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Abstract

This paper estimates the diffusion and obsolescence of technological knowledge by technologi-

cal field, country and type of institution using patent citations. We estimate patent citation-lag

distributions from the U.S. Patent and Trademark Office (USPTO) and from the European

Patent Office (EPO). We show that absorptive capacity, and not only technological opportu-

nities, is an important determinant of the rate of diffusion and decay of technical knowledge.

Moreover we show that the citation-lag distribution is crucially affected by the different rules

governing citation practices at the USPTO and EPO.
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1 Introduction

In the last two decades a large body of theoretical research has focused upon the relationship between

knowledge capital, knowledge spillovers and aggregate growth. The nature and scope of knowledge

spillovers play a prominent role in determining the equilibrium growth path (Rivera-Batiz and Romer,

1991; Grossman and Helpman, 1991). In parallel the empirical research on R&D spillovers has shown

that research productivity of firms and regions depends not only upon intra-muros R&D expenditures

but also on external R&D spending of other firms, regions and industries. The empirical research

on R&D spillovers recognizes that patents are a fundamental empirical source to measure research

productivity. Moreover patent citations are increasingly used to evaluate the value of patents (e.g.

to evaluate companies’ patent portfolios) and to track knowledge flows between different applicants

or inventors (e.g. intensity and geographical and technological scope of knowledge spillovers)1.

In order to understand the impact of knowledge accumulation on aggregate and industrial growth

it is important to ask questions such as: how long does new technical knowledge spill over for ?

how much time is needed for a new piece of technical knowledge to become obsolete ? Patents and

patent citations have been increasingly used to measure knowledge spillovers from R&D activity but

relationships have been often assumed contemporary and the time dimension tends to be unexplored

(Caballero and Jaffe, 1993). Accordingly this paper focuses on the time dimension of knowledge

spillovers and uses patent citations to estimate the process of diffusion and obsolescence of technical

knowledge by technological fields. In order to account for the speed of diffusion and obsolescence

of technical knowledge we put forward two explanations. The first one suggests that the level of

technological opportunities (i.e. the likelihood of innovating conditional to the amount of money

invested in research, Breschi et al. 2000) give the possibility to potential innovators to reach frequent

and important discoveries and therefore accelerates the process of diffusion and decay of the related

knowledge. The second explanation suggests that the process of diffusion and obsolescence of tech-

nical knowledge depends upon the firms’ absorptive capacity. A higher level of absorptive capacity

1There is an enormous number of articles that use patent and patent citations. Griliches (1990) provides a path-

breaking and renowned survey and OECD (1994) is a highly referenced manual. A set of important papers from the

NBER group is collected in Jaffe and Trajtenberg (2002). On patent citations and the value of innovations Hall et

al. (2005), Lanjouw and Shankermann, (2004), Haroff et al. (1999), Trajtenberg (1990) are fundamental references.

On patent citations and knolwledge spillovers there is a recent survey by Breschi et al. (2005). Jaffe et al. (1993),

Verspagen (1997), Maruseth and Verspagen (2002) Malerba and Montobbio (2003) and Malerba et al. (2003) provide

evidence on the nature and types of knowledge spillovers using patent citations.
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generates also faster spillovers because less time is needed to learn from external sources.

According to the first explanation we should observe that the pace of diffusion and decay mainly

varies across technological fields assuming that the variance of technological opportunities is due to the

given characteristics of the technology and its knowledge base. According to the second explanation

we should observe also variations across geographical areas for the same technology because firms

differ in their absorptive capacity, which depends upon the accumulated prior knowledge, which, in

turn, depends upon relative past R&D expenditures and the level of human capital.

The empirical exercise is based upon patent citations from two distinct datasets from the US

Patent and Trademark Office (USPTO) and the European Patent Office (EPO). In order to study

the process of diffusion and decay of technological knowledge we estimate the citation-lag distribution

for six different technological fields and eight countries using separately the data from the two patent

offices. In doing so it’s necessary to take into account many features of the citation process. In

particular we underline a "patent office" effect due to the different specific institutional practices that

generate the citations to previous patents in the two different offices and the truncation bias: recent

cohorts of patents are less likely to be cited then the older ones, because the pool of potentially citing

patents is smaller. This issue is addressed with a quasi-structural model as proposed by Caballero

and Jaffe (1993) and discussed in Jaffe and Trajtenberg (1996) and Hall et al. (2001). This model

provides a flexible empirical tool to adjust raw citation counts.

Our results give support to the idea that not only technological opportunities are important for

the process of diffusion and decay of technological knowledge but also firms’ absorptive capacity play

a prominent role. On the methodological side our results show that the choice of the patent office

deeply affects the distribution of the citation lags: at the USPTO there are more citations per patent

due to the different rules governing citation practices and that their approx. median lag is twice as

large relatively to the citations at the EPO.

The paper is organized into six sections. The following section explains the background and

motivation of the paper, Section 3 describes our data and shows some of the differences between

the USPTO and the EPO data. Section 4 describes the model and the econometric specification

and Section 5 shows the results and explores possible explanations. Section 6 provides concluding

observations.
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2 Background and Motivation

Recent macroeconomic modelling has underlined the importance of knowledge spillovers and exter-

nalities suggesting that the equilibrium path of productivity growth may differ according to the

extent of the diffusion of knowledge. In general endogenous growth is guided by disembodied knowl-

edge spillovers and the possibility (and ability) to re-use existing knowledge may produce increasing

returns and long-run welfare effects. These knowledge driven macroeconomic models bring the at-

tention to the different effects on growth rates of the different types of knowledge flows and push

the empirical research to enquire more in depth the processes of knowledge accumulation and decay

and the different channels along which ideas may be transferred (Rivera-Batiz and Romer, 1991;

Grossman and Helpman, 1991; Griffith et al. 2003 and 2004).

