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The aim of this work was to investigate the reaction kinetics of â-carotene in an aqueous medium as
a function of exposure to commercial lights (halogen and fluorescent sources) and oxygen partial
pressures. The evolution of the pigment concentration, the changes in color, and the accumulation
of a volatile compound (â-ionone) were monitored during storage. The kinetics of degradation were
mathematically modeled to compare the effects of lighting conditions and oxygen partial pressures.
Lighting was also a critical variable in the presence of a low oxygen partial pressure (5 kPa), and in
these conditions, the â-carotene degraded completely during storage, even if more slowly than at 20
kPa of O2. The pigment degradation was correlated to illuminance and UVA irradiance values, but
the different decay rates of the fluorescent lamps were explained by the differences in the blue region
of the energy emission spectra. A halogen lamp gave minor negative effects on â-carotene
degradation.
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INTRODUCTION

Food color and appearance are important visually perceived
factors that contribute to customer selection (1). To fulfill the
consumer’s desire to visually appraise the product and to
convince the potential buyer about the quality of the food prior
to the purchase, transparent packaging materials are often used
(2-5). During distribution and at the retail level, the clear
packages are exposed to natural and artificial light, which may
deteriorate the food quality and marketability, depending on the
photosensitivity of the product. Moreover, cut, sliced, or grated
foods are more susceptible to light-induced damage since they
expose a larger surface area to light (4, 5). In food and
beverages, photochemical degradation occurs almost exclusively
on the surface since level light penetration is very low, in
particular when the products have a compact texture (6). In fact,
the matrix influences the penetration level of light and, therefore,
the rate of light-induced reactions. Generally, the scattering
intensity of light at wavelengthλ by a particle of diameterr is
proportional tor6/λ4 and increases with a higher number of
particles (5, 7).

In general, light exposure causes the deterioration of lipids,
vitamins, proteins, and natural pigments, which results in off-
flavors, loss of flavor and nutrients, and color fading (3, 8).
The most harmful wavelengths are usually in the ultraviolet part
of the spectrum, just below the visible range. This is due to the
high-energy content, which is capable of splitting certain

chemical bonds (6, 9). The effects of light on the degradation
of packaged foods have been widely investigated especially
when lipidic substrates are involved (10); attention has therefore
been focused on fatty foods, which contain pigments (milk,
cheese, butter, yogurt, meat and meat products, oils, etc.) (5,
11, 12). The effect of light on the lipid oxidation and flavor
stability may be attributed to photolytic free radical autoxidation
and/or photosensitized oxidation (5, 13, 14). Photolytic free
radical autoxidation is the production of free radicals, primarily
from lipids, during exposure to far-UV and high-energy light,
with intensities such as 10000-100000 lux (5, 14, 15). In the
same way, light in the wavelength range of the visible spectrum
might cause considerable problems, especially when the product
contains photosensitizer molecules such as chlorophylls, caro-
tenoids, flavonoids, anthocyanins, betaines, etc. These compo-
nents, in fact, are characterized by their conjugated double-bond
system. When light energy is absorbed, the sensitizer is
converted into a triplet excited state, which can interact easily
with another molecule, producing free radicals, or with molec-
ular oxygen, leading to the formation of highly reactive singlet
oxygen. The reaction rate of singlet oxygen with some food
components is much greater than that of triplet oxygen: In fact,
singlet oxygen can attack double bonds directly; for example,
its reactivity with linoleic acid is about 1450 times faster than
that of ground triplet state oxygen (13).

