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CHAPTER 1. INTRODUCTION 2

C
orrect color representation is one of the most interesting and discussed

problems in the imaging and computer graphics field. It has been exten-

sively proven that there is a clear distinction between what is called the

color stimulus, i.e. the response of the cones in the retina, and what is the

perceived color, i.e. the result of the complex mechanisms of analysis and

perception of the Human Visual System.

This perception is mainly driven by the context in which a ”color” is observed. Many

theories and models have been proposed in the years for the analysis and computation

of effective perceived colors in context: Retinex is one of the most relevant.

These models have been implemented into algorithms and applied in many ways in

digital imaging and computer graphics field.

However, a relevant limitation of most of the computational methods proposed is the

restriction of working on the low luminance dynamic range allowed by common RGB

images. These values are not comparable to the large dynamic range of real scenes

to which our visual system adapts. To better simulate perception mechanisms and to

implement accurate computational models of color perception, there is the need to work

with the so-called High Dynamic Range (HDR) images, in which each pixel stores a

floating point value equivalent to the real luminance of the acquired or simulated scene.

These kinds of images can be generated using advanced global illumination algo-

rithms, or can represent real scenes, and normally they are acquired by using well-known

reconstruction methods from multiple exposures shots. However some advanced but still

expensive sensors are already available and able to acquire the entire high dynamic range

of a scene in a single pass, without the application of interpolations or reconstructions,

that lead to inevitable numerical errors. It is not a hazard to predict that in a not-so-far

future this kind of technology will be more affordable and diffuse in the large market

field. Obviously, the need for a correct and accurate computational model for a correct

color reproduction will be crucial.

A great effort has been done in the last fifteen years in the development of compu-

tational models that try to simulate many perceptual mechanisms in the conversion of
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the unsupported floating point values of HDR data into the accepted dynamic range of

the available output devices (monitors, printers, etc.). These algorithms are known as

tone mapping operators. However, most of the proposed operators address luminance

mapping only, without considering the crucial relevance of a correct color computation.

The purpose of this dissertation is to contribute in the field of spatial color compu-

tation models.

We will begin introducing some background about color in context research and

experiments, and we will give an overview about different approaches in the definition

of computational models of color in digital imaging.

In particular, we will present a recent accurate mathematical definition and analysis

of the Retinex algorithm, that leads to the definition of a new computational model

called Random Spray Retinex (RSR).

We will then introduce the tone mapping problem, discussing the lack and the need

for color computation in the implementation of a correct computational model that tries

to simulate perceptual response: at this aim, we will present a Retinex implementation

called HDR Retinex. The algorithm is based on the well-known Brownian Retinex

computational model, modified taking inspiration from the eye movements and scene

sampling, in order to tune the intrinsic color correction behavior of Retinex algorithms

for a correct mapping of HDR values into accepted dynamic range.

A recent research has demonstrated a relevant variability in the spatial distribution of

cones in human retina among different subjects, with consequent subjective differences in

retinal color stimuli during observation. This could suggest a corresponding difference in

color perception, but however a similar phenomenon has not been observed: therefore it

has been suggested that perceptual mechanisms exists that compensate these variations

in the receptors stimuli. To investigate this hypothesis, we present some experiments

analyzing the influence of spatial color computation on tristimulus values obtained using

different integrating curves (the so-called Color Matching Functions (CMFs)) on spectral

luminance distribution generated by a photometric raytracer.

The results of these experiments show a significant decrease of the interdifference
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when a contextual color correction is applied, based on Von Kries or HDR Retinex

methods, and therefore they prove the extreme relevance of considering and applying a

correct color computational model in the imaging and computer graphics fields.
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C
olor research has a long and mostly debated history. Many important

contributions in this field have been proposed by some of the most relevant

scientists in the history. Almost all of them tried to come to terms with

the paradox (as it was defined by Semir Zeki136) of color vision. From 1700

it was a common assumption that the color of an object was generated by

the dominant wavelength of the reflected light incoming the eye, and many theories have

been proposed guessing if, how and how many receptors were included in the human eye.

However, the paradox is introduced by the fact that observing objects under different

conditions of illumination, we perceive the same color even if the wavelength composition

of the incoming light presents relevant variations. This phenomenon, known as color

constancy, is actually considered one of the more important properties of our visual

system.