In fact, recent works have shown the usefulness of patent citations for exploring knowledge flows

across regions, countries and technologies (see footnote 1). In the patent documents citations are

used by examiners and applicants to show the degree of novelty and inventive step of the claims of

the patent. They are located in the patent text, usually by either the inventor’s attorneys or by

patent office examiners (depending upon national regulations, see below for the details about EPO

and USPTO) and, once published, provide a legal delimitation of the scope of the property right.

Therefore citations identify the antecedents upon which the invention stands and, for this reason,

they are increasingly used in economic research to gauge the intensity and geographical extent of

knowledge spillovers and to measure the economic value of innovations (Griliches, 1990, pp. 1688—

1689). Typically both citations from USPTO and EPO patents are used in economic analysis.

The use of patent citations as an index of knowledge flow has been validated by a survey of

inventors (Jaffe et al. 2000, for the USPTO) and corroborates substantial evidence on the type

and nature of knowledge spillovers (e.g. Maruseth and Verspagen, 2002; Jaffe et al. 1993, Piga and

Vivarelli, 2004). Moreover patent citations are correlated with the value of patents and, in particular,

recent work has shown that patent citations increase the market value of firms (Hall et al. 2005)

and that the number of citations is correlated with the reported value of the inventors and with the

payment of patent renewal fees (Haroff et al. 1999).

If patent citations are an important track of knowledge spillovers and if forward citations2 are an

2The citations received by a patent are called "forward citations". Forward measures are typically informative of

the subsequent impact of an invention. Conversely the "backward citations" are the citations included in a patent

that refer to an antecedent body of knowledge.
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important indicator of the economic value of innovative activity, the timing of the flow of citations and,

in particular the citation-lag distribution, becomes extremely relevant. This is because the citation-

lag distribution indicates for how long new technical knowledge spills over (identifying therefore a

process of knowledge diffusion and obsolescence) and the time is needed to observe a sufficient number

of forward citations and, consequently, to evaluate the importance of the invention.

The available empirical evidence regarding the citation-lag distribution is mainly based on USPTO

data and shows that the modal lag is about five years, that intra-industry citations are much more

likely then inter-industry ones and that citations tend to be localized but the degree of localization

fades away over time (Jaffe and Trajtenberg, 1996, 1999). This evidence suggests also that there are

important technological and country variations.

Jaffe and Trajtenberg (1996) and Hall et al. (2001) show that obsolescence and diffusion of tech-

nical knowledge vary across technological fields. In particular they show that patents in Electronics,

Computers and Communications are more highly cited than the other sectors of the economy during

the first few years after grant and, at the same time, they decay much faster. Jaffe and Trajtenberg

(1996) interpret this result in the following terms: "...this field is extremely dynamic, with a great

deal of ’action’ in the form of follow up developments taking place during the first few years after an

innovation is patented, but also with a very high obsolescence rate "(p. 12676).

Also patents in Drug and Medical are more highly cited than patents in the other sectors, but

knowledge, in this case, has a slower pace of decay. This is explained in terms of long lead times in

pharmaceutical research (and in approval procedures by the Federal Drug Administration). Therefore

this field is not evolving as fast as Electronics, Computers and Communications and new products

arrive at a slower rate in the market (Jaffe and Trajtenberg, 1996 and Hall et al. 2001).

These authors, in their interpretative framework, refer to differences in the "technological dy-

namism" and level of "action" among technological fields. We suggest that there are different expla-

nations of these sectoral differences that are implicit in the interpretation of Jaffe and Trajtenberg.

One explanation relates to the intrinsic nature of the knowledge underpinning firms’ innovative ac-

tivity and, in particular, to the exogenously given set of technological opportunities. The second

explanation relates to firms’ ability to re-use existing knowledge and create new products and pro-

cesses, and therefore, is related to their absorptive capacity.

The first explanation of the sectoral differences in the observed citation-lag distribution points at

the properties of the knowledge base of a technological field and, in particular, at the technological

opportunities to quickly create new product and process developments. Technological opportunities
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are defined as the likelihood of innovating conditional to the amount of money invested in research

(Breschi et al. 2000). With high technological opportunities we expect potential innovators to

reach frequent and important discoveries3. We call this hypothesis ’technological opportunity’ (TO)

hypothesis.

Moreover knowledge flows more quickly if companies are able to absorb it more quickly. Economists

have shown that the use of external knowledge is costly and depends on the firms’ learning and ab-

sorptive capacity (Cohen and Levinthal, 1989, 1990; Griffith et al. 2003 and 2004; Kneller Stevens,

2006). Absorptive capacity is a fundamental component of firms’ capacity to innovate and includes

the firm’s ability to imitate new processes and products and to exploit basic and applied research

findings. Firms’ absorptive capacity is the result of the value of the stock of accumulated prior

knowledge, which, in turn depends upon relative past R&D expenditures and the level of human

capital. This paper argues that a higher level of absorptive capacity generates faster spillovers, and

smaller average and median values of the citation-lag distribution. This is because in case of higher

absorptive capacity, less time is needed to learn from external sources and the entire innovative

process is quicker4. We assume as in many diffusion models that diversity between firms in their

learning and absorptive abilities is a fundamental characteristic of industries undergoing technical

change (Silverberg et al. 1988). We call this hypothesis ’absorptive capacity’ (AC) hypothesis.

This paper tries to assess the weight of the TO and AC hypotheses, that may coexist because they

do not provide alternative explanations, using data from two different patent offices: the USPTO and

the EPO. Writers in the economics of innovation field have emphasized that within each industry

the nature of the knowledge base and the level of technological opportunities are similar across

the advanced countries (Dosi, 1988 and 1997). As a result, if the TO hypothesis is correct, and

the process of technological diffusion and decay depends only upon the nature of the technology,

the relative speed of knowledge diffusion and decay in the different technological fields should be

the same, independently from whether we use patents and patents’ citations at the EPO or at the

USPTO. If this is not the case, we expect a quicker process of diffusion where there is a higher level of

absorptive capacity. In this respect we can qualify the broad interpretation of Jaffe and Trajtenberg

3We are aware that technological opportunities may vary considerably along products and industries life cycles. As

in Jaffe and Trajtenberg (1996) in this paper we will estimate the citation lag distribution over very broad industries.

