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ABSTRACT 

 

A systematic investigation has been carried out, aiming at elucidating several aspects of 

the gas/solid methylation of phenol over high Si/Al ratio BEA-structured zeolite in 

protonated form. The catalysts have been characterized by several techniques, such as 

XRD, SEM, BET, ICP, FT-IR, TGA, micro-calorimetry and modelling by ab initio 

calculations. The correlation between these characteristics and kinetics and mechanistic 

features of the catalytic reaction, as well as of catalyst deactivation, showed that these 

zeolites are very active for the present reaction, leading to cresols and anisole as primary 

products. As catalyst deactivation proceeds, the selectivity to cresols and anisole 

increases substantially, together with a rapid decrease of selectivity to poly-alkylated 

species. Catalyst surface acidity is prevalently made of medium-to-low-strength silanols-

based acid sites of Brønsted type. High-strength Lewis acid sites are either almost absent, 

especially when metal cations partially substitute for protons, or play a role essentially in 

catalyst deactivation. Stacking faults in the zeolite framework, generated by the 
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intergrowth of at least two BEA polymorphs, lead to an increase of the concentration of 

silanols-based acid sites. Deactivation is essentially due to the interaction of phenol and 

oxygenated products with the strong Lewis acid sites. For time-on stream values longer 

than a few hours, self oligomerisation-cyclisation of methanol to olefins and aromatics, 

followed by further alkylation to aromatic C atoms, contributes more significantly to catalyst 

deactivation. At higher temperature all the zeolites deactivate at a comparable rate, 

whereas at lower temperature initial catalytic activity is higher for larger crystal size zeolite, 

due to the longer diffusion time of bulkier coke precursors within zeolite pores. At any 

conversion level and at any temperature the anisole/cresols ratio is systematically lower 

for the larger crystal size zeolite, since the secondary transformations of anisole to cresols, 

by both intra-molecular rearrangement and inter-molecular alkylation of phenol, is favoured 

by the longer residence time of anisole within the zeolite pores. 
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1. INTRODUCTION 

 

Methylation of phenol over acidic catalysts represents an industrially interesting 

process, by which a set of important chemicals and chemical intermediates, such as 

cresols, anisole and poly-alkylated phenols can be prepared [1]. The most investigated 

catalysts include strong Brønsted-type acid materials, such as H-Y and H-ZSM5 zeolites 

[2-13], and weaker acid catalysts as well, such as metal phosphates [14,15]. The main 

limit of zeolites is the low selectivity achieved to one specific compound, since several 

products are obtained (O-alkylated, mono- and poly-C-alkylated), the selectivity of which is 

a function of phenol conversion, reaction conditions and zeolites characteristics. This is not 

the case for the heterogeneous basic-catalyzed methylation, which is a much more 

specific reaction. In fact, it almost exclusively yields the products of ortho-C-alkylation [16-

20].  

Furthermore, alkylation reactions over solid acid catalysts, especially with reactants in 

gaseous phase, usually are accompanied by several unwanted side reactions, triggered by 

the same surface acidity of the catalyst, leading to a more or less rapid deactivation of the 

catalyst, due to fouling by carbonaceous deposits, usually referred to as “coke” [21]. 

However, it is worth noting that, to the best of our knowledge, the scientific literature on the 

alkylation with alcohols of phenol and of phenol derivatives, especially from the reaction 

kinetics point of view, does not take into consideration explicitly any catalyst deactivation 

effect. 

The literature on gas-phase alkylation of phenol with alcohols over Beta zeolites is 

scarce [22-27]. Over Beta zeolite a somewhat different acidity can add to that based on 

Al3+ sites. Indeed, in such a zeolite randomly intergrown structures of two or even three 

different polymorphs, with a considerable amount of random stacking faults, leads to a 

substantial increase of lattice defects and structural disorder [28]. This disorder creates 
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additional internal surface hydroxylated species (SiOH nests of variable geometrical 

arrangement) and Lewis-type (L) electron acceptor sites. As a consequence, both catalyst 

activity and resistance to coking are simultaneously affected by all these features, namely 

zeolite crystal structure and pore width, nature and concentration of surface acid sites and 

zeolite crystal size [29-31]. 

The aim of the present work was to investigate the effect on catalytic performance for 

phenol methylation of properly prepared samples of H-Beta zeolite of similar Si/Al ratio, but 

much different crystal size. In fact, it is expected that in a complex reaction pattern, 

including parallel and consecutive reactions, the distribution of products can be greatly 

affected by the intra-particle residence time of products. Besides reaction rate and 

selectivity to the various products, the present analysis takes into account the activity 

decay and the change of selectivity with time-on-stream, looking for correlations between 

catalytic behaviour and the zeolites physical-chemical characteristics. 

 

2. EXPERIMENTAL 

 

2.1. Catalyst preparation 

Three main samples of Beta zeolite, named beta-1, beta-2 e beta-3, were prepared by 

hydrothermal synthesis [32,33]. Tetraethyl-orthosilicate (TEOS, 98% pure, Aldrich), 

tetraethylammonium hydroxide (TEAOH, 40% aqueous solution, Fluka), sodium aluminate 

(56% Al2O3, 37% Na2O, Carlo Erba) and NaOH (97% pure, Aldrich) were used as 

reagents. The silico-aluminate precursor gel was obtained by vigorously stirring the 

mixture of reagents at room temperature for several hours. After the complete hydrolysis of 

the organo-silicon compound, stirring was further continued for at least 24 h with final 

gentle warming, to remove the ethanol released. 
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The synthesis of the zeolite was then carried out at 135ºC (beta-1) or 150ºC (beta-2, 

beta-3) in PTFE-lined stainless steel autoclaves, tumbling at 20 r.p.m. After 24 h for beta-

1, 48 h for beta-2 and 94 h for beta-3 the autoclaves were rapidly cooled and the solid was 

recovered from the milky suspension by centrifugation at 40,000 g. The solid was then 

repeatedly washed with distilled water till neutrality of the washing liquid, dried at 120ºC 

overnight and calcined in nitrogen and air flow up to 550ºC, to remove the TEAOH trapped 

in the channels of the zeolite crystals. The as-prepared samples were then ion-exchanged 

three times for three hours at 80ºC with fresh 0.1 M ammonium nitrate (Janssen, “pro 

analysi”) solution. After the final exchange, the solid was separated by centrifugation, 

repeatedly washed with distilled water and calcined in air at 550ºC, to obtain the final 

protonated zeolite by decomposition of the ammonium ion. 

A fourth sample (beta-silicalite, with Si/Al ratio >500) was also prepared for 

characterisation comparison purposes only. This required the preparation of the special 

templating agent 4,4’-trimethylene-bis(N-benzyl,N-methyl-piperidinium)-dihydroxide, the 

usually employed TEAOH failing in leading to the desired BEA structure for very high Si/Al 

ratios [34]. 

Beta-10 was a sample kindly supplied by Polimeri Europa srl and it has been used for 

comparative characterisation purposes only. 

The template solution was prepared as follows: 77 g of 4,4’-trimethylene-bis-(1-methyl-

piperidine) (Aldrich, 98+% pure) were dissolved in 103 g of ethanol (Fluka, anhydrous). To 

this solution 110 g of benzyl bromide (Fluka, 98% pure) were added dropwise under 

vigorous stirring. The solid dibromide precipitate so formed was repeatedly washed with 

anhydrous ethanol and dried under flowing nitrogen. The dihydroxide was then obtained 

from the dibromide by electro-dialysis, by employing an electrolytic cell equipped with an 

anionic membrane separating the cathodic 0.46 M bromide solution from the anodic 25 



 6 

wt% aqueous ammonia solution. The final 0.79 M solution of the templating agent was 

finally obtained by low-temperature removal of excess water. 