Photodegradative reactions might also take place in aqueous
systems that do not contain fats but photosensitizer compounds
such as natural pigments or artificial colorants (16-19). Among
the numerous compounds available to the food industry, the
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pigments belonging to the carotenoids group are widely used
for coloring foods and beverages and also for increasing their
nutrient stability. In fact, the increased awareness of healthy
eating has led the consumer to prefer foods with a high
nutritional value. For these reasons, natural substances are often
added to many foods to make them healthier and more
appealing. In particular,â-carotene has drawn considerable
attention because of its role as an antioxidant that could reduce
the risk of certain types of cancer and cardiovascular diseases.
â-Carotene is a critical substance because it can act as pro/
antioxidant as a function of some variables and it is sensitive
to pH, temperature, and oxygen. Light also plays an important
role in â-carotene degradation because it is a photosensitive
molecule, although many foods and beverages that contain
â-carotene are sold in stores where artificial light is used for
illumination. In this case, not much information is available on
the specific effects of light, whereas the effects of temperature
are frequently studied (10, 16, 18). Generally, food photosen-
sitivity is influenced by a number of factors: concentration of
oxygen in the head space of the pack and dissolved in the
product, oxygen permeability of the packaging material, storage
temperature, exposure time to light, distance between the product
and the light source, spectral emission and intensity light,
transmittance level of packaging material, reflectance, transmit-
tance, and absorbance spectra of the food product (5). For these
reasons, not only the processing parameters but also the
packaging materials and storage conditions must be selected
and controlled to reduce degradation. A large number of works
are focused on the effects of monochromatic lights (20-23),
but only few evaluate the exposure under real light sources (14,
24-26). For this reason, the aim of this work was to investigate
the effects of various typologies of lamps used by different
commercial retail stores to illuminate food products on caro-
tenoids. In this way, the reaction kinetics ofâ-carotene in an
aqueous medium as a function of exposure to commercial light
sources with different spectral emission were studied. In these
conditions, the effects of two different oxygen partial pressures
were also investigated.

MATERIALS AND METHODS

Samples Preparation.A water dispersibleâ-carotene powder (Roha
Caleb Ltd., United Kingdom) was used to prepare an aqueous solution
at a concentration of 18µg mL-1. The powder consisted ofâ-carotene
(10% w/w) solubilized in genetically modified free vegetable oil
embedded in the form of very fine droplets coated with a matrix
composed of dextrin and glucose (particle size: minimum, 98% smaller
than 200 µm; maximum, 8% smaller than 50µm). The powder
contained calcium phosphate (E341) as an anticaking agent that assured
the stability of the fine emulsion during the experimental time. In fact,
suspended particles were never visible in samples, and the opacity
(measured as absorbance at 660 nm) (27, 28) did not increase over 10
days of storage.

The solution was buffered at pH 7.2 with citric acid-Na2HPO4, and
0.5 mL of ethanol (98% v/v) was added to prevent microbial growth
during storage. The samples were composed of 10 mL of solution
contained in 22 mL glass vials (clear in the UV-vis region of the
spectrum) inside of which two oxygen partial pressures were created.
A set of vials was hermetically closed under 20.9 kPa of oxygen to
simulate packaging in air, while another set was conditioned under 5
kPa of oxygen using an automatic packaging machine (Tecnovac S100
DGT gas) connected to a gas mixer (PBI Dansensor MAP mix 9000)
to simulate oxygen residual after modified atmosphere packaging. The
vials were then hermetically closed with PTFE/butyl septa and
aluminum crimp tops.

Storage Experiment and Light Exposure.Each set of vials was
stored horizontally on black turning plates inside thermostated and

ventilated cabinets for 11 days at 33( 2 °C. Data loggers (Smart Reader
SR04) were used to verify the real temperature. During storage, the
samples were exposed to constant illumination produced by different
light sources, and the same number of samples were also conditioned
in the darkness. The lamps and the conditions of lighting used in the
storage experiments were selected after a census in different large-
scale retail stores in Milan and on the outskirts of the city. Details of
this part of the experiment are reported elsewhere (29). In particular,
a cool white lamp (Osram Dulux El Longlife 30W/840), a warm white
lamp (Osram Dulux T 26W/830), and a halogen lamp (Osram Decostar
51S Standard 20W 36°) were used. The lamps were installed inside
the cabinets and placed 18 cm above the samples. To avoid light-
reflecting phenomena, the internal walls of the cabinets were tinted
black. For each selected light, illuminance and irradiance in the visible
and UVA regions were measured under real storage conditions at the
level of the samples (Table 1).

