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIR Universita degli studi di Milano

https://core.ac.uk/display/187789377?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Literature review. The Traveling Salesman Problem (TSP) requires the computation of a min-

imum cost Hamiltonian cycle on an undirected graph. A large number of extensions of this problem

have been proposed in the literature so far: for a detailed review we refer the reader to the survey

paper by Laporte [16]. Several of these extensions belong to the class of TSP with Profits (see

Feillet et al. [7]), where a profit is associated with each vertex and the overall collected profit has

to be maximized. The Orienteering Problem (OP), also called Selective TSP, is the problem of

maximizing the collected profits subject to a constraint on the maximum allowed tour length; in

the OP the tour starts from and returns to a specified depot. The OP was introduced by Tsili-

grides [20] and surveyed by Golden et al. [12]. A first exact algorithm for the OP was proposed by

Ramesh et al. [17]. More recently Fischetti et al. [9] presented a branch-and-cut algorithm able

to solve 500 cities instances to optimality in some hours. Another branch-and-cut algorithm was

presented by Gendreau et al. [10] for the OP with compulsory vertices.

In this paper we consider the Orienteering Problem with Time Windows (OPTW): a profit, a

time window and a service time are associated with each vertex and a traveling time is associated

with each edge. The objective is to find a maximum profit tour such that each vertex is either

visited inside its time window or skipped. We are aware of only two papers on this problem, both

dealing with approximation and heuristics: Kantor and Rosenwein [15] presented a so-called “tree

heuristic”, which only (approximately) solved small instances; more recently Bar-Yehuda et al. [1]

studied geometric versions of the OPTW, with customers located on a line or in the Euclidean

plane, and without the limit on the maximum allowed tour duration.

The OPTW can be reformulated as a Resource Constrained Elementary Shortest Path Problem

(RCESPP), which in turn can be effectively solved by dynamic programming with decremental state

space relaxation (DSSR), a method presented in Righini and Salani [19]. DSSR consists in solving

through dynamic programming a relaxed problem, in which it is allowed to visit vertices (and to

get the corresponding profit) more than once. This relaxation is iteratively tightened by forbidding

multiple visits to a critical vertex set of increasing size. Computational experience shows that an

optimal elementary path is obtained after defining as critical a rather small fraction of the vertices.

The same idea, named state space augmentation, was independently developed and presented by

Boland et al. [3], who also compared different strategies to define new critical vertices at each

iteration.

Original contributions. In this paper we present an exact optimization algorithm for the

OPTW based on dynamic programming with DSSR and we compare the strategies proposed by

Boland et al. by testing them on the OPTW using Solomon’s data-sets and other instances de-

rived from a data-set of Cordeau et al. [5]. Our result is that there is no domination between the

different strategies.

In addition we give a further methodological contribution along this research stream: we propose

2

a new heuristic technique for the initialization of the critical vertex set, and we show that it reduces

the number of iterations and the amount of computing time needed by the DSSR algorithm to

converge to an optimal solution.

Paper outline. In Section 2 we give a formal statement of the problem; in Section 3 we present

a dynamic programming algorithm for the OPTW; in Section 4 we present the DSSR algorithm

and we report on computational experiments; in Section 5 we present the ideas to initialize the

critical vertex set and we report on related computational experiments.

2 Problem definition

The Orienteering Problem with Time Windows (OPTW) is defined as follows. We are given

a complete undirected graph G = (N , E), with a positive weight tij associated with each edge,

representing the travel time between vertex i and vertex j. For each vertex i ∈ N we have the

following data: pi is a positive profit that is collected when the vertex is visited, [ai, bi] is a time

window defining the feasible arrival time at the vertex and si is a non-negative service time, that

is the amount of time which is spent to visit the vertex. Two special vertices, numbered 1 and N ,

where N = |N |, are the endpoints of the path to be computed. We have p1 = pN = 0, s1 = sN = 0,

a1 = aN = 0 and b1 = bN = T , where T is equal to the maximum feasible arrival time at vertex

N , that is T = maxi∈N\{1,N}{bi + si + tiN}.
We indicate with τi the arrival time at vertex i. The OPTW requires the computation of an

elementary path P defined as an ordered sequence of vertices, starting from node 1, ending at

node N , maximizing
∑

i∈P pi and such that ai ≤ τi ≤ bi, ∀i ∈ P. For each pair of vertices (i, j)

consecutively visited along P we have τj = max{τi + si + tij , aj}.

3 Dynamic programming for the OPTW

In dynamic programming algorithms for computing optimal paths, a state associated with vertex

i represents a path starting at vertex 1 and ending at vertex i. The dynamic programming algo-

rithm repeatedly extends each state to generate new states. The extension of a state corresponds

to adding a vertex to a path. To limit the exponential increase of the number of states, suitable

dominance criteria are applied to identify states whose extension cannot produce an optimal so-

lution. Recent references on this topic are the papers by Feillet et al. [8], Irnich and Desaulniers

[14] and Boland et al. [3].

Applying the same idea to the OPTW, one can design a basic dynamic programming algorithm

(DP), which generates and extends states represented by labels, that is tuples of the form (S, τ, P, i),

3

where S is a binary vector representing the subset of vertices already visited, τ is the overall time

elapsed, P is the overall profit collected, and i is the last reached vertex.

This is equivalent to say that the OPTW is a special case of the Resource Constrained Elemen-

tary Shortest Path Problem (RCESPP), a general and fundamentalNP-hard network optimization

problem, often encountered as a subproblem of more complex routing problems. In the OPTW

we have two resources: one represents time and its consumption is indicated by τ ; the other is a

dummy resource, whose consumption is indicated by S: there is one resource unit available at each

vertex and it is consumed when the vertex is visited. This method was introduced by Beasley and

Christofides [2] to enforce the elementary path constraint.

The RCESPP has recently been attacked by new dynamic programming algorithms developed

by Dumitrescu and Boland [6] and Righini and Salani [18]. Hereafter we apply to the OPTW the

bi-directional and bounded dynamic programming method presented in [18], which we briefly recall

to make this paper self-consistent. In bi-directional dynamic programming the extension of states

is done both forward from vertex 1 and backward from vertex N . Intuitively the idea is to develop

two smaller sets of states instead of one larger set. Bi-directional search is coupled with bounding,

that is the extension of the paths is stopped at a certain state, when there is the guarantee that

if the state belongs to an optimal path, then the remaining part of that path has been or will

be generated in the other direction. To decide when a path can be stopped, a critical resource

is identified and no path is allowed to exceed a consumption of the critical resource equal to half

the overall quantity of available resource. This technique requires to match forward and backward

paths to yield complete solutions. Hereafter we give the details on extension rules, dominance tests

and matching procedures of forward and backward paths.

Extension rules. When a label (S, τ, P, i) associated with vertex i is extended to vertex j, it

generates a new label (S′, τ ′, P ′, j) according to the following rules.

The prize P , initialized to 0 at vertex 1, is updated according to the formula

P ′ = P + pi/2 + pj/2.

The vector S is initialized to 0 and the update rule is:

S′k =





Sk + 1, k = j

Sk, k 6= j.

A state (S, τ, P, i) can be extended to vertex j only if Sj = 0.