Many scientists noticed this phenomenon and tried to explain it, realizing that some-

thing more than just the physical nature of light was involved, but unfortunately, due

to the lack of knowledge and scientific instruments of their times, a correct explanation

had to wait several decades.

In this chapter we don’t present a full overview of color research history (for every

argument presented in the next sections, several books have been written, and proba-

bly many others will be), but we just summarize the works and contributions of the

main scientists involved in this field, considering if and how they tried to explain color

constancy effects.

We will also present a description of some psychophysical experiments directly cor-

related to the analysis of how subjective color perception and classical explanations

of color vision do not collide, and that are at the basis of the most relevant theories

regarding the perception mechanisms of the Human Visual System (HVS).

These theories have been used to develop color in context computational models for

image processing and computer graphics softwares; in the last section of this chapter we

will present a brief description of the main approaches.
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2.1 Historical overview of color research

I
n this section we summarize the main scientific steps in color research field, without

deep investigations, but rather focusing our attention on the eventual consideration

of color constancy effects. We can roughly consider two different approaches in

the definition of color theories in history: the physical approach, characterized by a

direct correlation between color and spectral characterization of light incoming human

eyes, and the psychological approach, based on the contrary on the analysis of color

interactions.

2.1.1 Physical approach

Isaac Newton

With Newton’s prism experiments in 167281 we can indentify the beginning of the color

research history.

Newton’s approach is strictly based on a physical phenomenon, i.e. the observation of

the spectrum of consecutive colors obtained after the refraction of light passing through

a prism. His conclusions, after some experiments, was that white light is composed of

single, ”pure”, coloured lights, that can be mixed to form secondary colors.

However, the final proposal of his famous circular arrangement of spectral colours

(see fig. 2.1), with seven basilar colors on the border and white in the center, has also a

strong aesthetic component: Newton’s belief was that the propagation of both light and

sound were comparable, and therefore he chose the number of basilar colors and their

disposition in the circle in accordance to Dorian musical scale.

Even if Newton’s assumption was that light was composed by tiny corpuscles, his

theory of a strict relation between color and physical nature of light became the basic

background of most of the color researches proposed in the following decades.

With the introduction of experiments and theories regarding the wave nature of light,

it was clear that the spectral colors on the border of Newton’s circle simply represent

specific wavelengths in the reflected light, and therefore it was assumed that color of an



CHAPTER 2. COLOR IN CONTEXT 8

Figure 2.1: Newton’s color circle.

object was directly dipendent on the dominant wavelength of the incoming light energy.

Thomas Young

For a century, Newton’s theory had not been discussed. In 1802 Thomas Young133

criticed Newton’s theory that human eye has receptors for each possible spectral color,

and suggested that only a limited number of elements in the eye are responsible for color

vision.

His hypothesis was that all colors sensations can be generated combining three spec-

tral colors, and that therefore only three receptors oscillating with the respective wave

are present in human eye. He identified this three spectral colors in red, yellow and blue

at first, then he changed to red, green and violet.

It was the first time that an hypothesis regarding inner eye physiology had been

proposed in the definition of a color theory, and it is very remarkable considering that

a concrete confirmation of the presence of cones in the retina is dated 1960.
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Figure 2.2: Helmholtz’s color triangle.

Hermann von Helmholtz

Even if in 1852 he rejected124 Young’s trichromatic color definition, trying to redefine

Newton’s circle with five spectral colors instead of the original seven, in 1866 Hermann

von Helmholtz, after deeper evaluations, decided to adopt Young’s theory of the presence

of three receptors in the human eye, responsible of color vision. His contribution124 was

so relevant that actually the trichromatic theory is known as Young-Helmholtz theory

(see fig. 2.2).

Helmholtz was one of the first to notice and suggest that a clear distinction between

physical phenomenon (i.e. spectral composition of light) and subjective effects must

be considered regarding color perception. His assumption was that color sensation was

caused by peculiar reactions of visual nerves due to different spectral stimuli.

In particular, he was very interested by color constancy phenomenon, and tried to

solve it. However, his hypothesis was quite vague and not clear: he suggested that

color constancy was caused by a sort of ”discounting of the illuminant” factor, due to a

process called unconscious inference 124,136.
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James Clerck Maxwell

The contribution in color research by James Clerck Maxwell in 1860 is crucial: with his

experiments he put the basis for modern colorimetry72.