At the aggregate industry level we expect that this issue does not affects dramatically our results.
4We may expect both the level of technological opportunity and absorptive capacity to be related to the intensity

of competition at the industry level.
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(1996) and Hall et al. (2001); ’more action’ and ’technological dynamism’ at industry level would

depend not only upon the existence of technological opportunities but also upon firms’ ability to

assimilate and re-use the available stock of knowledge.

In doing so it’s necessary to control for a set of confounding factors. In particular the following

features of the citation process have to be taken into account: (i) "patent office" effects, (ii) country

effects, (iii) university and public laboratories effects and, finally, (iv) the truncation bias and the

changes over time in the propensity to cite.

(i) The modal and average lags between the citing and the cited patents is deeply affected by the

institutional process governing the decision (by inventors, inventors’ attorneys or patent examiners)

to include a patent citation in the patent document. In fact there are relevant differences between

citation practices at the USPTO and EPO. In the US there is the ’duty of candor’ rule, which

imposes all applicants to disclose all the prior art they are aware of. Therefore many citations at

the USPTO come directly from inventors, applicants and attorneys and are subsequently filtered by

patent examiners5.

At the European Patent Office the ’duty of candor’ rule does not exist and patent citations are

added by the patent examiners when they draft their search report6. The EPO guidelines for patent

examiners suggest to include all the technically relevant information within a minimum number of

citations and citations are, with few exceptions, added by the patent office examiners (EPO, 2005;

Michel and Bettels, 2001; Akers, 2000; Breschi and Lissoni, 2004). As a result the analysis of diffusion

and obsolescence of technological knowledge and knowledge spillovers may reveal different properties

according to the patent dataset that is used and, in particular, we expect to observe not only a much

smaller number of citations at the EPO but also a shorter lag between citing and cited patents. It is

crucial therefore to control for the different properties of the processes of obsolescence and diffusion

in the two patent offices.

(ii) This paper controls for citing and cited country effects because firms’ patenting practices

may change according to the nationality of the inventors. For example Jaffe and Trajtenberg (1996

5Alcàcer and Gittleman (2004) using a random sample of 442,839 patents granted at the USPTO over the period

2001-2003 show that 40% of the cited-citing pairs are generated by patent examiners.
6The search report at the EPO is a document, published typically 18 months after the application date, that has

the main objective to discover the prior art relevant for determining whether the invention meets the novelty and

inventive step requirements. It represents what is already known in the technical field of the patent application and is

a source of additional relevant documents. Cited documents may be patents or scientific bullettins and publications.

Typically documents cited refer to specific patent claims.
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and 1999) show that USPTO patents granted to US inventors are more likely to cite US patents

than patents granted to inventors of other countries. In general they show a pattern of geographical

localization with higher domestic citation rates. Moreover they also show that Japanese patents at

the USPTO tend to get more citation with a lower rate of decay than European ones. Finally country

specificities may emerge because of different institutional practices in writing and licensing patents:

in Japan, for example, patents contain less claims and have a narrower scope than US and European

ones (Ordover, 1990; Sakakibara and Branstetter, 2001).

(iii) Recent empirical evidence suggests that patents granted to universities and public research

laboratories tend to be more cited than companies’ patents (Henderson et al. 1998; Mowery et

al. 2004; Bacchiocchi and Montobbio, 2006) Therefore it is important to control for the different

institutional types of applicant. In particular we distinguish between government and non government

(corporate) patents.

(iv) Finally three issues related to the time dimension have to be considered. First there is a

citing year effect due to the increase in particular at the USPTO of the number of citations per

patent. This phenomenon of citation inflation is well known at the USPTO and is mainly due to

computerization of the search procedures and changes in the behaviors of inventors’ attorney and

patent office examiners (for a detailed discussion of this issue, and of econometric techniques to deal

with it, see Hall et al. 2001). We control also for a cited year effect. This is typically related to the

different fertility of different cohorts of patents. Finally citations data are truncated because recent

cohorts of patents are less likely to be cited then the older ones, since the pool of potentially citing

patents is smaller. These issues are addressed jointly with a quasi-structural model as proposed

by Caballero and Jaffe (1993) and discussed in Jaffe and Trajtenberg (1996) and Hall et al. (2001).

This model permits to identify separately the contribution to variations in the observed citation rates

of changes in the citation-lag distribution, in the propensity to cite and in the fertility of different

cohorts of patents.

3 The data

We use the publicly available NBERU.S. Patent Citations Data, which contains the 2,923,922 USPTO

(granted) patents from 1963 to 1999 and 16,522,438 citations from (and to) USPTO patents from

1975 to 1999 (Hall et al., 2001), and the EP Cespri dataset, which contains the 1,391,350 EPO

patent applications from 1978 to 2001 and 1,119,761 citations from (and to) EPO patents from 1978
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to 20017. From these datasets (from now on USPTO and EPO) we select two samples: the universe

of all patents and patent citations between 1978 and 1998. In particular we consider all the citations

from patents granted between 1979 and 1998 to patents granted between 1978 and 1997 (in the EP

- CESPRI we use patent applications) in order to have the same right and left truncation biases

in the two datasets. Summary statistics are displayed in Table 1. Each patent is characterized by

a date, a country (first inventor’s address) a technological field (based on the International Patent

Classification for EP - CESPRI and the USPTO classification system for the NBER - USPTO) and

the institutional type of the applicant (government or non government) (Details for both datasets

are provided in the Appendix).

