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Circulating Endothelial Progenitor Cells Are Increased
in Patients with Classic Kaposi’s Sarcoma
Journal of Investigative Dermatology (2008) 128, 2125–2128; doi:10.1038/jid.2008.23; published online 28 February 2008

TO THE EDITOR
Cancer is a disease largely dependent
on neoangiogenesis. Accumulating
evidence indicates that tumor angio-
genesis is supported by the mobiliza-
tion and incorporation of endothelial
progenitor cells (EPCs), highly prolif-
erative elements derived from the bone
marrow (Rafii et al., 2002). EPCs have
been detected at increased frequency in
the circulation of patients with different
types of cancer, in some cases even
correlated with tumor volume, so that
they have been proposed to possibly
represent a diagnostic and prognostic
tool to be used as a surrogate marker
in clinical studies (Bertolini et al., 2006).
To our knowledge, circulating EPCs
have never been quantified in patients
with Kaposi’s sarcoma (KS), an angio-
proliferative malignancy in which the
typical spindle-shaped tumor cells
share many markers with vascular endo-
thelial cells and are thought to be of
endothelial origin (Dupin and Grange,
2006).

Circulating EPCs can be defined by
the expression of cell-surface antigens.
Although a unique consensus on the
optimal markers to be used is still
lacking, current literature supports that
CD34þKDRþ is still the best antigenic
combination to define EPCs (Fadini
et al., 2007), as only the level of
CD34þKDRþ cells has been shown
repeatedly and convincingly to be an
independent predictor of cardiovascu-
lar events (Werner et al., 2005;
Schmidt-Lucke et al., 2005). In a pre-
vious study, we reported that CD34þ

cells, which contain EPCs, are
increased in patients with KS (Della
Bella et al., 2006). In this study, by
flow cytometry we analyzed the
frequency of EPCs, either identified
as CD34þKDRþ cells or as CD34þ

KDRþCD133þ cells, in the peripheral
blood of patients with classic KS (cKS)
compared with matched healthy con-
trols. The selection of patients affected
by the classic variant of the disease was
aimed to avoid the confounding effects

of HIV co-infection or immunosuppres-
sive therapy that are present in the other
clinical variants of KS. All patients
had histologically confirmed diagnosis
of KS, were positive for anti-human
herpesvirus-8 (HHV8) antibodies,
and negative for HIV. Staging was
performed in accordance with our
classification (Brambilla et al., 2003).
Circulating EPCs were measured at a
single time point on fresh peripheral
blood samples; staging at this time
is summarized in Table 1. Ethical
approval was obtained from the local
Institutional Review Committee, and
signed informed consent was obtained
from all participants. The study was
conduced according to the Declaration
of Helsinki Principles. Heparinized
whole-blood samples (100ml) were
incubated with biotin-conjugated anti-
human kinase insert domain receptor
(KDR) (Sigma-Aldrich, St Louis, MO),
phycoerythrin-conjugated anti-human
CD133 (Miltenyi-Biotec, GmbH,
Bergisch Gladbach, Germany), and phy-
coerythrin-Cy5-conjugated anti-human
CD34 (Beckman-Coulter Immunotech,
Marseille, France) mAbs. KDR was

Abbreviations: cKS, classic Kaposi’s sarcoma; EPC, endothelial progenitor cell; HHV-8, human
herpesvirus-8; KDR, kinase insert domain receptor; KS, Kaposi’s sarcoma
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revealed using FITC-conjugated strep-
tavidin (Sigma-Aldrich, St Louis, MO).
Mononuclear cells were gated on for-
ward versus side scatter plot to exclude
granulocytes, dead cells, and debris.
Cells were then sequentially gated on
the basis of CD34, KDR, and CD133
expression (Figure 1a). Estimates of
the absolute numbers of cells were
calculated from the proportion of cells
recorded by flow cytometry in the
mononuclear gate multiplied by abso-
lute mononuclear cell count measured
using a standard hemacytometer. In
few experiments, we included CD45
staining and confirmed, according to
Duda et al. (2007) and Bertolini et al.
(2006), that CD34bright cells in our
analyses are CD45dim (not shown).

As shown in Figure 1b, the number of
circulating CD34þ cells was significantly
higher in cKS patients than in controls
(Po0.001), thus confirming our previous
observation (Della Bella et al., 2006).
Also the number of EPCs, identified as
either CD34þKDRþ or CD34þKDRþ

CD133þ cells, resulted significantly
higher in cKS (P¼0.012 and P¼0.022,
respectively). Intriguingly, the increase
of CD34þ cells and CD34þKDRþ cells
was significantly more pronounced in cKS
patients with slowly evolving (all stages A)
than rapidly evolving (all stages B) disease
(P¼0.029 and P¼0.002, respectively)
(Figure 1c). This finding may be explained
with a localization of EPCs within the
lesions during the active phases of the
disease, as it may be suggested by
the recent observation that the number
of intralesional CD34þ cells increases
during the progression of KS from patch
to nodular (Pyakurel et al., 2006).
No correlations between CD34þ or
CD34þKDRþ cells and clinical stage
(I, II, III, IV), presence of complications,
or local therapy were observed. Similar
results were obtained when data were
expressed as percentage of cells in the
mononuclear cell population rather than
absolute count. Identification of EPCs as
CD34þKDRþCD133þ did not allow us
to point out differences between KS

patients with different evolution pattern
(Figure 1c), thus supporting the opinion
that CD34þKDRþ may be the most
appropriate phenotype to identify EPCs.
This conclusion is in accordance with the
recent demonstration that endothelial
outgrowth cells do not derive from
CD133þ cells (Timmermans et al., 2007).