Determination of â-Carotene Concentration and Color Evolution
of the Solutions.Samples were withdrawn in triplicate for analysis at
predetermined times. The pigment degradation was controlled by
monitoring the residualâ-carotene and the color change.

The amount ofâ-carotene was determined by measuring absorbance
at theλmax (479 nm) using an UV-visible spectrophotometer (Perkin-
Elmer Lambda 650). This method of monitoring carotene oxidation is
well-established and has been used previously in many studies (30,
31). From a stock solution ofâ-carotene, 13 standard solutions were
prepared by successive dilution with concentrations ranging from 1 to
22 µg mL-1. To construct the calibration curve, all of the standard
solutions were prepared and analyzed in triplicate. The evolution of
the color of the samples was monitored by means of the CIEL*a*b*
parameters calculated by the software Color version 3.00 (Perkin-Elmer
Instruments) from the transmittance spectrum acquired in the visible
region (380-780 nm).

Isolation and Determination of â-Ionone. The production of a
volatile compound (â-ionone) by means of the headspace solid-phase
microextraction (HS-SPME) technique was evaluated. The SPME
device was from Supelco Co. (Bellefonte, PA). Prior to the sample
headspace exposure, the 10 mm fiber coated with 100µm polydim-
ethylsiloxane was thermally conditioned by its insertion into the gas
chromatography (GC) injector port at 250°C for 30 min, as recom-
mended by the manufacturer. Moreover, each day, the fiber was
activated by inserting it into the GC injector at 250°C for 20 min.

For each extraction, the vial containing 10 mL ofâ-carotene aqueous
solution was thermostated for 3 min at 50°C in a water bath,
submerging it only as far as necessary to submerge the liquid phase of
the sample to help keep the SPME fiber cool. Then, the fiber was
manually inserted into the sample vial at the above-mentioned tem-
perature for an adsorption time of 30 min.

The volatile compounds extracted by HS-SPME procedure were
identified using a gas chromatograph coupled to a mass selective
detector. In particular, the GC instrument (model Autosystem XL,
Perkin-Elmer Inc., United States) was equipped with a polar capillary
column (SupelcowaxTM-10 30 m× 0.25 mm i.d.× 0.25 µm film
thickness). Helium was used as the carrier gas at a flow rate of 1 mL/
min. The volatile compounds were desorbed in the GC injector in
splitless mode at 250°C for 2 min (preliminary studies indicated that
this exposure time permitted the fiber to be clean). The injector and
transfer line temperatures were 250 and 280°C, respectively, and the
oven temperature program was as follows: 40°C increased to 150°C
at 10°C/min and to 190°C at 5°C/min.

Table 1. Technical Characteristics of the Lamps Used for Lighting
Samples

lamp
typology commercial name

color
temp (K)

illuminance
(lux)

UVA
irradiance
(Wm-2)

fluorescent
cool white Osram Dulux El Longlife 30W/840 4000 3300 0.065
warm white Osram Dulux T 26W/830 3000 2700 0.052
halogen Osram Decostar 51S Std 20W 36° 1800 0.017
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The quadrupole mass detector (model Turbo Mass, Perkin-Elmer
Inc.) was operated in the electron ionization mode at a voltage of 70
eV. The ion source temperature was set at 180°C. The electron impact
spectra were recorded at 1 s/scan in the mass range of 40-620 m/z.
The peak ofâ-ionone was identified via a comparison with the NIST
mass spectral library (version 1.7, 1999) and the retention time of the
chemical standard (g95.0% Fluka, Switzerland).

RESULTS AND DISCUSSION

The effects of three selected lamps (cool white, warm white,
and halogen) on the stability ofâ-carotene were performed by
monitoring its concentration and color changes during time. It
was evident that the changes in theâ-carotene concentration
and also those in theL* and a* CIE parameters had a sigmoid
shape, as shown inFigure 1 for the storage at 20 kPa of oxygen.
An induction time was evident, and the decay rate did not
decline immediately but decreased up to a minimum before
steadily reaching an asymptotic level (Figure 1a).