The synthesis of beta-silicalite was then carried out as previously described, in the 

absence of sodium aluminate and by substituting the 4,4’-trimethylene-bis(N-benzyl,N-

methyl-piperidinium)-dihydroxide for TEAOH. 

 

2.2. Catalyst characterisation 

Identification of crystalline structure was accomplished by X-ray diffraction (XRD), by 

means of a Philips PW 1820 powder diffractometer, operated at 40 kV and 40 mA, with Ni-

filtered, Cu-K radiation ( = 1.5418 Å). The BET specific surface area (SSA) was 

measured by N2 adsorption-desorption at liquid nitrogen temperature, on a Micromeritics 

ASAP 2010 instrument. Zeolite crystal size and shape were determined by scanning 

electron microscopy (SEM), by either a Cambridge Stereoscan 150 or a Leica LEO 1430 

instrument. Elemental analysis was performed on a Varian Liberty 200 inductively coupled 

plasma (ICP) spectrometer. 

Catalyst surface acidity was measured by FT-IR spectroscopy, by means of a Perkin-

Elmer 1750 Spectrometer. Self-supporting wafers of pure zeolite were first evacuated at 

500°C in vacuo (residual p = 10-6 mbar). Then adsorption of pyridine was done at room 

temperature, and desorption was carried out by outgassing the sample at 50, 150, 250, 

350, 450°C. The FT-IR spectrum was recorded after evacuation at each temperature level. 

The reactivity towards CH3OH, the large-excess reactant of the methylation reaction 

(vide infra), has been investigated also by IR spectroscopy. The interaction between 

CH3OH and beta-1, beta-2 and beta-3 catalysts, after pre-activation in vacuo (residual p = 

10-5 Torr) at 773 K, has been analysed at 2 cm-1 resolution on a Bruker IFS 66 FT-IR 

spectrometer, equipped with MCT detector. The samples were pre-evacuated as for the 

acidity measures (vide supra). 
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The adsorption features of the catalysts have been investigated by contacting (at 303 

K) the activated samples with CH3OH vapour, as well as with H2O vapour, in order to 

investigate the hydrophilic/hydrophobic properties of the catalysts. The study was 

performed by using a heat-flow micro-calorimeter Tian-Calvet type (C80 by Sétaram) 

connected to a high-vacuum gas-volumetric glass apparatus, equipped with a Ceramicell 

0-100 Torr transducer gauge by Varian, following a well established procedure [35-37]. All 

samples were activated in vacuo for 2 h at a residual pressure p  10
-5

 Torr at T = 873 K 

for H-BEA, and at T = 673 K for the all-silica zeolite. The individual activation temperature 

was selected according to the indications of IR spectroscopy (spectra not reported for 

brevity), so to achieve the maximum dehydration of the surface compatible with the 

stability of the structure and aiming at the maximum density of Lewis and Brønsted acidic 

sites. CH3OH and H2O were distilled in vacuo and outgassed by several freeze-pump-thaw 

cycles. The adsorption measurements have been performed at least twice on a virgin 

portion of the same batch of the materials, activated under the same conditions, in order to 

check the reproducibility of the experiments. 

At last, a calculation was made relative to the interaction of CH3OH and H2O molecules 

with a molecular cluster simulating a coordinatively unsaturated framework Al(III) site 

acting as Lewis (L) acidic site. All calculations have been run at ab-initio level using the 

B3-LYP/6-31+G(d,p) model chemistry [38]. The binding energies (BE) of the probe 

molecules with the L site have been calculated, and compared to the enthalpy change 

associated to the adsorption processes on the real systems. 

 

2.3. Catalytic activity tests 

Methylation of phenol was carried out in a continuous down-flow tubular reactor, at four 

different temperatures, ranging from 320 to 450°C, at atmospheric total pressure. An 

excess of methanol with respect to the stoichiometric requirement for the methylation of 
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phenol was fed (methanol/phenol feed ratio = 7/1). In fact, due to the strong interaction 

between phenol and the catalyst, acceptable reaction rates are obtained only when the 

partial pressure of methanol is much higher than that of phenol. Usually methanol/phenol 

feeding ratios higher than 5 are used [39] for an analysis of the effect of such a ratio on 

catalytic performance, so to obtain a phenol conversion higher than 10-20% at T < 400°C. 

On the other hand, feeding ratios higher than 10 favour the formation of poly-alkylated 

phenols. Our aim was to investigate the selectivity ratio between O- and C-alkylated 

compounds, with minimal formation of poly-alkylated products. Therefore, a 

methanol/phenol molar ratio of 7/1 was selected as a compromise between these two 

counteracting effects. 

0.6 g of catalyst were loaded. The flow rate of reactants was 60 cm3/min of gaseous N2 

and 1.75x10-3 cm3/min of organic liquid feeding mixture, so to have a value of residence 

time  = 0.98 s (cm3
catalyst bed s/cm3 

overall gaseous feeding flow). The reactor temperature was kept 

to the desired value by an electric furnace surrounding the reactor and governed by a 

TRC, through a thermocouple placed within the catalyst bed. Reactor effluent analysis was 

made by means of a Thermo, Focus GC gas chromatograph, equipped with a HP-5 semi-

capillary column. 

When needed, the catalyst was regenerated in situ in flowing air (20 cm3/min) by 

increasing temperature by 5°C/min from room temperature up to 300°C, then by 

0.83°C/min up to 350°C, 400°C and 450°C. After each temperature step (i.e. at 300. 350, 

400 and 450°C) temperature was kept constant for 1 h. 

 

2.4. Coke analysis 

Samples of aged catalyst, recovered after a few hours on-stream at 390°C, were 

analysed according to a well-known technique [40], to collect information on the amount 

and nature of the fouling carbonaceous material (coke). A weighed portion of aged catalyst 
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was disaggregated in HF (40% aqueous solution) to dissolve the zeolite and to collect the 

remaining carbonaceous solid particles by filtration and drying. The carbonaceous solid 

particles were repeatedly leached with small portions of fresh CH2Cl2 and then dried and 

weighed. The leaching CH2Cl2 solutions were combined and most of the solvent removed 

in vacuo at room temperature. The concentrated solution of the soluble coke was then 

analysed by gas chromatography-quadrupolar mass spectrometry (GC-QMS) by an 

Agilent HP 5973N GC-MS instrument. 

Furthermore, on beta-1 and beta-2 aged samples only, the amount of accumulated 

carbonaceous matter was evaluated also by thermogravimetry in air on a TA TGA 2050 

Instrument. The following heating program was followed: 80°C in flowing N2 for 5 min, 

heating from 80°C to 550°C (5°/min) in 60 ml/min flowing air and final isothermal step at 

550°C for 60 min. 

 

 

3. RESULTS AND DISCUSSION 

 

3.1.Catalysts characterisation 

3.1.1. Crystal phase, surface area, crystal size and Si/Al ratio 

Under the synthesis conditions adopted, BEA zeolite was the only crystalline phase 

obtained. The XRD patterns matched those reported in literature [41-43]. Our BEA 

samples (Fig.1) were the result of intergrowth of two polymorphs, A and B [43], or even of 

a third polymorph C [42]. However, our XRD patterns did not allow any reliable quantitative 

determination of the polymorph distribution. 