The consumption of time resource τ is updated according to the direction of the extension. We

define the time window [abw
i , bbw

i] representing the backward time window of vertex i: it is obtained

by adding the service time si to the forward time window [ai, bi] for each i 6∈ {1, N}.

4

For forward extensions we have

τ ′ = max{τ + si + tij , a
fw
j }

and for backward extensions we have

τ ′ = max{τ + sj + tij , T − bbw
i }.

A forward state (S, τ, P, i) is feasible only if τ ≤ bi; a backward state (S, τ, P, i) is feasible only if

τ ≤ T − abw
i .

Dominance tests. Dominance tests are always performed when states are extended, so that

the algorithm records only non-dominated states. The dominance test is the following. Let L1 =

(S1, τ1, P1, i) and L2 = (S2, τ2, P2, i) be the labels of two states associated with vertex i and both

generated in the same direction; then L1 dominates L2 only if




S1 ≤ S2

τ1 ≤ τ2

P1 ≥ P2

and at least one of the inequalities is strict.

Matching forward and backward states. Forward and backward states are matched to-

gether to form complete paths from vertex 1 to vertex N . When matching a forward path

(Sfw, τfw, P fw, i) with a backward path (Sbw, τ bw, P bw, j) the feasibility conditions are the fol-

lowing: 



Sfw
k + Sbw

k ≤ 1 ∀k ∈ N
τfw + si + tij + sj + τ bw ≤ T

and the overall profit of the resulting path is P = P fw + pi/2 + pj/2 + P bw.

4 Decremental State Space Relaxation

State space relaxation (SSR) was introduced by Christofides et al. [4] to reduce the number of

states to be explored; with SSR the search space explored by dynamic programming is projected

onto a lower dimensional space so that only the minimum cost state is retained among all the

corresponding states in the higher dimensional space. The main drawback of this method is

that some original state corresponding to an infeasible solution may be projected onto a state

corresponding to a feasible solution in the lower dimensional space. Therefore the search in the

lower dimensional state space does not guarantee to find an optimal solution but rather a dual

bound. In the case of OPTW we apply state space relaxation to the binary vector S, replacing

5

it with the number of visited vertices σ =
∑

i∈N Si, which is constrained to be less than or equal

to N to prevent unboundedness. In this way we neglect the information on the vertices already

visited and this results in an algorithm where cycles are no longer forbidden. The dominance test

between two labels L1 and L2 now results as follows:




σ1 ≤ σ2

τ1 ≤ τ2

P1 ≥ P2.

In Righini and Salani [19] the authors introduced decremental state space relaxation (DSSR),

with the idea of iteratively reducing the relaxation of the state space as needed, according to the

structure of the optimal solution of the relaxed problem. Boland et al. [3] independently proposed

the same idea, calling it state space augmenting algorithm. In both cases the idea is to start with

a relaxation of the whole state space induced by the set of binary variables S and to tighten this

relaxation at each iteration as long as the dynamic programming algorithm returns an optimal

path with cycles. Let us define Θ as the critical vertex set, that is the set of vertices for which

the elementary path constraint is enforced, forbidding multiple visits. The set Θ is initially empty,

that is the path can visit all vertices more than once. If the optimal solution of this relaxed

problem is feasible, then it is also optimal for the original problem; otherwise some vertices are

identified as critical, they are inserted into Θ, thus augmenting the search space of the dynamic

programming algorithm. The loop is repeated until the optimal solution of the relaxed problem

turns out to be elementary. Every time Θ is enlarged, the number of dummy resources (i.e. the

number of components of vector S) increases. In turn this increases the number of states that

dynamic programming must consider and requires additional memory space and computing time.

In their paper [3] Boland et al. compared different ways of inserting new vertices into the

critical vertex set. The main strategies they took into account are the following:

• HMO: insert one vertex at a time, selecting the vertex visited the largest number of times.

In case of ex aequo, choose one at random;

• HMO-All: insert all vertices visited the maximum number of times;

• MO-All: insert all vertices visited more than once in an optimal path; this is also the strategy

used by Righini and Salani [19];

• M-All: insert all vertices visited more than once in any Pareto-optimal path; we did not

consider this strategy because our bi-directional algorithm does not generate all the Pareto-

optimal paths at the final vertex.

In this paper we use the same notation introduced in [3] and we compare the first three strategies

above.

6

Data-sets. We tested our algorithms on three classes of instances obtained from the well-known

Solomon’s data-set of VRPTW instances and from instances proposed by Cordeau et al. [5] for

the Multi Depot Periodic Vehicle Routing Problem (MDPVRP). The first two sets, composed by

29 instances, have been made by considering the first 50 and 100 vertices of Solomon’s instances.

Depending on the displacement of the customers, these data-sets are divided into random, clustered

and random-clustered categories. Instances belonging to the same data-set have the customers

located in the same way and with the same demands; the instances differ only for the time windows.

The third set has been derived from Cordeau’s 20 instances data-set, considering all customers

active in the same day. We consider the delivery demand associated with vertex i in the original

data-set as the prize pi for that vertex.

All tests were performed on a PC equipped with a Pentium IV 1.6 GHz processor with 512

MB RAM. The algorithms were coded in ANSI-C and compiled with gcc 3.0.4 and were run with

a time limit of two hours.

Experimental results. Tables 1, 2 and 3 report on the experimental comparison between the

three DSSR algorithms and the basic DP algorithm described in Section 3. The first three columns

report the instance name, the optimal solution, and the number of vertices in the optimal solution.

If the optimal value is not known, the best known solution is reported within parentheses. Next,

for the three strategies, we report the number of iterations required, the number of vertices added

to the critical set Θ, the computing time in seconds, and the percentage gap between the best

known solution and the lower bound obtained in the last iteration within the time limit. The last

column reports the computing time required by the basic DP algorithm. Empty cells mean that

the corresponding instances were not solved within the time limit. The last two rows report the

average values and the number of instances solved within the time limit. The average values for

iterations and number of critical vertices have been computed over the number of solved instances.

On the other hand the average values for computing times and gaps have been computed over the

whole set of instances setting the computing time of the unsolved instances equal to the time limit.

All instances with 50 vertices were solved by the DSSR algorithms while the basic DP algorithm

failed to solve 4 instances out of 29. The basic DP algorithm solved only 17 of the 29 Solomon’s

instances with 100 vertices, while DSSR allowed to solve 27 of them; none of the proposed algo-

rithms solved instances R104 100 and R108 100 within two hours, but for the unsolved instances

DSSR HMO-All and DSSR MO-All obtained the smallest gaps. Cordeau’s instances are harder to

solve: all algorithms failed to provide reasonable solutions for instances pr11 to pr20 which are not

reported here: after two hours of computing time we observed percentage gaps greater than 50%.

For the other instances DSSR MO-All dominated the other DSSR strategies with the exception of

instance pr06. For smaller and tightly constrained instances the basic DP algorithm was sometimes

faster than the DSSR algorithms, but it failed to solve 4 out of 10 considered instances.

7

In their experiments, made on different randomly generated data-sets, Boland et al. [3] observed

that the most conservative strategy (HMO) always dominated the others. This was not the case

in our experiments: in particular HMO was never the best strategy on Cordeau’s instances. The

comparison based on the number of iterations is favorable to DSSR MO-All, while the comparison

based on the final number of critical vertices is favorable to DSSR HMO. We observe that DSSR

HMO-All was almost always dominated either by DSSR MO-All or by DSSR HMO.