The same trend was obtained for the evolution of the color
coordinatea*, as it can be seen inFigure 1c referred to the 20
kPa of oxygen. TheL* values (Figure 1b), after the induction
time, increased up to a maximum before reaching the asymptotic
level. A different behavior was observed for theb* values (data

not shown): In fact, in all of the lighting experiments, the
induction phase was not evident and a maximum was observed
after a few hours from storage and before its decrease up to a
constant value. For this reason, theb* data will not be discussed
in this paper.

From a literature review, it has been noted that the degradation
of this carotenoid follows different order kinetic models, as a
function of the type ofâ-carotene, the substrate compound
involved, and, also, the lighting conditions. For example, Jare´n-
Galàn and Minguez-Mosquera (32) reported thatâ-carotene
degradation during time in phosphate buffer under an il-
luminance of 1000 lux was fitted by a first-order kinetic model;
however, in this work, the authors gave no information about
the typology of the lamp and the conditions of expositions. On
the other hand, Gao and co-worker (33) observed a zero-order
kinetic for â-carotene in dichloromethane solution when irradi-
ated with near-UV and visible light. These last findings were
in agreement with the conclusions indicated in other papers
about the effect of ozone, oxygen exposures, and heat treatment
on carotenoid degradation in an aqueous medium (16, 18). Even
if the substrate used in these experiments was the same as ours
(i.e., water), the experiments were carried out without consider-
ing the light exposition. The sigmoid pattern has been noticed
in the literature where many decay data have been described
by a number of so-called sigmoid models, such as the Logistic,
Gompertz, Richards Morgan, and Weibull models (34-36). In
particular, the sigmoid trend was also found both in the
degradation of color pigments (mostly carotenoids) in dehy-
drated and ground chili peppers during 12 months of storage
(37) and in the overall degradation pattern of the vitamin A
palmitate-only sample at ambient temperature (38).

In this work, the Gompertz model as modified by Zwietering
et al. (39) (eq 1), adapted to both growth and decay kinetics,
was chosen to describe the sigmoid behavior of theâ-carotene
concentration and theL* anda* changes, to obtain information
that made it possible to compare the effects of both light
exposure and oxygen partial pressure.

whereC is theâ-carotene concentration (orL* and a* value)
at timet, C0 is theâ-carotene concentration (orL* anda*) value
at time 0,A is the increase (or decrease) in logC/C0 between
the maximum and the minimum value achieved at the stationary
phase and time 0,µ is the maximal increase or decrease rate
[∆log(C/C0)/h], λ is the induction time (h), andt is the time
(h).

Table Curve 2D Software Version 4 (Jandel Scientific
Software) was used for the nonlinear regression analysis and
to determine the parameters of the modified Gompertz equation.

The goodness of fit of the experimental data was evaluated
by means of the adjustedR2 and the root-mean-square error
(RMSE, eq 2), which measures the average deviation between
the observed and the fitted values. The small RMSE value
indicates a better fit of data for that model (40)

wheren is the number of observations andp is the number of
parameters to be estimated. The results are shown inTable 2.

Figure 1. Sigmoid shape of some â-carotene concentration (a), L* (b),
and a* (c) curves during storage at 20 kPa of oxygen.

log (C/C0) ) (A × exp{-exp{[(µ × 2.7182)×
λ - t

A ] + 1}} (1)

RMSE) x∑ (fitted - observed)2

n - p
(2)
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The adjustedR2 higher than 0.970 and the low values of
RMSE suggested a good correspondence between the experi-
mental and the predicted data both at 5 and 20 kPa of oxygen.
So, theâ-carotene degradation of the aqueous solution was
properly described in terms of the sigmoid model, as shown in
Figure 2, where, for example, the concentration decrease, the
L*, and thea* changes during the exposition under the cool
white lamp and in the dark are shown.

The modeling of the experimental data made it possible to
study the acceleration induced by light exposition with respect
to dark storage and the effects of the oxygen partial pressure
on the photoxidation of the pigment.