Given the angioproliferative nature of
the disease, a number of soluble factors
may be involved to sustain the prolifera-
tion and mobilization of EPCs in subjects
with KS (Ensoli et al., 2001). To investigate
their possible role in our patients, we
measured the plasmatic levels of vascular
endothelial growth factor, tumor necrosis
factor-a, and GM-CSF by using specific
commercial enzyme-linked immunosor-
bent assays (all from R&D Systems,
Minneapolis MN). In part, confirming our
previous results (Della Bella et al., 2006),
we found that vascular endothelial growth
factor levels did not differ between patients
and controls, and tumor necrosis factor-a
levels were below or close to the sensitiv-
ity limits of the assays in both groups,
possibly related to the low aggressiveness
of cKS compared with the other clinical
variants of the disease. GM-CSF was
detectable in 63.2% of the patients and
38.5% of the controls, with plasmatic
levels significantly higher in cKS patients
than in healthy individuals (t-test
P¼0.009). However, the levels of GM-
CSF did not correlate with the frequency of
circulating EPCs (data not shown). It is
possible that other soluble factors may be
involved in the increase of EPCs observed
in our patients. Another possibility is that
the increased frequency of EPCs in cKS
patients may be related to direct or indirect
effects of viral environment. In facts, KS
is strictly associated with infection by
HHV-8, the causative agent for KS (Dupin
and Grange, 2006). Although in this study
we did not succeed in visualizing HHV-8
infection of EPCs by flow cytometry,
according to Pellet et al. (2006), the
demonstration that circulating CD34þ

cells as well as CD146þ cells from KS
patients harbor the virus (Henry et al.,
1999; Pellet et al., 2006), together with our
observation that late-EPCs cultured from
the peripheral blood of cKS patient are
HHV-8-infected (Della Bella et al., 2008),
may support the involvement of HHV-8 in
the biology of EPCs. A probable scenario
may be that EPCs may act as preferential

Table 1. Clinical characteristics of patients

Characteristic
Healthy

controls (n=27)
cKS patients

(n=29)
Intralesional

therapy1

Age (years)2 75.6±2.9 72.8±2.3

Sex, no. (%)

Female 8 (29.6) 6 (20.7)

Male 19 (70.4) 23 (79.3)

KS stage3, no. (%)

I (maculo-nodular)

A (slow) 5 (17.2) 2

B (rapid) 10 (34.5) 5

II (infiltrative)

A (slow) 2 (6.9) 2

B (rapid) 6 (20.7) 4

III (florid)

A (slow) 1 (3.5) 1

Bc (rapid with complications) 3 (10.3) 3

IV (disseminated)

Bc (rapid with complications) 2 (6.9)

cKS, classic Kaposi’s sarcoma; KS, Kaposi’s sarcoma; yr, years.
1Intralesional therapy consisted of vincristine, usual dose 0.1mg per site. All patients received compressive
device (elastic stockings). Patients in systemic therapy, either chemotherapy or IFN-a, were excluded.
2Mean±SE.
3A, slow evolution; B, rapid evolution; rapid denotes an increase in the total number of nodules/
plaques or in the total area of plaques in the 3 months following the last examination; c,
complications; objective complications include ulcerations, bleeding, lymphedema, and lymphorrea;
subjective complications include pain, functional grip, and ambulatory impotence (Brambilla et al., 2003).
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HHV-8 reservoirs and, whether infected,
may home to permissive sites and propa-
gate to produce KS lesions (Gill, 2007).

In conclusion, we provide evidence
that EPCs are increased in the peripheral
blood of patients with KS, and to our
knowledge this is previously unreported.
The results of this study may also suggest
that circulating EPCs, identified as CD34þ

KDRþ cells, may represent a sensitive tool
for monitoring the evolutive trend of the
disease. Future studies involving a larger
cohort of prospectively observed patients

will be needed to confirm the findings
reported in this study and to investigate
whether changes in the frequency of EPCs
may predict disease progression and may
therefore be proposed as a biomarker in
the follow-up of KS patients.
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Figure 1. Analysis of CD34þ progenitors and EPCs in the peripheral blood of cKS patients and healthy controls. (a) Representative flow-cytometry

gating strategy for identification of CD34þ , CD34þKDRþ , and CD34þKDRþCD133þ cells. (b) The number of CD34þ progenitors and EPCs per milliliter

of whole blood in cKS patients compared with matched healthy individuals, and (c) in slowly evolving cKS patients (all stages A) compared with rapidly

evolving patients (all stages B). Data presented as mean±SE. Statistical significance was determined by two-tailed Student’s t-test. *Po0.05 and **Po0.001

between patients with cKS (n¼ 29) and controls (n¼ 27), or patients with disease in stage A (n¼ 8) and stage B (n¼21).
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