In the next section we propose some new ideas to initialize the critical vertex set in order to

reduce the number of iterations and the computing time needed by both DSSR HMO and DSSR

MO-All algorithms.

5 Initialization of the critical vertex set

We observed that the DSSR HMO strategy reduces the number of critical vertices and increases

the number of iterations needed, while the DSSR MO-All strategy reduces the number of iterations

against an increase of the number of critical vertices. We investigated how to initialize the set Θ

in a preprocessing phase, to identify a subset of vertices that have a high probability to belong to

the final critical vertex set. Let us define fij to be a measure of the “cycling attractiveness” of a

vertex i with respect to a vertex j as the ratio of the prize pi over the duration of the cycle i-j-i:

fij = pi/(si + tij + sj + tji).

Now we can define an ordering of the vertices based on the following criteria:

• Highest Cycling Attractiveness (HCA): order by maxj∈N\{i}{fij}.

• Total Cycling Attractiveness (TCA): order by
∑

j∈N\{i} fij .

• Weighted Highest Cycling Attractiveness (WHCA): order by maxj∈N\{i}{fij(bi − ai)}.

• Weighted Total Cycling Attractiveness (WTCA): order by
∑

j∈N\{i} fij(bi − ai).

In general these criteria give different results and none of them is reliable to reveal the necessary

vertices to be put in the critical set. Therefore we devised a mixed strategy (MSm) to initialize the

critical vertex set: let us define HCAm, TCAm, WHCAm and WTCAm to be the sets obtained

according to the above criteria considering only the former m vertices in the correspondent ordering.

Now we use as an initial critical vertex set the one obtained from the intersection of these four sets:

Θm = HCAm ∩ TCAm ∩ WHCAm ∩ WTCAm. By a suitable choice of the value of m the set

Θm can be initialized with the aim of reducing the number of iterations (high m) or reducing the

probability of inserting into it unnecessary vertices (low m).

8

Experimental results. Tables 4 to 7 report on the computational results obtained by MSm on

Solomon’s instances with 100 vertices (Tables 4 and 5) and Cordeau’s instances (Tables 6 and 7)

with strategies HMO (Tables 4 and 6) and MO-All (Tables 5 and 7). From the examination of the

number of vertices in optimal solutions (reported in Tables 2 and 3) we chose m = 10 and m = 20.

The format of Tables 4-7 is the same of Tables 1-3 but an additional column reports on the number

of vertices inserted into the critical vertex set in the initialization phase. The last row reports also

the percentage speed-up on the computing time. We performed our experiments using the MO-All

and HMO algorithms because in the previous tests HMO-All was dominated by DSSR HMO or

DSSR MO-All in most cases.

The critical vertex set initialization definitely improved the performance of both HMO and

MO-All algorithms. Remarkably the nasty instances R104 100 and R108 100 were solved within

the time limit. Both algorithms needed fewer iterations to converge to an elementary solution.

We also observed that in some difficult cases (most Solomon’s rc instances and Cordeau’s

instances) the number of final critical vertices considered by MO-All algorithm with initialization

(m = 10) was less than without initialization: this means that a smart choice of the initial critical

vertices can not only save computing time in the early iterations of the DSSR algorithm but it

may also have beneficial effects on the final cardinality of Θ and hence on the computing time of

the last iteration. This is even more remarkable when referred to HMO strategy, which usually

produces the smallest critical sets as shown in Tables 1-3. We observed that in some cases (namely

instances c103, pr03 and pr04) the number of critical vertices at the end of the HMO algorithm

was smaller when the set had been initialized.

Initialization with our mixed strategy yielded a substantial speed-up: for the Solomon’s data-

set the initialization of the critical vertex set reduced the average computing time of the DSSR

MO-All algorithm by 61.62% with MS10 and by 37.17% with MS20 and it reduced the average

computing time for the DSSR HMO algorithm by 61.53% with MS10 and by 39.33% with MS20.

The speed-up has been computed considering the time limit of two hours for unsolved instances.

Therefore it is a lower bound on the real speed-up for those instances. For the Cordeau’s data-set

the initialization of the critical vertex set produced smaller average speed-up: 5.25% with DSSR

HMO algorithm and m = 10, and 6.39% with DSSR MO-All algorithm and m = 20.

References

[1] R. Bar-Yehuda, G. Even, S. Shahar, “On approximating a geometric prize-collecting traveling

salesman problem with time windows”, Lecture Notes in Computer Science 2832 (2003), 55-66.

[2] J. E. Beasley, N. Christofides, “An algorithm for the resource constrained shortest path prob-

lem”, Networks 19 (1989), 379-394.

9

[3] N. Boland, J. Dethridge, I. Dumitrescu, “Accelerated label setting algorithms for the elemen-

tary resource constrained shortest path”, Operations Research Letters 34 (2006) 58-68.

[4] N. Christofides, A. Mingozzi, P. Toth, “State-space relaxation procedures for the computation

of bounds to routing problems”, Networks 11 (1981), 145-164.

[5] J.F. Cordeau, M. Gendreau, G. Laporte, “A tabu search heuristic for periodic and multi-

depot”, Networks 30 (1997), 105119.

[6] I. Dumitrescu, N. Boland, “Improved preprocessing, labeling and scaling algorithms for the

weight-constrained shortest path problem”, Networks 42 (2003), 135-153.

[7] D. Feillet, P. Dejax, M. Gendreau, “Traveling Salesman Problems with profits: an overview”,

Transportation Science 39 (2005), 188-205.

[8] D. Feillet, P. Dejax, M: Gendreau, C. Gueguen, “An exact algorithm for the elementary short-

est path problem with resource constraints: application to some vehicle routing problems”,

Networks 44 (2004), 216-229.

[9] M. Fischetti, J.J. Salazar, P. Toth, “Solving the Orienteering Problem through Branch-and-

Cut”, INFORMS Journal on Computing 10 (1998), 133-148.

[10] M. Gendreau, G. Laporte, F. Semet, “A Branch-and-Cut algorithm for the undirected selective

traveling salesman problem”, Networks 32 (1998), 263-273.

[11] M. Gendreau, G. Laporte, F. Semet, “A tabu search heuristic for the undirected selective

traveling salesman problem”, European Journal of Operational Research 106 (1998), 539-545.

[12] B.L. Golden, L. Levy, R. Vohra, “The Orienteering Problem”, Naval Research Logistics 34

(1987), 307-318.

[13] G. Gutin, A. Punnen, “The Traveling Salesman Problem and its Variations”, Kluwer Academic

Publishers, 2002, Boston

[14] S. Irnich, G. Desaulniers, “Shortest path problems with resource constraints”, Cahier du

GERAD G-2004-11, Université de Montréal, 2004

[15] M.G. Kantor, M.B. Rosenwein, “The Orienteering Problem with Time Windows”, Journal of

the Operational Research Society 43 (1992), 629-635.

[16] G. Laporte, “The Traveling Salesman Problem: An overview of exact and approximate algo-

rithms”, European Journal of Operational Research 59 (1992), 231-247.

[17] R. Ramesh, Y. Yong Seok, M.H. Karwan, “An optimal algorithm for the orienteering tour

problem”, ORSA Journal on Computing 4 (1992), 155-165.