[Table 1, about here]

As expected at the USPTO there are more patents and, in particular, much more citations per

patent due to the different institutional processes underlying the citation practices. In Table 1 the

institutional, technological and country composition of the EPO and USPTO patent samples are

compared: cc is the number of (forward) citations by technological field and nc is the number of

(potentially cited) patents by technological field. Table 1 shows the sectoral and national shares

sc = cc/c and pc = nc/n (in parenthesis) by patent office, where c and n are respectively the total

number of citations and patents. Moreover in Table 1 we display an index of citation intensity equal

to cintc = sc/pc. The value of cintc is affected by the characteristics of the patents in the different

technological fields. Typically patents in the Mechanical sector cite and receive less citations than

Biotech patents, mainly because of the different average patent scope in the two fields. As a matter

of fact the Mechanical and Others sectors receive on average less citations than, for example, the

Drugs and Medical sector in both patent offices.

However we observe that cintc ranks differently in the two patent offices. In a particular at the

EPO we have Drugs&Medical at the top and then Chemicals, Computers and Communications and

Electrical and Electronics. Conversely at the USPTO the highest value of cintc is in Computers

and Communication and then Drugs and Medical, Electrical and Electronics and Chemicals follow.

This raises the issue, discussed in the previous section, on which other variables affect the citation

intensity of a technological field beyond its technological characteristics. In line with the literature

7NBER-USPTO data are avilable from http://www.nber.org/patents/ and the EP-CESPRI Bibliographic data

come from the Espace Bulletin CD-R produced by the EPO, patent citations come from the REFI tape.
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that associates patent citations to the value of patents, we interpret this index as the relative value of

the stock of accumulated knowledge of the patenting firms. Of course the meaningful comparison is

for the same technological field between the two patent offices. The sets of patenting firms at the two

patent offices are different and, as long as the value of their patent stock differs, we observe different

levels of citation intensity at the level of the patent office.

Likewise Table 1 shows the geographical composition of the patents in the two patent offices by

country of the first inventor. If the share of total (forward) citations of a country (sp) is higher than its

fraction of total patents (pp in parenthesis), this indicates an above average citation intensity (cintp)

for that country. It’s worthwhile noting that, both at the EPO and USPTO, the US have a higher

share of citations relatively to their share in the patent sample. This reflects their position as world

wide technological leader. Of course cintc and cintp are confounded by all the factors mentioned in

the previous section. The propensity to be cited is estimated in the following sections.

4 Model specification and econometric framework

We describe the random process underlying the generation of citations with a quasi-structural ap-

proach. The model follows the specification in Jaffe and Trajtenberg (1996) and Hall et al. (2001).

The diffusion process is modelled as a combination of two exponential processes, one for the knowl-

edge diffusion and the other for the natural process of obsolescence. The general formulation of the

model is

p (k,K) = α (k,K) exp [−β1 (k,K) (T − t)]

× (1− exp [−β2 (k,K) (T − t)]) (1)

where p (k,K) is the likelihood that any particular patent k, granted at time t, is cited by some

particular patent K, granted at time T . The parameters β1 and β2 represent the rate of obsolescence

and diffusion, respectively, and both exponential processes depend on the citation lag (T − t).

The coefficient α does represent a multiplicative factor, as the constant term in a simple linear

regression model. However, as indicated by the dependence of α from (k,K), such proportionality

factor α (k,K) is allowed to vary with attributes of the citing and cited patents. The estimate of a

particular α (k,K), indicates the extent to which a patent k is more or less likely to be cited, with

respect to a base characteristic patent, by a patent K.

From the formulation above, β1 and β2 single out the main features of the diffusion process.

10



The lag at which the citation function is maximized, i.e. the modal lag, is approximately equal to

1/β1, while the maximum value of the citation frequency is approximately equal to β2/β1. Such

features of the model have important implications for both the estimation and interpretation of the

results. In fact, an increase in β1 simply shifts the citation function to the left, while an increase

in β2, leaving β1 unchanged, increases the overall citation intensity, at every value of (T − t). As a

consequence, variations in β2 with β1 unchanged are not separately identified from variations in the

constant term α. Following Jaffe and Trajtenberg (1996), thus, we prefer allowing variations in α

leaving β2 constant for all observations.

The constant term α and the structural parameter β1 depend on k and K.This indicates that

they depend upon particular features of both cited and citing patents. From the empirical point of

view, however, modelling single pairs of patents (citing and cited), might conduct to dealing with

very small expected values. Therefore we aggregate patents in homogeneous groups and model the

number of citations to a particular group of cited patents by a particular group of citing patents.

We want to have a finer understanding of the statistical properties of the citations received (forward

citations), since this is the usual way of assessing the value of patents. The following characteristics

of the cited patent k might affect its citation frequency (see the Appendix for relative details of the

NBER - USPTO and EP - CESPRI):

• t, the application or priority date,

• p, the first inventor’s country,

• c, the technological field,

• i, the institutional type.

Moreover the following attributes are considered for the citing patent K.

• T , the application or priority date,

• g, the first inventor’s country,

The amount of citations to a specific group of cited patents by a specific group of citing patents

is: ctpicTg. Hence a treatable formulation of the model, where the various different effects enter as

multiplicative parameters, becomes

E(ctpicTg) = (ntpic) (nTg)αtαpαiαcαTαg exp
[
− (β1)β1pβ1iβ1cβ1g (T − t)

]

× (1− exp [−β2 (T − t)]) (2)
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or equivalently, in the estimable form

ptpicTg =
ctpicTg

(ntpic) (nTg)
= αtαpαiαcαTαg exp

[
− (β1)β1pβ1iβ1cβ1g (T − t)

]

× (1− exp [−β2 (T − t)]) + εtpicTg (3)

where ntpic and nTg represent the total amount of potentially cited and citing patents for each of the

particular (tpic) and (Tg) groups, respectively. The model (3) can thus be estimated by nonlinear

least squares under the well known hypotheses on the residuals terms εtpicTg.

Variations in any particular α (k) (i.e. the multiplicative coefficients related to cited patents)

should be interpreted as differences in the propensity to be cited, with respect to the base category8.

Equivalently, estimates of multiplicative coefficients related to citing patents, α (K), indicate differ-

ences in the propensity to cite compared to a base category. One coefficient for each category, thus,

will be omitted from the estimation procedure and will be constrained to unity.