All data (induction time and maximum rate) are shown in
Table 3 for the storage at 20 and 5 kPa of oxygen. To quantify
the effect of light exposure in the acceleration of theâ-carotene
degradation (both in terms of concentration,L*, anda* changes)
for the same oxygen partial pressure, a ratio between the
induction time estimated under illumination (λl) and that
estimated in the dark (λd) was calculated and expressed asλl/
λd; the same calculus was performed on the rates values (µl/
µd). The results are shown inTable 4.

At 20 kPa of oxygen (Table 4), for all of the analyzed
indexes, the induction times were higher in the dark than under
illumination: In fact, the ratios (λl/λd) were always lower than
1. The light exposure accelerated the maximum reaction rates
as shown by the ratios (µl/µd), which were all higher than 1.

The presence of an induction phase is probably due to the
antioxidant activity of â-carotene, which, acting both as a
physical quencher and a radical trapping, could be able to protect
itself from oxidation for a certain time (16, 31, 38). The
induction time could also be due to the protective effect of the
thin coating of the fine droplets that surrounded theâ-carotene
solubilized in a vegetable oil. This protective effect was found
for microcrystalline cellulose and also for starch used as a
supporter ofâ-carotene, as described by Goldman et al. (41).
Moreover, oxygen is more soluble in nonpolar lipids than in
aqueous system (13); for this reason, the low water solubility
of oxygen could also induce a slack in the photoxidation. The
fact that the induction times were always longer and the
maximum reaction rates lower in the dark than under illumina-
tion might be explained by the different mechanisms involved
in theâ-carotene degradation. In fact, in the dark, the oxidation
of â-carotene does not follow a photodegradative route (with
the production of singlet oxygen) but a radical pathway that
can be induced by temperature (equal to 33°C in this
experiment) (42) and radical starters (metals or probably other

contaminants present in water or in the powder). Instead, in
lighted conditions, it can suppose that two parallel reactions
take place: One is a radical oxidation, and the other is a
photoxidation that follows prevalently a type II pathway, where
the excited triplet sensitizer may react with the triplet oxygen
to form singlet oxygen and singlet sensitize (13). Generally,
the rate of singlet oxidation is much greater than that of
atmospheric triplet (therefore, radicalic) oxidation (13), explain-
ing the obtained data.

The comparison among the effects of the different lamps was
more evident considering the maximal rates values than the
induction times. In fact, the length of the induction times was
not dependent on the lighting conditions while the rates were
influenced by the illuminance and UVA irradiance data mea-
sured during the storage experiment (Tables 1and3). In other
words, the highest rates of changes were found for the cool
white lamp, while the lowest rates were found for the halogen
lamp.

It was interesting to note that the highest degradation rates
were found under illumination with the two lamps less different
in terms of illuminance and UVA irradiance. To better
investigate these results, the relative spectral distribution of the
energy was acquired using an optical probe connected to a
detector simulating the real illumination geometry of the
cabinets.

Table 2. R2 and RMSE Values of the Data Fitting for All Tested
Conditions

â-carotene concentration L* a*

oxygen
(kPa) R2 RMSE R2 RMSE R2 RMSE

dark
20 0.988 0.028 0.998 0.013 0.994 0.023

5 0.989 0.021 0.979 0.023 0.989 0.076

cool white
20 0.993 0.045 0.999 0.004 0.994 0.099

5 0.997 0.030 0.981 0.025 0.997 0.044

warm white
20 0.989 0.028 0.994 0.012 0.971 0.251

5 0.997 0.030 0.975 0.331 0.997 0.045

halogen
20 0.998 0.033 0.998 0.013 0.994 0.023

5 0.986 0.059 0.979 0.023 0.989 0.076

Figure 2. â-Carotene concentration (a), L* (b), and a* (c) data for the
cool white and dark storage, modeled with the modified Gompertz equation.
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The difference between the two lamps is well-highlighted in
Figure 3, which shows the ratio between the two relative
spectra. The cool white had a higher emission in the blue region
of the spectrum where theâ-carotene absorbs. This might
explain, together with the illuminance and UVA irradiance
values, the highest modifications of the aqueous solution
exposed under the cool white lamp.