10

[18] G. Righini, M. Salani, “Dynamic programming algorithms for the elementary shortest path

problem with resource constraints”, Electronic Notes in Discrete Mathematics 17 (2004), 247-

249.

[19] G. Righini, M. Salani, “New dynamic programming algorithms for the Resource Constrained

Elementary Shortest Path”, Note del Polo - Ricerca 69 (2005), Dipartimento di Tecnologie

dell’Informazione, Università degli Studi di Milano, submitted for publication.

[20] T. Tsiligrides, “Heuristic methods applied to orienteering”, Journal of the Operational Re-

search Society 35 (1984), 797-809.

11

T
ab

le
1:

So
lo

m
on

’s
in

st
an

ce
s

-
50

ve
rt

ic
es

In
st

a
n
c
e

O
p
ti

m
u
m

D
S
S
R

H
M

O
D

S
S
R

H
M

O
-A

ll
D

S
S
R

M
O

-A
ll

B
a
si

c
D

.P
.

N
a
m

e
P
ri

z
e

V
e
rt

.
It

Θ
T

im
e
(s

)
(%

)
It

Θ
T

im
e
(s

)
(%

)
It

Θ
T

im
e
(s

)
(%

)
T

im
e
(s

)

c
1
0
1

5
0

2
7
0

1
0

1
0

0
.0

2
-

1
0

0
.0

1
-

1
0

0
.0

1
-

0
.0

2

c
1
0
2

5
0

3
0
0

1
1

5
4

1
.0

8
-

5
4

1
.1

1
-

4
4

0
.9

1
-

6
0
.3

0

c
1
0
3

5
0

3
2
0

1
1

6
5

2
3
.0

2
-

6
5

2
3
.2

7
-

4
6

2
2
.9

6
-

-

c
1
0
4

5
0

3
4
0

1
1

6
5

8
1
.4

1
-

4
5

4
6
.2

5
-

5
8

1
1
1
.1

6
-

-

c
1
0
5

5
0

3
0
0

1
1

1
0

0
.0

2
-

1
0

0
.0

3
-

1
0

0
.0

2
-

0
.0

4

c
1
0
6

5
0

2
8
0

1
0

1
0

0
.0

2
-

1
0

0
.0

2
-

1
0

0
.0

2
-

0
.0

3

c
1
0
7

5
0

3
1
0

1
1

1
0

0
.0

4
-

1
0

0
.0

3
-

1
0

0
.0

4
-

0
.0

6

c
1
0
8

5
0

3
2
0

1
1

4
3

0
.2

2
-

2
2

0
.1

1
-

2
2

0
.1

1
-

0
.1

0

c
1
0
9

5
0

3
4
0

1
1

7
6

0
.9

2
-

3
6

0
.4

1
-

3
6

0
.4

0
-

0
.8

9

r1
0
1

5
0

1
2
6

5
1

0
0
.0

1
-

1
0

0
.0

0
-

1
0

0
.0

0
-

0
.0

0

r1
0
2

5
0

1
9
8

9
5

4
0
.7

2
-

5
5

1
.2

9
-

5
6

1
.4

2
-

3
.4

1

r1
0
3

5
0

2
1
4

1
0

8
7

2
9
.9

6
-

8
7

3
0
.0

7
-

6
9

5
6
.3

8
-

1
8
6
.3

7

r1
0
4

5
0

2
2
7

1
0

1
0

9
1
5
2
.6

9
-

9
1
0

1
6
1
.1

0
-

6
1
2

2
7
2
.7

8
-

-

r1
0
5

5
0

1
5
9

6
1

0
0
.0

1
-

1
0

0
.0

1
-

1
0

0
.0

1
-

0
.0

2

r1
0
6

5
0

2
0
8

1
0

4
3

0
.5

6
-

4
4

0
.8

5
-

4
5

0
.8

8
-

4
.7

8

r1
0
7

5
0

2
2
0

1
0

6
5

9
.8

2
-

6
5

9
.7

0
-

5
9

4
3
.7

8
-

1
8
2
.2

1

r1
0
8

5
0

2
2
7

1
0

1
2

1
1

4
1
0
.5

8
-

1
1

1
3

4
9
2
.2

9
-

7
1
4

9
5
0
.2

3
-

-

r1
0
9

5
0

1
9
2

8
5

4
0
.2

0
-

5
4

0
.1

9
-

5
5

0
.2

0
-

0
.0

7

r1
1
0

5
0

2
0
8

9
9

8
1
.5

6
-

7
1
0

1
.2

6
-

6
8

1
.0

9
-

0
.7

3

r1
1
1

5
0

2
2
3

9
4

3
1
.7

8
-

4
3

1
.8

4
-

3
3

1
.5

1
-

2
4
.7

5

r1
1
2

5
0

2
2
6

1
0

5
4

3
.1

1
-

4
4

2
.7

8
-

4
5

2
.9

7
-

4
2
.6

2

rc
1
0
1

5
0

1
8
0

7
5

4
0
.0

4
-

4
4

0
.0

3
-

4
4

0
.0

4
-

0
.0

1

rc
1
0
2

5
0

2
3
0

9
1
0

9
0
.6

9
-

9
1
0

0
.6

0
-

6
1
1

0
.4

6
-

0
.1

8

rc
1
0
3

5
0

2
4
0

9
1
2

1
1

2
.2

4
-

1
0

1
2

2
.1

3
-

8
1
6

1
.9

6
-

2
.5

7

rc
1
0
4

5
0

2
7
0

1
0

1
1

1
0

6
.1

3
-

9
1
1

5
.1

8
-

7
1
5

6
.1

9
-

7
5
.4

7

rc
1
0
5

5
0

2
1
0

9
1
3

1
2

0
.7

1
-

1
2

1
4

0
.6

8
-

9
1
5

0
.5

4
-

0
.1

1

rc
1
0
6

5
0

2
1
0

8
1
9

1
8

0
.7

7
-

1
1

2
3

0
.4

6
-

1
0

2
3

0
.4

5
-

0
.0

7

rc
1
0
7

5
0

2
4
0

1
0

1
5

1
4

3
.4

1
-

1
3

1
4

3
.0

1
-

9
2
0

3
.1

1
-

2
.3

5

rc
1
0
8

5
0

2
5
0

9
1
5

1
4

9
.2

9
-

1
5

1
6

1
0
.8

1
-

9
2
0

1
5
.6

0
-

3
9
.9

9

A
v
e
ra

g
e

-
-

6
.9

7
5
.9

7
2
5
.5

5
-

5
.9

3
6
.5

9
2
7
.4

3
-

4
.7

2
7
.7

9
5
1
.5

6
-

1
2
6
3
.0

0

S
o
lv

e
d

-
-

2
9

-
-

-
2
9

-
-

-
2
9

-
-

-
2
5

12

T
ab

le
2:

So
lo

m
on

s’
s

in
st

an
ce

s
-

10
0

ve
rt

ic
es

In
st

a
n
c
e

O
p
ti

m
u
m

D
S
S
R

H
M

O
D

S
S
R

H
M

O
-A

ll
D

S
S
R

M
O

-A
ll

B
a
si

c
D

.P
.