A similar interpretation has to be given to variations in β1 coefficients, which represent differences

in the rate of decay across categories of cited and citing patents. Higher values of β1, with respect to

the base category, means a faster obsolescence, which corresponds to a downward and leftward shift

in the citation function.

One more consideration about the specification of the model concerns the difficulties in estimating

citing and cited time effects together with the citation lag; in fact, citation lags enter the model non-

linearly and the identification of all effects is not precluded a priori. However due to the great number

of parameters to be estimated we prefer to calculate the fixed effects grouping cited years into 5-year

intervals, as in Jaffe and Trajtenberg (1996)9. We estimate the model using weighted non-linear least

squares. The weights are needed in order to deal with heteroskedasticity. Since each observation is

obtained dividing the number of citations by the product of the total amount of potentially citing

and potentially cited patents corresponding to a given cell, it has been weighted by (ntpicnTg)
1/2,

following Jaffe and Trajtenberg (1996) and Hall et al (2001).

[Table 2, about here]

8As an example, let consider an estimated coefficient α (k=Computers and Communications) = 2.094; this means

that patents belonging to the category “Computers and Communications” have a more than double probability (across

all lags) to receive a citation in the next years vis à vis patents belonging to the base field.
9Grouping cited year is a reasonable assumption as the fertility of invention do not change substantially over time.

Estimated results, not reported in the present paper, confirm such assumption.
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Table 2 shows the statistics for the regression variables. The data consist of one observation for

each feasible combination of values of t, p, i, c and L and g. For the cited patents we have 20 years, 3

institutional types, 6 technological fields, and 8 countries and for the citing patents we have 20 years

and 8 countries. We consider only citations with a lag between the citing and cited patent greater

than or equal to 1. Hence the total amount of observations is: n_obs=[(20*21)/2]*8*8*6*3=241920.

In each dataset there are some cells with zero citations and some cells with missing values. We

have zeros when ctpicTg is zero and (ntpic) (nTg) is positive. Missing values are generated when also

(ntpic) (nTg) is zero. In the EP - CESPRI 144481 observations have zero citations (59%) and there

are 15360 missing (6.3 %). These are due to the scarcity of patents by universities or public research

centres in Germany and Italy between ’78 and ’82 and Sweden and Finland mainly between ’78 and

’86. In the NBER - USPTO 81454 obs. have zero citations (33%) and 24616 observations are missing

(10.1%). Missing values come from the scarcity of patents by universities or public research centres

in Germany, Italy and Sweden and Finland.

5 Results

The results from the estimation of equation (3) are reported in Table 3. All fixed effects have

been estimated relative to a base value of unity; for each effect thus, one group is omitted from

the estimation and constrained to unity. Significant tests for the estimates of any particular α (k),

being a proportionality factor, focus on the null hypothesis H0 : coeff = 1. The null hypothesis of

significant tests for both β1 and β2, however, remains the standard H0 : βi = 0, i = 1, 2.

Results show that citations at the EPO have shorter life and the rate of decay is twice the one

observed for USPTO (β1 = 0.396 and β1 = 0.189 for the EPO and USPTO respectively). The modal

lag is approx. 5.3 for the USPTO10 and 2.7 for the EPO. For the two datasets average fitted values

of equation (3) are plotted in Fig. 1. The likelihood that a EPO patents is cited becomes half of its

estimated maximum after about 6-7 years while for the USPTO patents this occurs after 14-15 years.

Moreover after 20 years, the estimated probability for a EPO patent to be cited is almost zero, for a

USPTO patent it is one fourth of its maximum value.

The goodness of fit of the model, measured as adj-R2, highlights the difficulty of such double-

exponential model to fit zero probabilities. The adj-R2 for the USPTO and EPO datasets corresponds

10This confirms approximately the results of Jaffe and Trajtemberg (1996 and 1999) even if our estimated β
1
= 0.189

is slightly lower.

13



to 0.45 and 0.22 respectively. The low goodness of fit for the European data can be easily explained

by observing that the percentage of zeros is almost double with respect to the US data (59% against

33%).

Technological Fields. Two types of variation relative to the technological fields are considered

in the model: variations in the fixed effects αc and in the obsolescence parameter β1c(see Table 3,

Figure 2 and Figure 3). The base field is ’Chemicals’ for both the USPTO and the EPO database.

The estimated coefficients αc confirm the results displayed for cintc with two small exceptions
11.

The propensity to be cited is higher in Computers and Communications, Electrical and Electronics

and Drugs and Medical at the USPTO and in Drugs and Medical, Chemicals and Computers and

Communications at the EPO.

At the USPTO Electrical and Electronics, Mechanicals and Computers and Communications have

the highest rate of decay (β1c) and reach their modal lag earlier with respect to the other technological

fields. At the fourth place there is Chemicals and the lowest β1c is in Drugs and Medical (this broadly

confirm the results of Jaffe and Trajtenberg 1996 and Hall et al. 2001). At the EPO the Chemicals

sector displays the most rapid obsolescence and then in order we have Drugs and Medical, Electrical

and Electronics, Computers and Communications, Mechanicals and, finally, Others.

According to the TO hypothesis we would expect the same relative sectoral patterns of diffusion

and decay in the two patent offices. In fact on the one hand we observe a positive correlation of

the estimated αc in the two patent offices. This would suggest that some invariant technological

attributes affect the likelihood to be cited across all lags. On the other hand we observe a nega-

tive correlation between the estimated β1c
12 and, accordingly, relative sectoral diffusion paths are

different for the two datasets (see Table 3, Figure 2 and Figure 3). As a result even if there are

common technological characteristics that affect the overall number of forward citations, invariant

technological opportunities as such cannot be the only explanation for the relative pace of knowledge

diffusion and obsolescence of one sector vis à vis the other sectors in the economy.

Therefore we suggest that firms in the two patent offices have different absorptive capabilities.