SSA ranged from 480 to 570 m2/g (Table 1), typical values for these zeolites. SEM 

micrographs (Fig.2a,b,d) showed that beta-1, beta-2 and beta-silicalite were composed of 

spheroidal-shaped crystals with a narrow crystal size distribution. The beta-3 crystals 



 10 

appeared slightly cuboidal-shaped (Fig.2c). The average size of particles, determined by 

direct measurement on properly enlarged micrographs for the various zeolites, is given in 

Table 1. Total pore volume (VpTOT) and micropore volume (VpMicr) (Table 1), determined 

from the total gas volume adsorbed at saturation and t-plot data, may give an idea of the 

crystallinity of our samples. 

ICP analysis showed for all samples a similar SiO2/Al2O3 molar ratio (Table 1), except 

of course for the beta-silicalite. Furthermore, the protonated beta-2 and beta-3 (and mainly 

beta-silicalite) catalysts were almost Na-free, whereas the beta-1 sample contained a 

considerable amount of exchangeable Na+ ions (Table 1). 

 

3.1.2 Reactivity toward CH3OH from FTIR spectroscopy 

All the beta samples are characterized by a very low Al content (Table 1). This, 

accompanied by the high structural defectivity (vide supra) of these zeolites, which is 

associated with a large abundance of silanols, becomes relevant in the spectroscopic 

features of their reactivity with CH3OH. Another important point is the concentration of 

residual Na+ species, rather abundant (2.42 wt%, Table 1) in beta-1 sample only. 

After activation at 773 K all samples (Fig.3a) did not present IR bands over 3750 cm-1, 

characteristic of the hydroxyl groups bound to extra-framework Al (EFA) and all samples 

showed a strong maximum at 3740 cm-1, due to nearly isolated silanols. Another common 

characteristic is the broad tail at lower frequency, extending till 3400 cm-1, indicating the 

presence of an abundant fraction of interacting hydroxyls. No further specific absorption 

are evident in beta-1 sample: in particular no bands are recognized in the region where 

bridging OH groups are expected. This observation is in agreement with the fact that beta-

1 sample has mainly Na+ as counterions. Beta-2 sample was characterised by a broad 

tailed signal, extending from 3740 to 3400 cm-1, due to H-bound silanols. A second weak 

maximum is observed at 3580 cm-1, where the band due to bridged B groups (3615 cm-1) 
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is superimposed. The situation is very similar to that observed in beta-3 sample, that 

shows an even more complex shape of the band in the OH stretching region: peak at 3613 

cm-1 superimposed to the broad component due to H-bonded silanols (maximum at 3500 

cm-1). Also in this case an evaluation of the concentration of bridged B groups is prevented 

by the mixing with the silanols components.  

Figure 3b shows the reactivity towards CH3OH of beta 2 and 3. The data on the Na-rich 

sample, beta-1, are not reported because they did not show any feature associable with 

bridging Brønsted acid sites.  In particular, after interaction with methanol no specific 

signals ascribable to strong acid sites was noticed (total absence of A, B and C signals, 

vide infra). In addition, a considerable reversibility of the interaction of beta-1 with 

methanol was observed, a behaviour typical of purely siliceous materials. This is very likely 

due to the saturation by Na+ ions of the strongest acid sites generated by the framework Al 

ions. 

As demonstrated by Pazè et al. [44], in the presence of molecules like H2O or CH3OH 

with medium to high proton affinity, a zeolite, which is characterized by the presence of 

high Brønsted acidity, is able to realize a strong H-bond interaction, which produces two 

main effects: at first the band associated to the OH stretching mode is strongly red-shifted, 

generating an intense and broad absorption which can be extended until 1000 cm-1, while 

the band due to the overtone of the bending mode of the same species is deeply blue-

shifted. From a theoretical point of view, the phenomenon is called Fermi Resonance and 

the effect on the spectra is the appearance of three bands identified as A, B and C, 

separated by two Evan’s windows: the presence and the relative intensity of these three 

bands indicate the entity of the interaction and consequently the acidity of the material [44-

48]. 

Coming to the effect of increasing dosages of methanol on beta-2 sample (upper left of 

Fig.3b), one may observe the progressive erosion of the OH bands and the growth of a 
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very broad absorption with a maximum centred at about 3400 cm-1. This absorption 

extends till the region of framework vibration, suggesting the presence of some species 

strongly engaged by methanol. However, as these species are only a minor feature with 

respect to silanols (characterised by a medium-low-strength acidity) we do not observe 

clearly, the formation of the A, B, C components. Around 3000 cm-1, the C-H stretching 

vibrations of CH3OH are superimposed. In particular, the absorptions at 3000 and 2958 

cm-1 represent asymmetric vibrations, whereas that at 2854 cm-1 is associated with 

symmetric modes of the CH3 groups. The frequencies are slightly shifted upward, 

compared to the vibrations of the free molecule. The band at 2916 cm-1 is probably due to 

overtones of the  (CH3) bending mode at 1450 cm-1, enhanced by a Fermi resonance 

effect [49]. 

The interaction with methanol was not completely reversible on beta-2, as evidenced 

by the lower-left of Fig.3b. In particular, only part of the external silanols are restored, while 

the majority of the OH groups are unaffected by prolonged outgassing at room 

temperature. The fact that methanol is still entrapped within the zeolite cavities is 

evidenced also by the permanence of the bands associated with the C-H vibration modes 

around 3000 cm-1. 

Coming to the data related to the beta-3 sample (upper right of Fig.3b), at low methanol 

loading we can distinguish the A, B, C triad, caused by Fermi resonance of the  stretching 

and 2 and 2 overtones of bond 1 (Scheme 1). 

  Scheme 1  

This in turn induces the formation of two Evans windows, one at about 2720 cm-1 and 

the other at 2000 cm-1. The approximate frequency of the  (OH) mode of (zeoliteO-
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H…Omethanol)1 in the absence of Fermi resonance effects can be estimated to 2100 cm-1. 

The corresponding vibration mode of bond 2 (see Scheme 1) is assigned to a component 

growing at 3500 cm-1. This band grows in parallel with the A, B, C triplet and confirms the 

formation of a neutral adduct. The evolution of the spectra in the 2000-1300 cm-1 range, 

where the C component is growing, shows a higher level of complexity. Negative 

components originate from perturbative effects on the zeolitic framework, inferred by 

CH3OH. Moreover, an additional negative band, growing at 1450 cm-1, corresponds to an 

Evans window, because of the superposition of the C component with (CH3) mode. 

At high methanol coverage the spectra are dominated by an unstructured broad band 

extending over the entire medium IR region, overshadowing the A, B, C components 

associated to the formation of the methanol-silanol adducts. 

Also with beta-3 the interaction with methanol is only partially reversible, as evidenced 

by the effect of prolonged outgassing at room temperature (lower right of Fig.3b). The last 

collected spectrum (bold curve) is very similar to what obtained with the beta-2 sample. 

It may be concluded that the present materials possess a low concentration of 

structural (SiOH-Al+) strong Brønsted acid sites, most of the surface acidity consisting of 

relatively weaker (SiOH nests) Brønsted silanol species. At reaction temperature the 

slightly higher abundance of strong acidic sites present in beta-3 sample could play only a 

minor effect on overall catalytic activity. This acidity distribution can be considered one of 

the major causes of the relatively lower deactivation rate of high-silica BEA zeolite. 