N
a
m

e
P
ri

z
e

V
e
rt

.
It

Θ
T

im
e
(s

)
(%

)
It

Θ
T

im
e
(s

)
(%

)
It

Θ
T

im
e
(s

)
(%

)
T

im
e
(s

)

c
1
0
1

1
0
0

3
2
0

1
0

1
0

0
.0

7
-

1
0

0
.0

6
-

1
0

0
.0

6
-

0
.1

4

c
1
0
2

1
0
0

3
6
0

1
1

4
3

5
.3

3
-

3
3

3
.8

1
-

3
3

4
.4

9
-

-

c
1
0
3

1
0
0

4
0
0

1
1

9
8

1
0
8
1
.0

4
-

8
9

1
3
9
3
.3

8
-

6
9

1
1
0
1
.7

4
-

-

c
1
0
4

1
0
0

4
2
0

1
1

9
8

2
1
4
1
.3

8
-

7
8

1
8
5
6
.3

9
-

6
9

2
1
6
6
.7

9
-

-

c
1
0
5

1
0
0

3
4
0

1
0

1
0

0
.1

2
-

1
0

0
.1

3
-

1
0

0
.1

2
-

0
.3

0

c
1
0
6

1
0
0

3
4
0

1
0

1
0

0
.1

4
-

1
0

0
.1

5
-

1
0

0
.1

5
-

0
.3

9

c
1
0
7

1
0
0

3
7
0

1
1

1
0

0
.2

0
-

1
0

0
.2

0
-

1
0

0
.2

0
-

0
.5

1

c
1
0
8

1
0
0

3
7
0

1
1

4
3

1
.4

3
-

4
4

1
.4

7
-

4
4

1
.4

6
-

0
.9

3

c
1
0
9

1
0
0

3
8
0

1
1

1
2

1
1

1
4
.0

1
-

8
1
3

1
0
.6

5
-

8
1
3

1
0
.5

7
-

1
1
.6

7

r1
0
1

1
0
0

1
9
8

9
1

0
0
.0

4
-

1
0

0
.0

3
-

1
0

0
.0

4
-

0
.0

8

r1
0
2

1
0
0

2
8
6

1
1

7
6

2
3
3
.2

0
-

7
7

2
6
0
.0

4
-

5
8

3
1
0
.7

9
-

-

r1
0
3

1
0
0

2
9
3

1
1

1
0

9
5
4
9
8
.8

1
-

9
8

-
0
.3

0
7

1
0

5
7
2
9
.0

1
-

-

r1
0
4

1
0
0

(3
0
3
)

(1
2
)

1
0

9
-

2
.5

0
9

9
-

2
.5

0
6

1
2

-
2
.5

0
-

r1
0
5

1
0
0

2
4
7

1
1

3
2

0
.3

5
-

2
3

0
.2

3
-

2
3

0
.2

3
-

0
.2

4

r1
0
6

1
0
0

2
9
3

1
1

8
7

5
7
9
.4

4
-

8
8

6
3
4
.8

9
-

5
8

3
3
4
.4

9
-

-

r1
0
7

1
0
0

2
9
9

1
3

9
8

2
9
7
9
.9

4
-

9
1
0

3
4
8
3
.7

3
-

6
1
1

3
5
1
4
.8

0
-

-

r1
0
8

1
0
0

(3
0
3
)

(1
2
)

9
8

-
1
6
.7

8
9

9
-

2
.5

0
6

1
2

-
2
.5

0
-

r1
0
9

1
0
0

2
7
7

1
2

1
1

1
0

6
.8

7
-

6
9

3
.6

3
-

5
9

3
.0

9
-

1
.6

7

r1
1
0

1
0
0

2
8
4

1
3

1
0

9
7
8
.5

2
-

7
1
0

7
2
.2

7
-

4
9

3
0
.8

3
-

7
9
.0

5

r1
1
1

1
0
0

2
9
7

1
2

1
1

1
0

1
9
3
2
.5

5
-

9
1
0

1
8
0
7
.8

6
-

7
1
2

1
4
0
8
.8

0
-

-

r1
1
2

1
0
0

2
9
8

1
2

1
2

1
1

2
6
2
4
.4

2
-

9
1
1

2
5
0
8
.1

7
-

7
1
4

3
1
7
7
.0

2
-

-

rc
1
0
1

1
0
0

2
1
9

9
4

3
0
.3

1
-

3
3

0
.2

4
-

3
3

0
.2

3
-

0
.1

4

rc
1
0
2

1
0
0

2
6
6

1
0

8
7

6
.1

1
-

8
9

8
.6

8
-

6
1
1

9
.8

8
-

1
2
.7

5

rc
1
0
3

1
0
0

2
6
6

1
0

1
4

1
3

8
8
.1

2
-

1
2

1
4

9
9
.2

5
-

9
1
8

1
1
1
.4

4
-

4
0
1
.3

4

rc
1
0
4

1
0
0

3
0
1

1
1

1
2

1
1

3
0
4
.4

2
-

1
1

1
1

2
6
8
.6

3
-

7
1
6

2
6
4
.8

4
-

-

rc
1
0
5

1
0
0

2
4
4

1
1

8
7

2
.8

6
-

8
9

3
.0

8
-

7
1
0

2
.9

5
-

1
.9

3

rc
1
0
6

1
0
0

2
5
2

1
1

1
1

1
0

3
.6

4
-

7
1
0

2
.2

4
-

6
1
3

2
.0

8
-

0
.9

0

rc
1
0
7

1
0
0

2
7
7

1
0

1
4

1
3

5
0
.7

6
-

1
4

1
3

5
0
.8

2
-

1
0

1
9

4
9
.1

9
-

5
9
.1

6

rc
1
0
8

1
0
0

2
9
8

1
1

1
0

9
7
7
.7

7
-

9
1
0

7
1
.1

0
-

7
1
4

6
8
.9

5
-

9
5
9
.4

5

A
v
e
ra

g
e

-
-

7
.5

9
6
.5

9
1
1
0
7
.3

1
0
.6

6
6
.3

1
7
.0

8
1
1
7
7
.2

8
0
.1

8
5
.0

0
8
.3

7
1
1
2
7
.7

3
0
.1

7
3
0
3
2
.0

5

S
o
lv

e
d

-
-

2
7

-
-

-
2
6

-
-

-
2
7

-
-

-
1
7

13

T
ab

le
3:

C
or

de
au

’s
in

st
an

ce
s

In
st

a
n
c
e

O
p
ti

m
u
m

D
S
S
R

H
M

O
D

S
S
R

H
M

O
-A

ll
D

S
S
R

M
O

-A
ll

B
a
si

c
D

.P
.