Consider for example Computers and Communication at the USPTO. Since we control for a num-

ber of confounding factors as indicated above, it is possible to claim that these patents receive

11The two small exceptions are at the USPTO: Electrical and Electronics have a higher propensity to be cited than

Drugs and Medical and the Mechanical sector has a higher estimated αc than Others.
12The linear and rank correlations between the coefficients in the two patent offices (6 obs.) are respectively equal

to 0.29 and 0.54 for the αcand equal to -0.27 and -0.14 for the β1c.
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coeteris paribus more citations (relative to the same sector at the EPO, note that αUSPTOcomputer&comm >

αEPOcomputer&comm) because of a their relatively higher quality. As a consequence, we claim that firms

patenting at the USPTO in Computers and Communication have a relatively higher absorptive ca-

pacity that, in turn, affects positively the relative rate of obsolescence of technological knowledge in

this sector. This is particularly evident also looking at Electrical and Electronics at the USPTO and

at Chemicals and Drugs and Medical at the EPO. These sectors display very high early citations

and the most rapid obsolescence and are the sectors in the respective patent offices with the highest

(relative) values of αc (and cintc) These same results can be expressed also in the following terms:

let αEPOc ,αUSPTOc , βEPO1c ,βUSPTO1c be the sectoral estimated coefficients αc and β1c in the two patent

offices. Assume that the difference (αEPOc −αUSPTOc ) indicates the relative quality/value of the stock

of sectoral patents between the two patent offices. It can be noted that there is a strong positive

correlation between (αEPOc − αUSPTOc ) and βEPO1c (0.64) and a strong negative correlation between

(αEPOc −αUSPTOc ) and βUSPTO1c (-0.49). As a result the rate of obsolescence and decay at the sectoral

level is related to the relative qualities of the stock of patents that we take as an indicator of the

absorptive capacity of the applicant firms13.

In sum previous work (Jaffe and Trajtenberg; 1996 and Hall et al. 2001) shows that obsolescence

and diffusion of technical knowledge vary across technological fields. This can be interpreted as a

result of given technological opportunities that enhance the possibility of potential innovators to reach

frequent and important discoveries. However in this case the relative speed of knowledge diffusion

and decay in the different technological fields should be the same, independently from whether we

use patents and patents’ citations at the EPO or at the USPTO. We have shown that this is only

partly the case. So the TO interpretation has to be complemented with another interpretation. The

evidence proposed here does not contradict the intuition that a quicker process of diffusion and faster

obsolescence may be determined by a higher level of absorptive capacity that is the ability to imitate

and exploit new research findings to quickly develop new processes and products14. Few other results

can be emphasized in relationship to the following features of the citation process we have controlled

for: (i) country effects, (ii) university and public laboratories effects and, finally, (iii) time effects.

13Note that we are considering differences in the quality of the stock of patents at the sectoral level. R&D expenditure

is the main determinant of the values of these stocks and, in turn, is the main determinant of firms’ absorptive capacity.
14In principle there may be some noise due to the different patent classifications on which the technological fields

are built. As explained in the Appendix, differences between the two datasets may emerge because the matching

between the US NBER categories and the reaggregation of 30 technological classes based on European IPC codes may

be imperfect. However we do not think this can be the only explanation of these diverging sectoral patterns.
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Country Effects. For what concerns the country effects (Tab. 3 and Figure 4 and 5) we observe the

highest propensity to be cited (αp) for the US and Japanese patents. It’s remarkable that at the EPO

the lowest propensity to be cited is for patents originating in continental Europe: Germany, France

and Italy. Consistently with what we observed above US and Japanese patents display very high

early citations and the most rapid obsolescence (β1p). At the USPTO patents granted to American

inventors are more likely to be cited at every lags and the gap with respect to the other countries

is in the order of 30% and more. At the EPO Japanese patents have the highest probability to

be cited and the highest rate of decay. This might also reflect the country specific patenting and

citing practice as emphasized by Ordover (1991) among others. Before recent reforms the so called

“Sashimi system” was characterized by a narrower patent scope and limited number of claims (one

single independent claim before 1988). This patent structure increases the number of patents and

the number of citations.

Institutional Types. For the European data, patents assigned to Universities or Public Institutions

and to Companies are respectively 40% and 18% more likely to be cited than the ’Not Assigned’

patents. For the US data instead (as in Jaffe and Trajtenberg, 1996), non government patents are

cited significantly more than government ones, although they have a slightly higher rate of decay.

These differences are probably affected by the different classifications in the two datasets. For example

a relevant role is played by university patents that seem to have higher likelihood to be cited according

to Jaffe and Trajtenberg (1996). These patents at USPTO belong to the non government group while

at the EPO they are in the non firm group. In a companion paper we show that at the EPO the

higher likelihood of citations to university patents is mainly due to US patents in the Chemical and

Drugs & Medical fields (Bacchiocchi and Montobbio, 2006).

Time Effects. The estimated citing year effects, at the USPTO, do not show any upward trend.

All estimated coefficients appear to be greater than one but in many cases they are not significantly

different from one. At the EPO instead, the αT display a steep downward trend. As the amount

of potentially citing and cited patents increases over time in both datasets, the amount of citations

per patent grows faster at the USPTO than the EPO. This creates the observed decline in the

coefficients for the EPO and the absence of a trend for the USPTO. To substantiate this conjecture

we calculated the differences in level and trend of the raw amount of backward citations per citing

patent in the two data sets (note that in the two datasets we have the same left truncation bias

because we do not consider citations that goes to patents granted, or applied for, before 1978). At

the EPO backward citations per patent are 1.16 in 1979, they reach the maximum in 1994 at 2.10,
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declining slightly afterwards. At the USPTO backward citations per patent are 1.26 in 1979 and

they grow more steeply reaching the maximum in 1995 at 8.28. Finally for the cited time effects a

substantial absence of fertility changes characterizes both datasets.