Table 2 gives a summary of the most important IR spectroscopic features of the 

present samples. 

 

3.1.3. Energetics and hydrophilicity/hydrophobicity of active sites 

Energetics of adsorption and hydrophilic/hydrophobic properties of the present 

catalysts have been investigated, as mentioned, by progressive adsorption of CH3OH and 
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water vapour, monitored by micro-calorimetry. Integral heat evolved (Qint), as well as 

adsorbed amount (nads) for small adsorptive increments, were determined in the same 

experiment, following the previously mentioned procedure [35-37]. The 

reversibility/irreversibility upon room temperature evacuation of first-run-adsorbed phase 

(ads. I) was checked by performing a second adsorption run (ads. II) after outgassing the 

sample overnight (residual p  10-5 Torr). The adsorbed amounts (nads = CH3OH or H2O 

molecules per unit cell) were collected as volumetric isotherms. Calorimetric data were 

collected either as differential heats of adsorption (qdiff = Qint/nads), or as integral molar 

heats of adsorption [qmol]p = (Qint/nads)p. The [qmol]p quantities are intrinsically average 

values, as they refer to the thermal response of the surface as a whole, from the beginning 

of the adsorption process up to the equilibrium pressure, whereas the qdiff quantities 

represent a reasonable measure of the energy of interaction of the probe molecule with 

the individual sites, at any adsorbate coverage. 

The results for beta-2 and beta-3 samples with CH3OH as probe are shown in Fig.4. 

The qdiff vs. nads plots give a detailed description of the surface heterogeneity. In particular, 

the differential heat of adsorption, extrapolated to vanishing coverage (q0, kJ/mol, Table 1), 

represents the enthalpy change associated with the adsorption on the most energetic 

sites. Values of the same order of magnitude have been obtained for the binding energy 

(BE, kJ/mol) through the ab initio calculations (vide infra) for the individual molecular probe 

interaction with the model Lewis acid site and corrected for the basis set superposition 

error by the standard Boys-Bernardi counterpoise method [50]. 

By inspecting Fig.4 one may observe that: i) The qdiff vs. nads experimental points of 

both beta-2 and beta-3 zeolites are best fitted by the same curve, indicating that no 

significant difference in the acid strength of the two catalysts can be evidenced by means 

the room-temperature adsorption of CH3OH. The curve starts at q0 130 kJ/mol and drops 

down quite smoothly, eventually approaching the latent heat of liquefaction of CH3OH (38 
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kJ/mol) at a coverage corresponding to ca.12 molecules adsorbed per unit cell. ii) The only 

detectable differences between the two catalysts is that the CH3OH adsorption capacity is 

significantly larger for beta-3 (see inset of Fig.4), the number of molecules adsorbed per 

unit cell at any equilibrium pressure investigated being higher than for beta-2. We ascribe 

this difference to the different Si/Al ratio, being the Al content of beta-3 slightly higher than 

for beta-2, though the two values of Si/Al ratio are too close (130 for the former against 

154 for the latter, Table 1) to permit a more detailed comparison. iii) The irreversibly 

adsorbed CH3OH, evaluated by the difference between the ads. I and ads. II curves, the 

latter drawn after outgassing overnight the reversibly adsorbed alcohol of ads. I, amounted 

to ca. 20% of the total amount adsorbed by both zeolites. Still, the qdiff vs. nads 

experimental points for the 2nd run were best fitted by the same curve, indicating that 

neither for reversible adsorption a significant difference between the two catalysts is 

evidenced by using CH3OH as molecular probe. iv) The quantitative calorimetric data are 

in agreement with the data from the IR analysis (vide supra). 

As a preliminary conclusion, beta-2 and beta-3 catalysts show a distribution of acid 

sites of comparable strength, which abundance is in line (as expected) with Al content, 

though some effect of materials morphology, and especially of zeolite crystal size, cannot 

be excluded. 

The differential heat of adsorption of H2O vapour is reported (Fig.5) as a function of the 

increasing surface coverage (qdiff vs. nads) for all the catalysts investigated in the present 

work. For comparison purposes a Al-free beta-silicalite has been added, together with a 

previously investigated [35,51] beta-10 sample, characterized by a much higher Al content 

(Si/Al  10) i.e. by a much higher number of Al atoms per unit cell ( 6, Table 1). The 

corresponding volumetric isotherms are shown in the inset. For brevity, in both qdiff vs. nads 

and nads vs. peq plots only the first-run adsorption data are reported and discussed, but it 

has been found that in all catalysts (irrespective of the Al content) a fraction of water 
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molecules was irreversibly adsorbed, whereas for the beta-silicalite the adsorption was 

found entirely reversible upon room-temperature outgassing. One may observe that: i) 

Initially the experimental data of qdiff vs. coverage for beta-2 and beta-3 are best fitted by 

the same curve as for the CH3OH qdiff vs. nads plots (Fig.4), partially confirming the close 

similarity of the acidic and hydrophilic properties of the two systems. However, the curve 

starts at q0 = 160 kJ/mol for the two samples, but drops more rapidly for beta-3 than for 

beta-2, eventually approaching the latent heat of liquefaction of water (qL = 44 kJ/mol) at a 

much lower coverage for beta-3 than for beta-2. Indeed, opposite to methanol, the beta-3 

H2O adsorption capacity is much lower than for beta-2 (see the volumetric isotherms in the 

inset), indicating that, though the Al content of beta-3 is slightly higher than for beta-2, the 

population of sites active towards H2O of the former is lower than that of the latter. In 

conclusion, the beta-3 zeolite is less hydrophilic than beta-2, in spite of the lower Si/Al 

ratio, as if the larger crystal size of the former would inhibit the interaction with water. ii) 

The q0 value (close to 100 kJ/mol) for the Na-rich beta-1 catalyst is much lower than for 

beta-2 and beta-3, as expected. Furthermore, as far as the coverage increases, the beta-1 

curve does merge into the beta-2 curve, according to the closer similarity of the crystal 

size. It is worth noting that the beta-1 water adsorption capacity (per unit cell) is only 

slightly lower than for beta-2, and much higher than for beta-3, according to the lower 

concentration of strong acid sites (see inset of Fig.5). iii) The qdiff vs. nads plot for beta-

silicalite lies below those of the other catalysts in the whole examined range of coverage, 

in agreement with the absence of strong acidic sites, associated with framework Al 

species. The q0 value for this sample is close to 80 kJ/mol, much lower than for other 

zeolites. It is however worth noticing that the qdiff vs. nads plot for beta-silicalite lies above 

the latent heat of liquefaction of water (qL = 44 kJ/mol), as typical of an hydrophilic surface 

[35-37]. 
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By comparing the results obtained for the present-work beta zeolites with those 

previously obtained by some of us on beta-10, the difference in calorimetric response of 

the Al-rich beta-10 system is dramatically evident, in that both beta-10 qdiff vs. nads and nads 

vs. peq plots lie well above the corresponding curves for the present-work beta zeolites. 

This strongly confirms that the population of strong acidic sites is much more abundant in 

the beta-10 catalyst, as expected. However, the very initial heat of adsorption of water is 

quite close for beta-2, beta-3 and beta-10 catalysts (q0 160 kJ/mol in all cases), 

suggesting that the difference in calorimetric response is connected to the abundance, 

more than to the strength of acid sites. 