N
a
m

e
P
ri

z
e

V
e
rt

.
It

Θ
T

im
e
(s

)
(%

)
It

Θ
T

im
e
(s

)
(%

)
It

Θ
T

im
e
(s

)
(%

)
T

im
e
(s

)

p
r0

1
4
8

3
0
8

2
1

1
3

1
2

3
.7

9
-

1
0

1
2

2
.9

3
-

4
1
5

1
.1

9
-

0
.7

0

p
r0

2
9
6

4
0
4

2
4

2
2

2
1

1
0
1
.7

8
-

1
3

2
3

6
8
.7

5
-

6
2
4

3
7
.5

2
-

3
0
.7

0

p
r0

3
1
4
4

3
9
4

2
2

2
6

2
5

4
4
2
.4

5
-

1
9

2
7

3
1
8
.7

9
-

8
3
8

1
5
1
.7

3
-

2
6
5
.7

2

p
r0

4
1
9
2

4
8
9

2
4

3
8

3
7

3
1
5
2
.7

4
-

2
0

3
9

1
6
3
9
.4

9
-

7
4
0

6
4
8
.8

2
-

1
0
8
4
.8

0

p
r0

5
2
4
0

5
9
5

3
1

2
3

2
2

-
1
2
.2

1
6

2
5

-
9
.3

7
4
0

6
8
1
5
.8

2
-

-

p
r0

6
2
8
8

(5
0
1
)

(2
6
)

1
3

1
2

-
2
9
.7

7
8

-
4
7
.9

4
1
9

-
4
5
.1

-

p
r0

7
7
2

2
9
8

1
7

2
1

2
0

1
2
.1

3
-

1
2

2
2

6
.8

5
-

6
2
1

3
.6

5
-

1
.5

1

p
r0

8
1
4
4

4
6
3

2
5

2
5

2
4

3
3
8
.2

5
-

1
1

2
5

1
3
1
.9

4
-

6
3
1

9
0
.7

1
-

1
2
8
.6

0

p
r0

9
2
1
6

4
9
3

2
9

2
7

2
6

-
3
.3

1
7

2
6

3
9
8
8
.4

5
-

8
3
6

3
2
7
0
.8

8
-

-

p
r1

0
2
8
8

(5
8
4
)

(3
2
)

2
4

2
3

-
3
7
.3

2
1

3
8

-
1
1
.0

1
2

6
2

-
1
.0

-

A
v
e
ra

g
e

-
-

2
4
.1

7
2
3
.1

7
3
2
8
5
.1

1
8
.2

5
1
4
.5

7
2
4
.8

6
2
7
7
5
.7

2
6
.8

2
6
.5

0
3
0
.6

3
2
5
4
2
.0

3
4
.6

1
3
0
3
1
.2

0

S
o
lv

e
d

-
-

6
-

-
-

7
-

-
-

8
-

-
-

6

14

T
ab

le
4:

So
lo

m
on

’s
in

st
an

ce
s

-
10

0
ve

rt
ic

es
-

D
SS

R
H

M
O

In
st

a
n
c
e

O
p
ti

m
u
m

D
S
S
R

w
/
o

in
it

ia
li
z
a
ti

o
n

M
S
1
0

M
S
2
0

N
a
m

e
B

e
st

N
It

Θ
T

im
e
(s

)
(%

)
In

it
It

Θ
T

im
e
(s

)
(%

)
In

it
It

Θ
T

im
e
(s

)
(%

)