At 5 kPa of oxygen (Table 3), the interpretation of induction
times as a function of the storage condition was not simple, as
also found at 20 kPa. In particular, for the warm white and
halogen lamps, the induction times of theâ-carotene concentra-
tion andL* curves were shorter than in the dark (i.e., the ratios
were lower than 1 as shown inTable 4), meaning that the
illumination accelerated the start of oxidation. On the contrary,
this situation was not verified during the exposition of the model
system under the cool white lamp, and the induction times for
the carotenoid concentration andL* were higher than in the
dark (ratio higher than 1). The ratios of the maximum reaction
rates forâ-carotene andL* indexes with respect to the dark
(µl/µd) were quite close to 1, suggesting that the radical reactions
seemed to prevail both under light and under dark. In lighted
samples, the availability of low oxygen combined with the low
water solubility of singlet oxygen could have favored the type
I pathway of the photoxidation, where the excited triplet
sensitizers that were formed after the absorption of visible and
ultraviolet radiation energy acted as a photochemically activated
free radical initiator for a radical compound and reacted with
the triplet oxygen to form peroxy radical. Generally, as the
oxygen in a system becomes depleted, the type I mechanism is
favored (13).

In the case of the redness/greenness parameter (a*) at 5 kPa
of oxygen, both the induction and the rate ratios were higher
than 1 for all of the selected lamps (Table 4): This means that
the modifications described by this component of the color were
detected more rapidly in the dark but the rates of reactions were

higher during lighting. This situation can be explained assuming
that at low oxygen partial pressures the effect of light and
temperature could be limited to causingcis-transisomerization
(36), which probably did not significantly modify the red
components of the solution for the time corresponding to the
induction phase.

From these data, it might seem that exposition to light did
not have a great effect at 5 kPa of oxygen, while the limiting
factor was represented by the oxygen. However, considering
the maximum of the second derivative of theâ-carotene
concentration anda* curves or the minimum ofL* curves, it
was possible to check when the reaction rates decreased
drastically, that is, when the reaction reached the asymptotic
level (Table 5). It was evident that the reaction tended to ex-
haust more rapidly in the dark but without the complete
degradation of the reactant, as the values of the increase (or
decrease) in logC/C0 between time 0 and the maximum or

Table 3. Induction Times (λ) and Maximum Reaction Rates (µ) under Lighting and in Darkness at 20 and 5 kPa of Oxygena

lamp
typology h

â-carotene
concn L* a* h-1

â-carotene
concn L* a*

20 kPa
cool white λl 20.89 c 22.30 c 20.05 a µl 0.0355 d 0.0196 d 0.1000 d
warm white λl 7.80 a 2.50 a 30.41 b µl 0.0264 c 0.0137 c 0.0696 c
halogen λl 18.20 b 7.44 b 44.12 c µl 0.0209 b 0.0088 b 0.0416 b
dark λd 26.00 d 24.80 d 148.00 d µd 0.0091 a 0.0049 a 0.0080 a

5 kPa
cool white λl 31.00 c 23.10 c 63.10 b µl 0.0136 b 0.0076 c 0.0701 c
warm white λl 14.30 a 3.30 a 69.34 c µl 0.0123 b 0.0046 ab 0.0180 b
halogen λl 12.00 a 3.30 a 173.02 d µl 0.0095 a 0.0040 a 0.0055 a
dark λd 23.78 b 16.50 b 13.60 a µd 0.0135 b 0.0050 b 0.0050 a

a For each column, different letters indicate statistically different groups (p < 0.05).