The integral molar heat of adsorption qmol (vide supra) determined at equilibrium 

pressure corresponding to either 2 or 4 H2O molecules/uc coverage are shown in Fig.6 a 

and b, respectively, as a function of the crystal size of the investigated materials (see 

Table 1). Again the beta-10 datum is reported for comparison. It can be noticed that: i) The 

qmol value is very close ( 85 kJ/mol, irrespective of the crystal size), for all the present 

catalysts, characterized by a close Si/Al ratio (130 < Si/Al < 154). ii) The qmol value for 

beta-silicalite is lower ( 50 kJ/mol), according to the fact that in this case only H-bonding 

interactions, much less energetic than both the Lewis and Brønsted acid-base interactions, 

are operative. iii) The qmol value for beta-10 is much higher ( 160 kJ/mol), since a 

coverage of 2 H2O molecules/unit cell is still very low (only one third of acidic sites 

associated to framework Al have already reacted). iv) At 4 H2O molecules/unit cell 

coverage, over beta-10 a few strong acidic sites remain still available, but in this case the 

qmol values (which are intrinsically average values, including all interactions contributions) 

are much closer ( 100 kJ/mol) to the qmol values ( 75 kJ/mol) for the beta-1-2-3 catalysts. 

v) At high coverage the difference between the beta-1-2-3 set and beta-silicalite is much 

smaller, according to the fact that at such a coverage also in the beta-1-2-3 catalysts the 
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interaction is dominated by H-bonding (on both silanols and already adsorbed water 

molecules). 

Fig.7 shows the B3LYP/6-31+G(d,p) optimized structures of the clusters adopted to 

mimic the L acid site interacting with the CH3OH (a) and H2O (b) molecule. The calculated 

binding energies (BE) are 125 and 110 kJ/mol, respectively. These values are in 

agreement with the calorimetric energetic data (differential heats of adsorption) measured 

in the early stage of the process and suggest that at least a fraction of acid sites is likely 

Lewis in nature. 

 

3.1.4. Nature and strength of surface acid sites 

Fig.s 8 and 9 show the FT-IR spectra recorded after pyridine adsorption at room 

temperature, followed by desorption at increasing temperatures, for samples beta-1 and 

beta-2, respectively. In the case of beta-1 (Fig.8) the intensity of the band associated to 

pyridinium cation (1546 cm-1) is nil, that relative to the interaction with Lewis sites (1455 

cm-1) is very weak, and pyridine is totally released already after evacuation at 250°C. 

Finally, the amount of pyridine interacting with silanols (bands at 1446 and 1596 cm-1) [52] 

is lower than in beta-2 catalysts (Fig.9). In beta-1, silanols are clearly the only sites present 

in non-negligible amount. 

In the case of beta-2 (Fig.9), the strong bands at 1446 and 1596 cm-1, due to 

pyridine adsorbed on silanols, progressively decrease when increasing temperature and 

totally disappear after evacuation at 250°C. By contrast, some pyridine adsorbed on Lewis 

sites (1455 cm-1) remains even after evacuation at 450°C. This indicates the presence of 

strong Lewis-type acid sites, in line with what found by the other techniques. The band at 

1546 cm-1, due to the interaction with Brønsted sites, is very weak, as expected from the 

low concentration of these sites in high-silica zeolites. When the sample is heated, the 

intensity first increases, likely due to the evolution of the hydrogen bonding with the –OH 
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group into pyridinium ions, and then decreases; totally disappearing after evacuation at 

450°C. The spectra recorded with beta-3 samples (not reported for brevity) were very 

similar to those of beta-2. 

 

3.2. Catalyst activity and deactivation rate 

There is a wide literature dealing with the use of zeolites as catalysts for the liquid-

phase and gas-phase methylation of phenol. With MFI zeolites, at temperature higher than 

350°C Kaliaguine et al. [2,53] found that the reaction leads to a variety of products, 

amongst which the most relevant were cresols and xylenols. A mechanism was proposed 

in which diphenyl ether and anisole (the two products of etherification) are the reaction 

intermediates and interact with Brønsted sites and carbonium ions to yield C-methylated 

products. The reaction pattern was confirmed by others [12], who also found that in liquid-

phase methylation anisole and cresols are primary products and that anisole undergoes 

consecutive transformation to cresols. 

With H-Y zeolites, at 200°C and phenol conversion lower than 15% O-alkylation was 

found to be quicker than C-alkylation (the two reactions were substantially parallel), with o-

/p-cresol molar ratio equal to 1.5. Anisole disproportioned into phenol and methyl-anisoles, 

whereas direct isomerisation of anisole into cresols did not occur. Anisole also acted as an 

alkylating agent for phenol, to yield cresols and methyl-anisoles. The latter reaction was 

favoured over the disproportion of anisole in the presence of phenol [5]. An important 

contribution to C-alkylated compounds also derived from the intra-molecular 

rearrangement of anisole into o-cresol [9]. The exchange of protons with Na or the 

poisoning with NH3 led to an increase of the anisole/cresols ratio, indicating that anisole 

formation required sites with lower acid strength as compared to those needed for cresol 

formation [6], in agreement with what proposed formerly by Namba et al [10]. Similar 

results were obtained by other authors [7-9]. 
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The reactivity of Al-MCM-41 also is imilar to that of H-Y [39], with anisole acting as a 

reaction intermediate. The mechanism of reaction, involving the direct formation of anisole 

and cresols and the consecutive transformation of anisole, was recently confirmed by 

means of in-situ measurements by Weitkamp et al. [54]. 

With Beta zeolites, again the formation of anisole and cresols occurred through 

parallel reactions [22,23]. Anisole then was the intermediate in the formation of cresols. As 

for the effect of the Si/Al ratio, higher ratios implied a lower phenol conversion and hence a 

greater selectivity to anisole. No effect of shape-selectivity was found. 

As for the electrophylic substitution on phenol, the active species is generated by 

adsorption of methanol and formation of framework-bound methoxonium (CH3OH2
+) ion 

and methoxy species, which can coexist at low temperature. However, at higher 

temperature the equilibrium is shifted towards the methoxy species [55], which acts as the 

electrophylic alkylating agent on alkylaromatics [56,57]. 

 

3.2.1. Performance of beta-2 and beta-3 catalysts in phenol methylation 

The effect of time-on-stream on conversion of phenol in methylation over the beta-2 

catalyst, at four different temperatures, is reported in Fig.10, whereas Fig.11 shows the 

corresponding distribution of products, as measured at 450°C. The following 

considerations are of relevance: i) There is a considerable deactivation of catalyst with 

increasing time-on-stream. ii) Initial conversion is 100% at temperature higher than 320°C, 

whereas it approaches 75% at 320°C. iii) Deactivation rate appears substantially 

independent of temperature. iv) Deactivation is accompanied by a change in the relative 

amount of products. Specifically, at total conversion the main products are poly-alkylated 

compounds (mainly di- and tri-methyl phenols and methyl and di-methyl anisoles), 

whereas the progressive decrease of conversion leads to a rapid decrease of the latter 

compounds, with a corresponding increase of primary alkylation products: anisole, o-cresol 
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and p-cresol. Amongst the latter, the prevailing one is o-cresol. v) A more detailed 

investigation of the trend of products formation indicates that the selectivity to cresols 

decreases monotonously when conversion increases, whereas the selectivity to anisole 

decreases more rapidly. This is because the cresols undergo consecutive reactions of 

transformation to diphenols, whereas anisole not only undergoes the analogous 

consecutive alkylation to methyl-anisole, but also it acts as an alkylating agent by itself. 