6 Conclusion

There is a large empirical and theoretical literature on knowledge spillovers and growth. However

important questions such as: how long does new technical knowledge spill over for ? how much time is

needed for a new piece of technical knowledge to become obsolete ? remain largely unexplored. This

paper constitutes an attempt to fill this gap in the literature building upon the established literature

that uses patents and patent citations as economic indicators. This paper therefore focuses solely

on patents and patent citations and estimates the process of diffusion and obsolescence of technical

knowledge by country and technological field using data from two patent offices: EPO and USPTO.

Our estimates of the citation-lag distribution show that there are remarkable differences across

technologies in the diffusion path. In parallel technological fields have different relative properties of

diffusion and decay of technical knowledge in the two patent offices. We propose two complementary

explanations. First we suggest that the level of technological opportunities give the possibility to

potential innovators to reach frequent and important discoveries and therefore accelerates the process

of diffusion and decay of the related knowledge. Secondly we suggest that the process of diffusion

and obsolescence of technical knowledge depends upon firms’ absorptive capacity. A higher level

of absorptive capacity generates faster spillovers because less time is needed to learn from external

sources. Our results give support to the idea that not only technological opportunities are important

for the process of diffusion and decay of technological knowledge but also firms’ absorptive capacity

play a prominent role. Computers and Communications and Electrical and Electronics at the USPTO

and at Chemicals and Drugs and Medical at the EPO display very high early citations and the most

rapid obsolescence

On the methodological side we show that at the USPTO there are more citations per patent due

to the different rules governing the citation practices. Moreover, citations at the USPTO have longer

life and a lower rate of decay. The approximate median lag is twice as large relatively to the citations

at the EPO.
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Appendix

In both datasets Countries are defined on the basis of the address of the first inventor in the

patent application. We have used 8 countries and country groups: 1. Germany, 2 France, 3. Italy, 4.

United Kingdom, 5. Japan, 6. United States, 7. Sweden and Finland, 8.others.

The Technological Fields are the US NBER categories as in Hall et al (2000) that can be found

in the USPTO. For the EP - CESPRI we used 30 technological classes based on the Annex III-A of

OECD (1994). This classification aggregates all (primary) IPC codes (version 7 used at the EPO)

into 30 technological classes. A concordance table has been created by the authors that reaggregates

the 30 classes into the USPTO Fields The USPTO fields are: 1. Chemical, 2. Computers &

Communications, 3. Drugs & Medical, 4. Electrical & Electronic, 5. Mechanical, 6. Others. Below

we report the 30 classes and, in parenthesis, the USPTO field that has been assigned to each class

by the authors: 1. Electrical engineering (4), 2. Audiovisual technology (4), 3. Telecommunications

(2), 4. Information Technology (2) 5. Semiconductors (4), 6. Optics (5), 7. Control Technology (5),

8. Medical Technology (5), 9. Organic Chemistry (1), 10. Polymers (1), 11. Pharmaceuticals (3),

12. Biotechnology (3), 13. Materials (1), 14. Food Chemistry (1), 15. Basic Materials Chemistry

(1), 16. Chemical Engineering (1), 17. Surface Technology (5), 18. Materials Processing (5), 19.

Thermal Processes (6), 20. Environmental Technology (6), 21. Machine Tools (5), 22. Engines (5),

23. Mechanical Elements (5), 24. Handling (5), 25. Food Processing (6), 26. Transport (5),27.

Nuclear Engineering (4), 28. Space Technology (5), 29. Consumer Goods (6), 30. Civil Engineering

(6).

The institutional nature of the assignee could not be built exactly in the same way for the two

datasets. In particular in the EP - CESPRI the group called ’firms’ includes just companies while in

the USPTO this group includes ‘non government organization’. The group called ’non firm’ in the

EP - CESPRI includes university and public research centres while in the USPTO dataset is just

‘government’.

Finally we have chosen the closest dates available to the actual timing of invention for both

datasets. These are the priority date for the EP - CESPRI and application date for the USPTO.
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Table 1: Statistics for EP and US patent and citation samples
EP-CESPRI Dataset NBER-USPTO Dataset

Range of cited patents 1978-1997 1978-1997

Range of citing patent 1979-1998 1979-1998

Potentially cited patents 906,792 1,766,075

Potentially citing patents 984,148 1,734,687

Total citations 959,852a 8,080,276a

Citations per potentially citing patent 0.98 4.66

Citations per citing patent 1.86 5.59

Cited patents by fields,%b

and citations intensity
(potentially cited patents in parenthesis)

sc - (pc) - cintc sc - (pc) - cintc

Chemicals 27.45 - (22.1) - 1.24 17.93 - (19.3) - 0.93

Computers and Communications 10.58 - (10.1) - 1.05 17.60 - (12.6) - 1.40

Drugs and Medical 12.92 - (9.5) - 1.36 10.8 - (9) - 1.2

Electrical and Electronics 12.72 - (13) - 0.97 18 - (17.5) - 1.03

Mechanical 29.89 - (35.3) - 0.85 18.05 - (21.2) - 0.85

Others 6.43 - (9.8) - 0.66 17.62 - (20.2) - 0.87

Cited Patents by country,%

and citation intensity
(potentially cited patents in parenthesis)

sp - (pp) - cintp sp - (pp) - cintp

Germany 16.06 - (20.1) - 0.8 5.99 - (7.8) - 0.77

France 6.59 - (7.9) - 0.83 2.34 - (3) - 0.78

Italy 2.73 - (3.2) - 0.85 0.83 - (1.2) - 0.69

United Kingdom 7.57 - (6.5) - 1.16 2.64 - (2.9) - 0.91

Japan 21.82 - (18.5) - 1.18 19.6 - (19.9) - 0.98

United States 31.76 - (29.1) - 1.09 61.09 - (54.7) - 1.11

Sweden and Finland 2.17 - (2.5) - 0.87 0.94 - (1.2) - 0.78

Others 11.29 - (12) - 0.94 6.56 - (9.1) - 0.72

Cited Patents by institutional field,%c

(potentially cited patents in parenthesis, %)

not assigned 9.14 (10.6) 14.62 (16.8)

firms 87.46 (86.3) 83.93 (81.5)

non firms 3.40 (3.1) 1.45 (1.6)

a. Cells with the lag T − t < 1 have been removed (T : date of the citing patent, t: date of the cited

patent),

b. see the Appendix for the sectoral concordance between EP - CESPRI and NBER - USPTO,

c. in the EP - CESPRI the group called ’firm’ includes just companies while in the NBER - USPTO

this group includes ‘non government organization’. The group called ’non firm’ in the EP - CESPRI includes

university and public research centres while in the NBER - USPTO dataset is just ‘government’.
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Table 2. Statistics for regression variables
EP-CESPRI