Table 4. Ratios of Induction Times (λ) and Maximum Reaction Rates (µ) under Lighting and Dark

lamp
typology ratio

â-carotene
concn L* a* ratio

â-carotene
concn L* a*

20 kPa
cool white λl/λd

a 0.80 ± 0.02 0.90 ± 0.05 0.13 ± 0.06 µl/µd
b 3.90 ± 0.04 4.00 ± 0.02 12.50 ± 0.12

warm white λl/λd 0.30 ± 0.05 0.10 ± 0.02 0.20 ± 0.04 µl/µd 2.90 ± 0.03 2.80 ± 0.09 8.70 ± 0.15
halogen λl/λd 0.70 ± 0.02 0.30 ± 0.06 0.30 ± 0.07 µl/µd 2.30 ± 0.04 1.80 ± 0.07 5.20 ± 0.09

5 kPa
cool white λl/λd

1 1.30 ± 0.12 1.40 ± 0.06 4.60 ± 0.85 µl/µd
2 1.00 ± 0.12 1.10 ± 0.05 4.00 ± 0.92

warm white λl/λd 0.60 ± 0.48 0.20 ± 0.45 5.10 ± 0.32 µl/µd 0.91 ± 0.12 0.92 ± 0.17 3.60 ± 0.98
halogen λl/λd 0.50 ± 0.09 0.20 ± 0.08 12.70 ± 0.14 µl/µd 0.85 ± 0.18 0.81 ± 0.14 1.10 ± 0.98

a Ratio between the induction time estimated under light (λl) and in the dark (λd). b Ratio between the rate estimated under light (µl) and in the dark (µd).

Table 5. Times at Which Correspond the Maximum and Minimum of
the Second Derivative of â-Carotene, L*, and a* Curvesa at 5 kPa of
Oxygen and Values Achieved at the Stationary Phase (A)

â-carotene concn L* a*

max
d2y/dt2 (h) A

min
d2y/dt2 (h) A

max
d2y/dt2 (h) A

dark
50 a 0.40 a 51 a 0.23 a 70 a 0.14 a

cool white
97 b 1.26 b 54 b 0.39 b 112 b 2.93 c

warm white
98 b 1.26 b 56 b 0.40 b 122 b 2.24 c

halogen
189 c 1.42 c 81 c 0.39 b 209 c 1.00 b

a For each column, different letters indicate statistically different groups (p <
0.05).
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minimum value achieved at the stationary phase (parameter A
in eq 1) show.

Another consideration may be done; the degradation of the
â-carotene expressed as the decrease in concentration was also
described by the lightness changes (L*), as demonstrated by
the similar rate ratios at both 5 and 20 kPa (Table 4).

Comparing the results in the darkness, the maximum rate of
â-carotene degradation at 5 kPa was about 1.5 times higher than
that measured at 20 kPa (Table 3). Moreover, also, the induction
times were longer at 20 than at 5 kPa of oxygen for all of the
analyzed indexes. This behavior could be explained assuming
that neighboring O2 molecules, when in liquid form, have a
negative exchange energy and thus tend to align antiparallel
with each other. So, at high concentrations, this fact could have
reduced, for a certain time, the amount of oxygen able to interact
with the fine microemulsion structure of the water dispersible
â-carotene. In fact, in a previous work, Goldman and al. (41)
found that the presence of oxygen in the headspace (without
light exposure) was a crucial factor inâ-carotene degradation
but the limiting factor in the oxidation of the dispersed pigment
was the adsorbed oxygen content.

During storage, the formation of a volatile compound was
also investigated. In fact, the oxidation of carotenoids generally
involves epoxidation, the formation of apocarotenoids, and
hydroxylation. Subsequent fragmentations result in a series of
compounds of low molecular masses and volatiles in nature. In
the case ofâ-carotene, compounds such asâ-ionone,â-cyclo-
citrale, damascenone, and dihydroactinidiolide are considered
as degradative volatile products (43, 44), which contribute to
the aroma/flavor, desirable in tea and wine (45) but undesirable
in other foods such as dehydrated carrot and some soft drinks
(46). The formation of volatile compounds by thermal degrada-
tion of the carotenoids during heat treatment of vegetables
products has been mentioned by some authors (18, 19). On the
contrary, the effects of light and oxygen have been studied
probably to a lesser extent, and no references were found.