Indeed, it is known that anisole can either rearrange to o-cresol (intra-molecular 

rearrangement) or act as an inter-molecular alkylating agent, with co-generation of phenol 

[5,9,39,54]. vi) At lower temperatures the distribution of products is similar to that obtained 

at 450°C. The only difference is the selectivity ratio between anisole and cresols. 

It is worth noting that in the alkylation of alkylbenzenes (e.g., of toluene) with 

methanol it is possible to obtain a high selectivity to the para-C-alkylated compound. By 

contrast, in the alkylation of activated arenes, such as phenol, diphenols and aniline, with 

olefins or with alcohols, the selectivity for the para-electrophilic substitution is lower than 

expected [58]. Indeed, on amorphous acid catalysts, the selectivity to o-cresol can even 

approach 100% [8,59,60]. The low selectivity to p-cresol in phenol methylation has been 

attributed to different reasons [61,62] and specifically: i) The alkylation at heteroatom is an 

intermediate step in C-alkylation by the olefin or by the alcohol [63]. ii) An interaction exists 

between the alkylating agent and the oxygen atom of phenol, which favours the alkylation 

at the ortho position [5,63]. iii) A reaction between adsorbed anisole, which acts as the 

alkylating agent, and gas-phase phenol can be hypothesised [8], in which the interaction 

between the two O atoms puts the methyl group of anisole closer to the ortho position of 

phenol. iv) Furthermore, even in the homogeneous acid-catalysed electrophylic 

substitution on phenols, usually ortho/para ratios higher than the statistic value 2/1 are 

found [58,64]. This implies that adsorptive/geometric effects are not the main reason for 

the regioselectivity observed.  
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So, the overall mechanism for the acid-catalysed methylation of phenol [8] includes 

the direct C-alkylation at the ortho and para positions (in confined environments the direct 

para-C-alkylation can be preferred) and the O-alkylation to yield anisole, the ratio C-/O- 

alkylation being a function of the catalyst acid strength. The secondary, consecutive intra-

molecular rearrangement of anisole to o-cresol makes the final ortho/para-C-alkylation 

ratio to become very high, especially over less acidic catalysts (e.g., on amorphous 

materials). 

The performance of the beta-3 catalyst is summarized in Fig.12 (effect of time-on-

stream on conversion of phenol, at four temperatures) and Fig.13 (effect of time-on-stream 

on distribution of reaction products, at 450°C). The comparison with the data obtained with 

beta-2 zeolite (Fig.10 and 11) highlights that: i) The initial activity of the beta-3 zeolite is 

greater than that of beta-2. This is evident for the runs at 320°C only, since higher 

temperatures lead to total or almost total conversion for both catalysts. This difference is 

very likely due to the higher intra-particle residence time of reactants in the larger crystal 

size zeolite. ii) At higher temperatures the deactivation rate seems not much affected by 

crystal size. Only at 320 and 350°C the beta-2 zeolite seems to exhibit a quicker 

deactivation rate than beta-3. This is likely due to the shorter mean path within smaller 

zeolite crystals, whose pores become obstructed more quickly than the longer pores of 

beta-3. Since the difference is evident at low temperature only, this means that the species 

responsible for deactivation are not the alkyl-aromatics formed by methanol transformation 

(the formation of which is favoured at high temperature), but more likely phenol and 

oxygenated products, the diffusion of which is slower at lower temperature, due to their low 

volatility and to their stronger interaction with the zeolite acid sites. The characterisation of 

spent catalysts (vide supra) confirm this hypothesis. iii) The nature of products and the 

effect of conversion and of temperature on selectivity do not differ significantly from those 

observed with beta-2 catalyst. 
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At last, Fig.14 shows the effect of phenol conversion on the anisole/cresols ratio at 320, 

390 and 450°C on beta-2 and beta-3 catalysts. One may see that: i) The ratio decreases 

with increasing conversion, due to the secondary, consecutive transformations occurring 

on anisole, with formation of additional cresols; ii) The ratio decreases when increasing 

temperature at any conversion level, showing that low temperature favours the primary 

methylation at oxygen (and hence to anisole), with respect to the primary methylation at 

aromatic carbons. 

Even though the comparison between zeolites is arguable when done under conditions 

that lead to catalyst deactivation and coke accumulation, nevertheless the data of Fig. 14 

indicate that the anisole/cresols ratio with beta-3 zeolite is systematically lower than for 

beta-2 at any conversion level and at any temperature. This means that the extent of the 

consecutive transformation of anisole to cresols is higher in the larger crystal size zeolite, 

as a consequence of the longer permanence of anisole within the zeolite pores, favouring 

both the secondary, consecutive intra-molecular rearrangement and inter-molecular 

alkylation of anisole. 

An effect of crystal size on products distribution was also reported by Moon et al for 

phenol methylation over MCM-22 [12]. The authors found that p-cresol formed 

preferentially with respect to o-cresol, especially in the case of catalysts where the zeolite 

crystal sizes were greater than 1 m. It was thus proposed that in the case of MCM-22 the 

10MR pores allow easy diffusion of p-cresol and that the effect of this phenomenon is 

enhanced when the crystal size is relatively large. Also in the case of cresols 

isomerisation, the distribution of isomers (the formation of which occurs both by 

intramolecular methyl shift and bimolecular disproportionation) was governed by product 

desorption/diffusion. Shape selectivity favoured monomolecular reactions [65].  

 

3.2.2. Transformation of methanol into poly-alkylated benzenes 
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During reaction with phenol, methanol also undergoes a parallel transformation to 

olefins and alkylbenzenes. The relative amount of the two classes of compounds is a 

function of the reaction temperature, higher temperatures favouring the formation of the 

latter compounds. Therefore, we also investigated the formation of alkylbenzenes. The 

yield to these compounds is shown in Fig.s 15 and 16, for the beta-2 and beta-3 catalysts, 

respectively, as a function of time-on-stream at 450°C. The same Figures also report the 

conversion of methanol, which also includes the amount converted for phenol methylation. 

It is worth noting that no “light” products of methanol decomposition (i.e. CO, CO2, H2) 

formed. 

The principal products coming from methanol transformation were toluene, 

pentamethylbenzene and hexamethylbenzene. The yield to these compounds was 

relevant and the greater fraction of methanol was converted to poly-alkylated benzenes, 

rather than being involved in phenol methylation. This aspect has never been reported in 

the literature dealing with the gas-phase methylation of phenol catalysed by zeolites. 

Furthermore, it is evident that this is one reason for the need of feeding a large excess of 

methanol with respect to the stoichiometric requirement for the mono-alkyation of phenol. 

The competitive reaction of methanol transformation to alkylbenzenes makes the amount 

of methanol available for phenol methylation to become very low. 

The conversion of methanol increased during the elapsing reaction time, due to the 

increased formation of poly-alkylated compounds, whereas, at the opposite, the amount of 

methanol that reacts with phenol decreased (see Figs. 10 and 12). Therefore, it seems 

that the active sites for the formation of these compounds are generated during reaction, 

while the sites responsible for the generation of the active species for the electrophilic 

substitution at the phenol ring are progressively poisoned. This clearly indicates that the 

mechanism of the two reactions is different. The conversion of methanol reached a 

maximum at approximately 800-1000 minutes-on-stream, after which it rapidly fell down, 
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likely because of the considerable amount of coke accumulated in the catalyst, due to the 

growth of poly-nuclear aromatics. 