Mean St. Dev Min Max

Number of citations 3.97 18.95 0 776

Potentially cited patents 262.36 579.7 1 6626

Potentially citing patents 7414.97 5843.27 277 25813

Citation Frequency (10^6) 2.61 12.58 0 1632.65

Lag in yearsa 7.33 4.82 1 20

Regression weights 907.84 1111.34 16.64 13078.11

NBER - USPTO

Mean St.Dev Min Max

Number of citations 33.4 233.86 0 13661

Potentially cited patents 588.77 1335.22 1 13433

Potentially citing patents 11903.73 17359.69 320 76976

Citation Frequency (10^6) 4.86 15.25 0 1619.43

Lag in yearsa 7.33 4.82 1 20

Regression weights 1442.3 2232.51 17.89 29690.93

a. Cells with the lag T − t < 1 have been removed.
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Table 3: Estimated results

USPTO EP-CESPRI

coeff. t− statistic
H0: coeff=1

coeff. t− statistic
H0: coeff=1

citing year effect
(base=1979)

1980 1.191 3.28 0.859 -2.28

1981 1.233 4.04 0.872 -2.19

1982 1.178 3.27 0.878 -2.14

1983 1.139 2.66 0.776 -4.44

1984 1.095 1.89 0.755 -5.02

1985 1.077 1.56 0.717 -6.09

1986 1.093 1.86 0.705 -6.44

1987 1.107 2.12 0.646 -8.42

1988 1.102 2.03 0.607 -9.93

1989 1.083 1.68 0.576 -11.23

1990 1.068 1.38 0.552 -12.29

1991 1.081 1.63 0.556 -12.04

1992 1.131 2.51 0.547 -12.40

1993 1.183 3.36 0.532 -13.09

1994 1.226 3.97 0.524 -13.44

1995 1.344 5.51 0.480 -15.89

1996 1.249 4.27 0.434 -19.02

1997 1.125 2.36 0.375 -24.02

1998 0.882 -2.80 0.292 -34.75

cited time effect
(base=1978−1982)

1983-1987 1.049 8.36 0.986 -1.24

1988-1992 1.040 4.31 0.948 -3.06

1993-1997 0.967 -2.76 0.972 -1.16

institutional nature
(base=not assigned)

companies 1.348 34.17 1.181 8.37

Univ. or public 0.839 -7.72 1.397 10.12

technological field
(base=chemical)

computer & communication 2.094 65.75 0.836 -12.46

drugs & medical 1.336 27.98 1.243 14.04

electrical & electronic 1.407 32.89 0.771 -19.43

mechanical 0.990 -1.01 0.592 -53.61

others 0.943 -6.35 0.395 -54.67
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Table 3: Estimated results, continued

cited patent country
(base=United States)

Germany 0.505 -66.47 0.544 -49.38

France 0.517 -43.71 0.602 -27.98

Italy 0.453 -30.16 0.643 -15.35

Great Britain 0.600 -36.99 0.980 -1.16

Japan 0.700 -60.55 1.281 18.70

Sweden and Finland 0.604 -21.89 0.749 -8.92

Other 0.615 -52.76 0.796 -14.86

citing patent country
(base=United States)

Germany 0.433 -156.02 0.717 -51.83

France 0.492 -88.97 0.784 -26.73

Italy 0.417 -66.31 0.711 -24.65

Great Britain 0.633 -61.14 1.052 5.62

Japan 0.607 -178.27 1.089 13.98

Sweden and Finland 0.584 -47.71 0.735 -19.74

Other 0.537 -150.18 0.873 -18.37

β1 0.189 121.67 0.396 71.77

β2 3.29E-06 21.86 9.27E-06 15.12

rate of obsolescence

by technological field
(base=Chemical)

computer & communication 1.045 7.61 0.878 -12.91

drugs & medical 0.812 -33.54 0.977 -2.48

electrical & electronic 1.140 19.89 0.924 -8.16

mechanical 1.064 8.89 0.863 -18.52

others 0.970 -4.54 0.797 -13.26

by institutional nature
(base=not assigned)

companies 1.105 16.82 1.008 0.69

univ. or public 1.052 2.88 1.069 3.40

by cited patent country
(base=United States)

Germany 0.974 -2.54 0.875 -12.56

France 0.965 -2.32 0.893 -7.51

Italy 0.964 -1.25 0.900 -4.42

Great Britain 0.940 -4.92 0.974 -2.26

Japan 1.037 6.88 1.074 8.87

Sweden and Finland 0.949 -2.42 0.902 -4.15

Other 0.984 -1.84 0.924 -7.11
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Figure 1: Fitted frequency (×106) of citation from EPO and USPTO.

0 5 10 15 20

1

2

3

4

5 chemical_eu 
drugs and medical_eu 
mechanical_eu 

computer and comm_eu 
electronic_eu 
other class_eu 

Figure 2: Fitted citation function for class of patents from the EPO dataset.
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Figure 3: Fitted citation function for class of patents from the USPTO dataset.
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Figure 4: Fitted frequency of citation to patents originating in different countries; resuts from the
EPO dataset.
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Figure 5: Fitted frequency of citation to patents originating in different countries; results from the
USPTO dataset.
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