Figure 4 shows the evolution ofâ-ionone, at 20 and 5 kPa
of oxygen, during storage under the illumination of the three
selected lamps. It is noted that at 5 and 20 kPa of oxygen the
trend was the same for all of the storage conditions tested: The
â-ionone level (expressed as area unit) rose up to a maximum
and then decreased in time (Figure 4a,b). It was also evident
that the maximum ofâ-ionone accumulation was reached later
in darkness conditions than under light, and in the former case,
the amounts accumulated were always lower (Figure 4c). In
particular, this phenomena was more noticeable at 5 kPa of
oxygen than at 20 kPa.

It was expected that higher oxidation rates ofâ-carotene
would result in the major formation ofâ-ionone, but this
compound accumulated at lower levels in those samples exposed

to the fluorescent lamps. Both at 5 and 20 kPa of oxygen, the
halogen lamp, which gave the lowest rates of degradation in
terms ofâ-carotene concentration and lightness changes, induced
the highestâ-ionone accumulation, especially at 5 kPa of
oxygen. This was probably due to the minorâ-ionone degrada-
tion during the exposition under this light. In fact, as other
authors have sustained (18, 47) in a highly reactive environment
(like this one where light and oxygen were present), rapid
isomerization and oxidation of the degradative products were
observed. An arbitrary mathematical model (a peak function)
was applied to describe the evolution ofâ-ionone to calculate
the first and the second time derivatives from which it was
possible to estimate the time related to the maximum rate and
the acceleration of the volatile production phenomenon. At
20 kPa, the time of maximum acceleration of the production
of â-ionone coincided with the induction time calculated
from the fitting of the redness/greenness experimental data. In
fact, when the redness/greenness index started to decrease, the
rate of theâ-ionone production tended to increase. At 5 kPa,
the maximum of theâ-ionone curves coincided with the
estimated induction time fora* curves (Table 6). In other words,
this color index (a*) was able to describe theâ-carotene
degradation giving information about the transit of the reaction
from the nonvolatile (and colored) to volatile (and colorless)
compounds.

Figure 3. Ratio between the relative emission spectrum of cool and warm
white lamps.

Figure 4. Evolution of â-ionone during exposition under the three lamps
at 20 (a) and 5 kPa (b) and in darkness (c).
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In conclusion, the aqueous solution ofâ-carotene had the
advantage of simplicity for testing the effects of both light
exposure and oxygen partial pressure. The modeling of the
experimental data made it possible to estimate the rate of decay
of some quality indexes, such as theâ-carotene concentration
and the color of the solution. Nevertheless, the kinetic model
of aqueousâ-carotene as affected by light, oxygen, and other
factors needs further study, and the approach of a multiresponse
analysis could allow one to obtain a more realistic kinetic model
and thus a deeper insight in reaction mechanisms. In this study,
it appeared that lightness index (L*) seemed to be a good
indicator of the decrease inâ-carotene concentration, while the
changes in redness/greenness index (a*) coincided with the
production of the volatile compoundâ-ionone. This means that
the colorimetric measurement is able to describe the molecular
changes ofâ-carotene during oxidation.

Lighting was also a critical variable in the presence of a low
oxygen partial pressure. In fact, even if more slowly than at 20
kPa of O2, theâ-carotene degraded during storage. The halogen
lamp had minor degrading effects on theâ-carotene solution
but allowed the highest accumulation ofâ-ionone: If this result
were verified in a real food system, their use should be
recommended for the lighting of products rich in carotenoids
but not sensitive to sensorial modifications. The knowledge of
the emission spectra of the light sources contributed to explain-
ing the different decay rates of the fluorescent lamps that resulted
higher using the cool white light.

From a technological point of view, the packaging materials
performances and the modified atmosphere technique need to
be optimized to reduce the oxygen content in photosensitive
foods. On the other hand, the light sources in the retail stores
have to be chosen with care and not just on the basis of cost,
efficiency, durability, and aesthetic factors.
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