The behaviour of the two zeolites was not much different, a part from the slightly 

different value of time-on-stream at which the maximum methanol conversion was attained 

(700 min for beta-2, against 1000 min for beta-3). This is probably due to the larger crystal 

size of the latter sample, that made pore filling by coke to take longer time than with the 

former sample. With both samples the yield to toluene decreased, whereas that to 

pentamethylbenzene showed a maximum before the reaction time needed to reach the 

highest methanol conversion. The yield to the totally alkylated compound 

(hexamethylbenzene) increased, until the maximum methanol conversion was reached. 

This indicates that the growth of the molecular weight occurred in a consecutive-steps 

network fashion. 

The mechanism for the formation of alkylated benzenes by self-reaction of methanol 

over zeolites (the MTG process) includes one first step of dehydration of methanol to 

dimethylether. Two mechanisms have been proposed, either an indirect pathway, in which 

the adsorbed methanol reacts with the methoxy species, which then reacts with another 

methanol molecule to dimethylether [66], or the direct pathway, in which two methanol 

molecules react over an acid site, with the formation of dimethylether and H2O in one step 

[67]. The surface methoxy species SiO(CH3)Al has been demonstrated to play a role in the 

formation of dimethylether [68]. The further conversion of the equilibrium mixture of 

methanol and dimethylether (and water as well) is dominated by a “hydrocarbon pool” 

route [69,70], in which methanol is directly added onto reactive organic compounds to form 

aliphatic and aromatic hydrocarbons. The methoxy species also plays a role in the kinetic 

“induction period”, leading to the reactive hydrocarbon pool. 

Alternative “direct” mechanisms have been proposed, in which either a carbenium ion 

(CH3
+) reacts with dimethylether to generate either a carbonium ion (CH3-CH3

+-OCH3), or 
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an oxonium ylide species. Other mechanisms include a carbene species (:CH2) as the 

reaction intermediate (see the review by Haw et al. [71] for an analysis of the several 

mechanisms proposed in literature). The methoxy species acts as an alkylating agent in 

the presence of aromatic compounds. Furthermore, at T > 170°C, hydrogen atoms are 

abstracted by basic oxygen atoms of the framework, with formation of surface-stabilized 

intermediates of ylide or carbene nature [72], which are responsible for the methylation of 

aliphatic compounds, and for the formation of hydrocarbons, both aliphatic and aromatic 

(polymethylbenzenes) [73]. 

In the case of Beta zeolites, the predominant aromatic compounds in methanol 

transformation at high T are hexamethylbenzenes and pentamethylbenzenes (in full 

agreement with our results), while ZSM-5 gave mostly dimethyl and trimethylbenzenes 

[74]. These compounds can be further converted to naphthalene derivatives, which are 

finally responsible for the formation of coke precursors and of zeolite deactivation [21]. 

Our data support the need for an induction period for the formation of these 

compounds, associated to the generation of a “hydrocarbon pool”. This corresponds to the 

progressive increase of methanol transformation into poly-alkyl benzenes shown in Fig.s 

15 and 16. The progressive transformation of the hydrocarbon pool into heavier and 

heavier poly-alkylated compounds and to coke eventually leads to the complete 

deactivation of the catalyst. 

 

3.2.3. Coke composition 

Thermogravimetric (TG) analysis showed that the weight loss due to burning out of 

coke components by calcination in air amounted to 3.4%, while for beta-2 it was 

considerably higher, 12.8%. This obviously relates to the higher acidity of beta-2 as 

compared to beta-1. The organic matter extracted from beta-2 with CH2Cl2 amounted to 

12.7%, perfectly in line with the value determined by TG. The GC-QMS analysis of the 
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extracted fraction showed the presence of the following compounds: phenol (8 mol%), o- 

and p-cresols (4%), dimethyl-phenols (8%), trimethyl-phenols (15%), tetramethy-phenols 

(18%), pentamethyl-benzene (5%), hexamethyl-benzene (5%), 3-ethyl-5-methyl-phenol 

(1%), 2-hydroxyphenyl-phenylmethanone (15%), 2-methyl-5-(1-methylethyl)-phenol (6%), 

1-methoxy-4-methyl-2-(1-methylethyl)-benzene (15%). In the case of beta-1, instead, the 

following compounds were identified: phenol, cresols, dimethyl-phenols, trimethyl-phenols, 

tetramethyl-phenols and (dimethyl-ethyl)-phenols. Therefore, with the latter catalyst there 

was substantially no formation of poly-alkylbenzenes, i.e. the species coming from the 

transformation of methanol. With both catalysts, the insoluble coke recovered after 

dissolution of the zeolite was almost weightless and presumably composed of high-MW 

polynuclear species, their very low amount preventing however any reliable quantitative 

determination. 

 Therefore, these data indicate that the presence of strong acid sites in beta-2 is 

responsible for the formation of poly-alkylbenzenes, while silanols (present in both beta-1 

and beta-2 samples, though in lower concentration in the former catalyst) are strong 

enough to catalyse the reaction of phenol methylation. This also indicates that the active 

methanol species able to attack phenol to yield methylated phenol is different from the 

species self-reacting to yield poly-alkylbenzenes. Indeed, on one hand the latter species 

can form only on acid sites much stronger than those required to form the former. On the 

other hand, the former species, though being not able to generate poly-alkylbenzenes, is 

electrophylic enough to react with phenol. 

Furthermore, beta-1 was less active than beta-2 and beta-3, but did exhibit a 

deactivation rate comparable to that of the latter catalysts. This indicates that the main 

reason for catalyst deactivation in phenol methylation is associated to the build-up in 

catalyst pores of oxygen-containing species (phenol and alkylated phenol compounds). It 

is worth noting that the analysis of the compounds retained in the pores showed a high 
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concentration of heavier compounds (poly-alkylated phenol), that instead are present in 

low concentration in the reactors’ outcoming products stream. Therefore, heavier phenol 

derivatives are the species that more accumulate in the porous structure, as expected, due 

to their more cumbersome structure. 

Therefore, two different deactivation mechanisms can be envisaged. One mechanism, 

responsible for the progressive deactivation of the catalyst in the methylation of phenol, is 

due to the retention of heavy, oxygenated compounds (i.e., poly-alkylated phenols). This 

derives from the strong interaction of phenol and phenol derivatives with the active sites, 

which establishes from the very beginning of the reaction and hinders the generation of the 

active species responsible for the electrophylic attack to the phenol aromatic ring. Despite 

this, methanol conversion progressively increases during the first hours-on-stream, due to 

the fact that methanol is simultaneously converted to alkyl and poly-alkyl benzenes, 

generated from the building up of the “hydrocarbon pool” inside pores. This is supported 

also by the change in the nature of the alkyl benzenes forming along with increasing 

methanol conversion. However, the progressive hardening of these species generates 

poly-nuclear aromatics, which in a few hours fills up the pores and eventually deactivates 

the catalyst. 