c
1
0
1

1
0
0

3
2
0

1
0

1
0

0
.0

7
-

3
1

3
0
.0

8
-

1
0

1
1
0

0
.0

9
-

c
1
0
2

1
0
0

3
6
0

1
1

4
3

5
.3

3
-

2
3

3
4
.0

8
-

3
1

3
2
.2

6
-

c
1
0
3

1
0
0

4
0
0

1
1

9
8

1
0
8
1
.0

4
-

5
3

7
2
7
0
.7

4
-

1
0

1
1
0

5
5
2
.9

9
-

c
1
0
4

1
0
0

4
2
0

1
1

9
8

2
1
4
1
.3

8
-

6
4

9
1
6
2
7
.6

6
-

1
5

1
1
5

6
4
0
1
.2

2
-

c
1
0
5

1
0
0

3
4
0

1
0

1
0

0
.1

2
-

0
1

0
0
.1

1
-

5
1

5
0
.1

4
-

c
1
0
6

1
0
0

3
4
0

1
0

1
0

0
.1

4
-

1
1

1
0
.1

6
-

6
1

6
0
.1

9
-

c
1
0
7

1
0
0

3
7
0

1
1

1
0

0
.2

0
-

1
1

1
0
.2

5
-

7
1

7
0
.3

1
-

c
1
0
8

1
0
0

3
7
0

1
1

4
3

1
.4

3
-

1
5

5
2
.0

1
-

5
4

8
2
.5

4
-

c
1
0
9

1
0
0

3
8
0

1
1

1
2

1
1

1
4
.0

1
-

4
8

1
1

6
.9

8
-

1
0

7
1
6

7
.7

1
-

r1
0
1

1
0
0

1
9
8

9
1

0
0
.0

4
-

4
1

4
0
.0

8
-

1
2

1
1
2

0
.1

6
-

r1
0
2

1
0
0

2
8
6

1
1

7
6

2
3
3
.2

0
-

7
2

8
5
9
.9

0
-

9
1

9
4
2
.0

8
-

r1
0
3

1
0
0

2
9
3

1
1

1
0

9
5
4
9
8
.8

1
-

8
3

1
0

6
7
2
.0

6
-

1
2

2
1
3

6
7
6
.5

5
-

r1
0
4

1
0
0

3
0
3

1
3

-
-

-
2
.5

0
7

5
1
1

4
7
2
5
.2

3
-

1
4

3
1
6

5
6
1
3
.1

7
-

r1
0
5

1
0
0

2
4
7

1
1

3
2

0
.3

5
-

3
2

4
0
.3

7
-

7
2

8
0
.4

4
-

r1
0
6

1
0
0

2
9
3

1
1

8
7

5
7
9
.4

4
-

7
2

8
9
5
.5

1
-

9
1

9
6
5
.0

5
-

r1
0
7

1
0
0

2
9
9

1
3

9
8

2
9
7
9
.9

4
-

8
3

1
0

7
7
3
.3

2
-

1
2

2
1
3

7
8
6
.0

9
-

r1
0
8

1
0
0

3
0
8

1
3

-
-

-
1
6
.7

8
7

4
1
0

2
3
5
3
.7

3
-

1
4

2
1
5

3
0
4
8
.1

9
-

r1
0
9

1
0
0

2
7
7

1
2

1
1

1
0

6
.8

7
-

3
9

1
1

3
.8

7
-

9
7

1
5

3
.3

8
-

r1
1
0

1
0
0

2
8
4

1
3

1
0

9
7
8
.5

2
-

4
6

9
2
8
.6

2
-

9
4

1
2

2
6
.5

3
-

r1
1
1

1
0
0

2
9
7

1
2

1
1

1
0

1
9
3
2
.5

5
-

6
6

1
1

6
3
2
.7

1
-

1
1

3
1
3

5
8
5
.3

4
-

r1
1
2

1
0
0

2
9
8

1
2

1
2

1
1

2
6
2
4
.4

2
-

6
6

1
1

8
1
1
.3

1
-

1
5

3
1
7

1
3
4
8
.5

6
-

rc
1
0
1

1
0
0

2
1
9

9
4

3
0
.3

1
-

4
3

6
0
.3

6
-

8
2

9
0
.4

6
-

rc
1
0
2

1
0
0

2
6
6

1
0

8
7

6
.1

1
-

1
7

7
4
.7

8
-

8
5

1
2

5
.7

9
-

rc
1
0
3

1
0
0

2
6
6

1
0

1
4

1
3

8
8
.1

2
-

3
1
1

1
3

6
9
.7

8
-

8
1
0

1
7

1
0
3
.2

0
-

rc
1
0
4

1
0
0

3
0
1

1
1

1
2

1
1

3
0
4
.4

2
-

4
8

1
1

1
6
1
.1

9
-

1
0

6
1
5

1
6
5
.6

4
-

rc
1
0
5

1
0
0

2
4
4

1
1

8
7

2
.8

6
-

2
7

8
2
.0

9
-

7
4

1
0

1
.4

2
-

rc
1
0
6

1
0
0

2
5
2

1
1

1
1

1
0

3
.6

4
-

3
8

1
0

2
.1

7
-

9
5

1
3

1
.5

1
-

rc
1
0
7

1
0
0

2
7
7

1
0

1
4

1
3

5
0
.7

6
-

6
8

1
3

1
8
.2

1
-

8
6

1
3

1
4
.9

8
-

rc
1
0
8

1
0
0

2
9
8

1
1

1
0

9
7
7
.7

7
-

6
4

9
2
5
.5

2
-

1
0

3
1
2

2
1
.0

9
-

A
v
e
ra

g
e

-
-

7
.5

9
6
.5

9
1
1
0
7
.3

1
0
.6

6
4
.2

1
4
.5

5
7
.7

2
4
2
5
.9

6
-

9
.3

8
3
.1

0
1
1
.4

8
6
7
1
.7

2
-

S
o
lv

e
d

-
-

2
7

-
-

-
2
9

-
-

-
-

2
9

-
-

-
-

S
p
e
e
d

u
p

-
-

-
-

-
-

-
-

-
6
1
.5

3
%

-
-

-
-

3
9
.3

3
%

-

15

T
ab

le
5:

So
lo

m
on

’s
in

st
an

ce
s

-
10

0
ve

rt
ic

es
-

D
SS

R
M

O
-A

ll

In
st

a
n
c
e

O
p
ti

m
u
m

D
S
S
R

w
/
o

in
it

ia
li
z
a
ti

o
n

M
S
1
0

M
S
2
0

N
a
m

e
B

e
st

N
It

Θ
T

im
e
(s

)
(%

)
In

it
It

Θ
T

im
e
(s

)
(%

)
In

it
It

Θ
T

im
e
(s

)
(%

)

c
1
0
1

1
0
0

3
2
0

1
0

1
0

0
.0

6
-

3
1

3
0
.1

1
-

1
0

1
1
0

0
.1

6
-

c
1
0
2

1
0
0

3
6
0

1
1

3
3

4
.4

9
-

2
2

3
2
.9

9
-

3
1

3
2
.2

5
-

c
1
0
3

1
0
0

4
0
0

1
1

6
9

1
1
0
1
.7

4
-

5
3

9
4
9
1
.3

5
-

1
0

1
1
0

5
5
5
.2

9
-

c
1
0
4

1
0
0

4
2
0

1
1

6
9

2
1
6
6
.7

9
-

6
3

9
1
3
4
2
.5

8
-

1
5

1
1
5

6
4
2
6
.6

1
-

c
1
0
5

1
0
0

3
4
0

1
0

1
0

0
.1

2
-

0
1

0
0
.1

2
-

5
1

5
0
.1

2
-

c
1
0
6

1
0
0

3
4
0

1
0

1
0

0
.1

5
-

1
1

1
0
.1

8
-

6
1

6
0
.2

1
-

c
1
0
7

1
0
0

3
7
0

1
1

1
0

0
.2

0
-

1
1

1
0
.2

3
-

7
1

7
0
.2

8
-

c
1
0
8

1
0
0

3
7
0

1
1

4
4

1
.4

6
-

1
5

6
1
.8

8
-

5
4

9
2
.0

4
-

c
1
0
9

1
0
0

3
8
0

1
1

8
1
3

1
0
.5

7
-

4
6

1
3

5
.8

3
-

1
0

5
1
7

6
.4

5
-

r1
0
1

1
0
0

1
9
8

9
1

0
0
.0

4
-

4
1

4
0
.0

5
-

1
2

1
1
2

0
.0

9
-

r1
0
2

1
0
0

2
8
6

1
1

5
8

3
1
0
.7

9
-

7
2

8
6
0
.0

7
-

9
1

9
4
2
.0

3
-

r1
0
3

1
0
0

2
9
3

1
1

7
1
0

5
7
2
9
.0

1
-

8
2

1
0

4
3
4
.2

4
-

1
2

2
1
4

7
5
3
.4

0
-

r1
0
4

1
0
0

3
0
3

1
3

-
-

-
2
.5

0
7

3
1
2

3
6
4
6
.7

2
-

1
4

2
1
7

4
6
1
9
.1

6
-

r1
0
5

1
0
0

2
4
7

1
1

2
3

0
.2

3
-

3
2

4
0
.2

7
-

7
2

8
0
.4

1
-

r1
0
6

1
0
0

2
9
3

1
1

5
8

3
3
4
.4

9
-

7
2

8
9
5
.5

4
-

9
1

9
6
4
.9

7
-

r1
0
7

1
0
0

2
9
9

1
3

6
1
1

3
5
1
4
.8

0
-

8
3

1
3

1
2
4
5
.5

3
-

1
2

2
1
3

7
8
6
.0

9
-

r1
0
8

1
0
0

3
0
8

1
3

-
-

-
2
.5

0
7

3
1
2

3
8
6
2
.1

0
-

1
4

2
1
7

4
8
4
7
.6

9
-

r1
0
9

1
0
0

2
7
7

1
2

5
9

3
.0

9
-

3
5

1
1

3
.5

5
-

9
6

1
5

5
.4

1
-

r1
1
0

1
0
0

2
8
4

1
3

4
9

3
0
.8

3
-

4
3

9
2
0
.4

4
-

9
3

1
2

2
6
.6

5
-

r1
1
1

1
0
0

2
9
7

1
2

7
1
2

1
4
0
8
.8

0
-

6
4

1
2

4
4
0
.6

7
-

1
1

3
1
3

5
8
5
.2

3
-

r1
1
2

1
0
0

2
9
8

1
2

7
1
4

3
1
7
7
.0

2
-

6
3

1
2

6
0
0
.3

4
-

1
5

3
1
7

1
3
4
8
.3

3
-

rc
1
0
1

1
0
0

2
1
9

9
3

3
0
.2

3
-

4
2

6
0
.2

4
-

8
2

9
0
.3

1
-

rc
1
0
2

1
0
0

2
6
6

1
0

6
1
1

9
.8

8
-

1
4

8
4
.0

3
-

8
4

1
3

8
.4

6
-

rc
1
0
3

1
0
0

2
6
6

1
0

9
1
8

1
1
1
.4

4
-

3
6

1
5

6
1
.1

8
-

8
7

1
8

1
2
3
.1

9
-

rc
1
0
4

1
0
0

3
0
1

1
1

7
1
6

2
6
4
.8

4
-

4
6

1
5

1
9
3
.2

5
-

1
0

5
1
9

3
0
5
.4

0
-

rc
1
0
5

1
0
0

2
4
4

1
1

7
1
0

2
.9

5
-

2
6

1
0

1
.8

9
-

7
4

1
2

1
.4

5
-

rc
1
0
6

1
0
0

2
5
2

1
1

6
1
3

2
.0

8
-

3
5

1
2

1
.3

9
-

9
4

1
4

1
.2

6
-

rc
1
0
7

1
0
0

2
7
7

1
0

1
0

1
9

4
9
.1

9
-

6
6

1
5

1
4
.7

6
-

8
5

1
5

1
3
.0

2
-

rc
1
0
8

1
0
0

2
9
8

1
1

7
1
4

6
8
.9

5
-

6
3

1
0

2
0
.0

6
-

1
0

3
1
4

2
2
.4

3
-

A
v
e
ra

g
e

-
-

5
.0

0
8
.3

7
1
1
2
7
.7

3
0
.1

7
4
.2

1
3
.2

8
8
.6

6
4
3
2
.8

1
-

9
.3

8
2
.7

2
1
2
.1

4
7
0
8
.5

7
-

S
o
lv

e
d

-
-

2
7

-
-

-
2
9

-
-

-
-

2
9

-
-

-
-

S
p
p
e
d

u
p

-
-

-
-

-
-

-
-

-
6
1
.6

2
%

-
-

-
-

3
7
.1

7
%

-

16

T
ab

le
6:

C
or

de
au

’s
in

st
an

ce
s

-
D

SS
R

H
M

O

In
st

a
n
c
e

O
p
ti

m
u
m

D
S
S
R

w
/
o

in
it

ia
li
z
a
ti

o
n

M
S
1
0

M
S
2
0

N
a
m

e
B

e
st

N
It

Θ
T

im
e
(s

)
(%

)
In

it
It

Θ
T

im
e
(s

)
(%

)
In

it
It

Θ
T

im
e
(s

)
(%

)

p
r0

1
1
0
0

3
0
8

2
1

1
3

1
2

3
.7

9
-

3
1
2

1
4

3
.8

5
-

1
3

7
1
9

2
.6

5
-

p
r0

2
1
0
0

4
0
4

2
4

2
2

2
1

1
0
1
.7

8
-

4
1
8

2
1

7
9
.6

6
-

9
1
4

2
2

7
2
.3

4
-

p
r0

3
1
0
0

3
9
4

2
2

2
6

2
5

4
4
2
.4

5
-

4
2
0

2
3

2
3
2
.1

5
-

8
1
8

2
5

2
3
0
.0

6
-

p
r0

4
1
0
0

4
8
9

2
4

3
8

3
7

3
1
5
2
.7

4
-

2
3
6

3
7

2
2
3
2
.3

5
-

6
3
1

3
6

2
0
7
5
.0

9
-

p
r0

5
1
0
0

5
9
5

3
1

2
3

2
2

-
1
2
.2

0
3

2
2

2
4

-
1
2
.2

0
6

2
0

2
5

-
2
3
.5

0

p
r0

6
1
0
0

(5
0
1
)

(2
6
)

1
3

1
2

-
2
9
.7

0
2

1
2

1
3

-
2
9
.7

0
5

1
0

1
4

-
3
5
.2

0

p
r0

7
1
0
0

2
9
8

1
7

2
1

2
0

1
2
.1

3
-

5
1
6

2
0

7
.1

2
-

1
2

1
0

2
1

5
.0

8
-

p
r0

8
1
0
0

4
6
3

2
5

2
5

2
4

3
3
8
.2

5
-

3
2
2

2
4

1
9
2
.5

7
-

8
1
7

2
4

1
6
4
.7

4
-

p
r0

9
1
0
0

4
9
3

2
9

2
7

2
6

-
3
.3

0
3

2
5

2
7

6
7
7
8
.2

6
-

1
0

2
1

3
0

-
1
.3

0

p
r1

0
1
0
0

(5
8
4
)

(3
2
)

2
4

2
3

-
3
7
.3

0
3

2
4

2
6

-
2
1
.7

0
6

2
0

2
5

-
3
7
.3

0

A
v
e
ra

g
e

-
-

2
4
.1

7
2
3
.1

7
3
2
8
5
.1

1
8
.2

5
3

2
1

2
3
.7

3
1
1
2
.6

0
6
.3

6
8

1
6

2
4

3
1
3
5
.0

0
9
.7

3

S
o
lv

e
d

-
-

6
-

-
-

7
-

-
-

-
6

-
-

-
-

S
p
e
e
d

u
p

-
-

-
-

-
-

-
-

-
5
.2

5
%

-
-

-
-

4
.5

7
%

-

17

T
ab

le
7:

C
or

de
au

’s
in

st
an

ce
s

-
D

SS
R

M
O

-A
ll

In
st

a
n
c
e

O
p
ti

m
u
m

D
S
S
R

w
/
o

in
it

ia
li
z
a
ti

o
n

M
S
1
0

M
S
2
0

N
a
m

e
B

e
st

N
It

Θ
T

im
e
(s

)
(%

)
In

it
It

Θ
T

im
e
(s

)
(%

)
In

it
It

Θ
T

im
e
(s

)
(%

)

p
r0

1
1
0
0

3
0
8

2
1

4
1
5

1
.1

9
-

3
5

1
9

1
.5

8
-

1
3

3
2
1

1
.1

4
-

p
r0

2
1
0
0

4
0
4

2
4

6
2
4

3
7
.5

2
-

4
6

2
3

2
9
.4

7
-

9
6

2
4

3
7
.0

8
-

p
r0

3
1
0
0

3
9
4

2
2

8
3
8

1
5
1
.7

3
-

4
8

3
2

8
6
.1

9
-

8
8

2
8

7
8
.3

3
-

p
r0

4
1
0
0

4
8
9

2
4

7
4
0

6
4
8
.8

2
-

2
7

4
0

5
5
7
.2

3
-

6
7

3
8

5
0
6
.2

7
-

p
r0

5
1
0
0

5
9
5

3
1

7
4
0

6
8
1
5
.8

2
-

3
9

4
0

-
1
.3

0
6

7
3
6

4
4
6
8
.4

1
-

p
r0

6
1
0
0

(5
0
1
)

(2
6
)

4
1
9

-
4
5
.1

0
2

2
1
0

-
5
5
.3

0
5

4
2
4

-
3
7
.3

0

p
r0

7
1
0
0

2
9
8

1
7

6
2
1

3
.6

5
-

5
6

2
1

2
.6

6
-

1
2

6
2
5

2
.9

5
-

p
r0

8
1
0
0

4
6
3

2
5

6
3
1

9
0
.7

1
-

3
6

3
0

7
4
.9

1
-

8
6

2
6

7
0
.9

5
-

p
r0

9
1
0
0

4
9
3

2
9

8
3
6

3
2
7
0
.8

8
-

3
8

3
5

2
8
1
8
.7

1
-

1
0

8
3
7

4
2
3
0
.0

8
-

p
r1

0
1
0
0

(5
8
4
)

(3
2
)

1
2

6
2

-
1
.0

0
3

1
2

6
2

-
1
.0

0
6

1
1

6
0

-
3
.1

0

A
v
e
ra

g
e

-
-

6
.5

0
3
0
.6

3
2
5
4
2
.0

3
4
.6

1
3

6
.6

2
8
.6

2
5
1
7
.0

7
5
.7

6
8

5
.4

2
5

2
3
7
9
.5

2
4
.0

4

S
o
lv

e
d

-
-

6
-

-
-

7
-

-
-

-
8

-
-

-
-

S
p
e
e
d

u
p

-
-

-
-

-
-

-
-

-
0
.9

8
%

-
8

-
-

6
.3

9
%

-

18