 

 

CONCLUSIONS 

The systematic analysis carried out in the present work allowed to throw light on 

several aspects of the methylation of phenol, from many points of view, ranging from 

catalyst structure, crystal size and surface acidity characteristics, to energetics of 

interaction between methanol (and water) and acid sites, to the effect of all these 

characteristics on kinetics and on mechanistic features of the catalytic reaction and of 
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catalyst deactivation phenomena. The main conclusions one can draw from the present 

results are the following: 

1. High Si/Al ratio BEA-structured zeolite in protonated form is a very active catalyst 

for the methylation of phenol, leading to cresols and anisole as primary products, 

which rapidly methylate to poly-alkylated phenols. As deactivation proceeds, the 

selectivity to cresols and anisole increases substantially, together with a rapid 

decrease of selectivity to poly-alkylated species. 

2. In this protonated zeolite acidity is prevalently of Brønsted type, independently of 

zeolite crystal size. However, the main part of the acid sites are of medium-to-low-

strength. Indeed, high-strength Lewis-type sites are either almost absent, especially 

when metal cations partially substitute for protons, or seem to play a role 

prevalently in catalyst deactivation. 

3. Stacking faults in the zeolite framework, generated by the intergrowth of at least two 

BEA polymorphs, can increase the concentration of relatively low-strength silanols-

based acid sites, which seem however sufficiently active to trigger the phenol 

methylation primary reaction. 

4. Deactivation is originated essentially by phenol and poly-alkylated phenol-

derivatives. Self oligomerisation-cyclisation of methanol to olefins and aromatics, 

followed by further alkylation to aromatic C atoms, contributes more significantly to 

catalyst deactivation only for time-on stream values longer than a few hours. 

5. At higher temperature all the zeolites deactivate at a comparable rate, whereas at 

lower temperature initial catalytic activity is higher for larger crystal size zeolite, due 

to the longer diffusion time of reactants within longer zeolite pores, favouring a 

longer contact with active sites. 

6. At any conversion level and at any temperature the anisole/cresols ratio is 

systematically lower for the larger crystal size zeolite, since the secondary 
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transformations of anisole to cresols by both intra-molecular rearrangement and 

inter-molecular alkylation of phenol is favoured by the longer residence time of 

anisole within the zeolite pores. 
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FIGURE CAPTIONS 

Fig.1.  XRD patterns of the catalysts prepared. a,b,c refer to polymorphs A,B and C (see 
ref. 42,43). 
 
Fig. 2  SEM micrographs of: (a) beta-1; (b) beta-2; (c) beta-3; (d) beta-silicalite 
 
Fig.3. a)  IR spectra of beta-1, beta-2 and beta-3 zeolites outgassed at 753 K; b)  IR 
spectra of beta-2 and beta-3 zeolites (left and right couple of Figures, respectively). Effect 
of the interaction with CH3OH. Top parts of the figure report data related to increasing 
amounts of methanol, Bottom parts of the figures reports the effect of progressive pumping 
out at room temperature. 
 
Fig.4:  Differential heats of adsorption of CH3OHvap. on beta-2 () and beta-3 () zeolites 
as a function of the increasing coverage (qdiff vs. nads). Inset: volumetric isotherms, nads 
(CH3OH molecules/uc) vs. pCH3OH equilibrium pressure. Solid symbols: ads. I, open 
symbols: ads. II. Tads. = 303 K 
 

Fig.5:  Differential heats of adsorption of H2Ovap. on beta-1 (), beta-2 (), beta-3 () and 
beta-silicalite (), in comparison with the commercial catalyst beta-10 (), characterized 
by Si/Al = 10. Inset: volumetric isotherms, nads (H2O molecules/uc) vs. pH2O equilibrium 
pressure. In both qdiff vs. nads and nads vs. peq  plots only the first run data (ads. I) are 
reported. Tads. = 303 K 
 
Fig.6:  Integral molar heats of adsorption [qmol]p = (Qint/nads) as a function of the average 
crystals size of the catalyst, at two different surface coverage: nads =2 H2O molecules/uc 
(left) and nads = 4 H2O molecules/uc (right). Tads. = 303 K 
 

Fig.7:  B3LYP/6-31+G(d,p) optimized structures of the clusters adopted to mimic the Lewis 
site interacting with CH3OH (a) and H2O molecule (b). Binding energies (BE, kJ/mol) 
corrected for the basis set superposition error. Bonds between Al and the oxygen atom of 
the adsorbed molecule shown as dotted lines. 
 
Fig.8.  FT-IR spectra of beta-1 catalyst after saturation with pyridine followed by 
evacuation at progressively increasing temperature. 
 
Fig.9.  FT-IR spectra of beta-2 catalyst after saturation with pyridine followed by 
evacuation at progressively increasing temperature. 
 
Fig.10.  Effect of time-on-stream on conversion of phenol in alkylation over beta-2 catalyst 
at four different temperatures. 
 
Fig.11.  Effect of time-on-stream on products distribution in alkylation of phenol l over beta-
2 catalyst. T = 450°C. 
 
Fig.12.  Effect of time-on-stream on conversion of phenol in alkylation over beta-3 catalyst 
at four different temperatures. 
 
Fig.13.  Effect of time-on-stream on products distribution in alkylation over beta-3 catalyst. 
T = 450°C. 
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Fig.14.  Effect of phenol conversion on the anisole/cresols molar ratio in alkylation, at 
320°C (black symbols), 390°C (grey symbols) and 450°C (white symbols), for the beta-2 
(squares) and beta-3 (triangles) catalysts. 
 
Fig. 15. Effect of time-on-stream on methanol conversion and on products distribution in 
poly-alkylbenzenes formation over beta-2 catalyst. T = 450°C. Symbols: () methanol  
conversion; () selectivity to toluene, () to pentamethylbenzene, () to 
hexamethylbenzene. 
 
Fig. 16. Effect of time-on-stream on methanol conversion and on products distribution in 
poly-alkylbenzenes formation over beta-3 catalyst. T = 450°C. Symbols as for Fig.13. 
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Table 1. Main characteristics and energetics of interaction with H2O and CH3OH of the 

investigated catalysts 

 

Cat. 
SiO2/Al2O3 

mol ratio 

Si/Al 

mol ratio 
Al/uc 

av. 

cryst. size 

(nm) 

SSA 

(m2/g) 

VpTOT 

(cm3/g) 

VpMicr 

(cm3/g) 
Na+ 

wt % 

q0 

H2O 

kJ/mol 

q0 

CH3OH 

kJ/mol 

beta-1 65 130  0.5 200 481 0.343 0.239 2.42 100 - 

beta-2 77 154  0.4 100 559 0.627 0.266 0.07 160 50 

beta-3 65 130  0.5 590 565 0.324 0.299 0.01 160 50 

beta-

silical. 
255 510 <0.1 450 529 0.311 0.270 <0.001 80 - 

beta-10 4.9 9.8  6 50 360 - - - 165 - 

 

 

 

Table 2: Summary of the most important IR spectroscopic features. 

 

IR feature beta-1 
frequency (cm-1)  

beta-2 
frequency (cm-1) 

beta-3 
frequency (cm-1) 

(OH) isolated silanols  3740 3740 3740 

(OH) internal and /or 
H-bonded silanols  

3670 3580 3500 

(OH) SiOHAl Not visible 3615 3613 

(OH)….OH-CH3 Not reported 3400 2100 

 A comp  maximum Not reported Not revealed 2900  

First Evans window Not reported Not revealed 2720 

B comp  maximum Not reported Not revealed 2500  

Second Evans window Not reported Not revealed 2000 

C comp maximum Not reported Not revealed 1600 
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Fig.12 
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