His research gave an experimental demonstration that Newton’s circle of seven colors,

with white as a middle point, implicitly satisfied the trichromatic theory proposed by

Young, concluding in some sense the long discussions between scientists supporting

Newton’s theory and those who instead agreed with Young’s proposal.

Moreover, in his further experiments into the measurement of color, Maxwell pro-

posed an experimental setup that actually is still the basis for the definition of Color

Matching Functions in colorimetry field, based on the match between a target and the

mixture of three basilar spectral stimuli72,131. In chapter 5 we will discuss about colori-

metry research and contextual color computation.

2.1.2 Psychological approach

Johann Wolfgang von Goethe

It is not easy to summarize in few paragraphs the Theory of Colors proposed by Goethe

in 181043. His contribution, that was not well accepted by the physics community of

his time and rarely considered in modern discussion regarding color science, is closer to

the real understanding of color sensation than most of the previously cited scientists.

His experiments regarding prisms refractions, after-images, colored shadows and

complementary colors were in the direction of a more conclusive and complete con-

sideration of color as the union of physical phenomenons (i.e. the characteristics of

incoming light), physiological mechanisms (i.e. the response of human eye to the light

stimuli) and psycological behaviors (i.e. perception mechanisms of the visual system).

In the definition of his color circle (see fig. 2.3), Goethe tried to establish a set of

laws of color harmony, so that positions of colors are directly correlated to a subjective

psychological interpretation (e.g. yellow associated with ”light” or ”warmth” and blue

with ”shadow” or ”cold”), based on the underlying assumption that color is generated
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Figure 2.3: Goethe’s color circle.

from the dynamic interaction between darkness and light.

In this way, he was trying to include also all the historical experience of artists and

painters in the use and interaction of pigments, completely ignored at that time, even

if they were the first to consider color as a context-ruled sensation.

Ewald Hering

In 1874 Ewald Hering47 criticized Helmholtz’s proposal for color perception explanation.

The starting point of his proposal was the long debated role of yellow in color theories:

in Helmholtz’s color system, yellow sensation is derived by a mixture of red and green,

Hering instead stated that yellow was an elementary sensation, and that a mixture of

red and green was not possible, because that two colors eliminate each other.

Hering’s approach was more concerned to qualitative and psychological aspects of

color relations rather than to a physical definition, and therefore in his theory he sug-
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Figure 2.4: Hering’s opponent-colors system.

gested that not three but four elementary sensations (called also psychological primaries)

existed, coupled with the so-called opponent processes: any receptor that was turned off

by one of these elementary sensations, was excited by its coupled color. He considered

also white as an elementary sensation, not related to any mixture of basic colors, and

therefore he suggested also the presence of another opponent process relative only to

brightness.

In fig. 2.4 is shown his opponent-colors system, based on the red-green, yellow-blue
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and white-black opponent processes.

Hering’s proposal was hardly criticed by Helmholtz’s theory supporters: they argued

that his proposal could be acceptable only if two different and coupled processes of

activation and inhibition existed in the nervous system. However, it is very remarhable

how Hering’s strictly empirical hypothesis has been demonstrated to be very coherent

with the presence of opponent-colors neurons in the lateral geniculate nucleus (LGN) 127.

In his analysis of colors interaction, Hering noticed and analyzed color constancy

phenomenon: however, he tried vaguely to explain it as the resulting effect of some not-

well-defined physiological mechanisms, based on previous ”memory” and ”experience”

of the observer, able to ”discount the illuminant” of the scene47,136.

Michel Eugène Chevreul

Even if not directly interested in art, Michel Eugène Chevreul had probably more influ-

ence on paintings development than other color scientists. His interest in color began

in 1824, when, working on the chemical preparation of dyes for carpet production, he

noticed that the color of the dyes appeared different when observed near other adjacent

colors.

He decided to better investigate these effects, and in 1839 he proposed a detailed

analysis of what are called simultaneous contrast phenomenons13. The basical obser-

vation was that looking at two colors side by side, one color lend its adjacent color a

complementary tinge. The effect is most intense when the two colors are complementary

colors.

Even if Leonardo da Vinci probably had been the first to notice the mutual influence

of colors, and even if only some decades before his proposal Goethe had studied and

proposed the relevance of these color interactions, Chevreul was the first to propose

precise laws of color contrast, on which he elaborated a systematic organisation of colors

(see fig. 2.5).
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Figure 2.5: Chevreul’s color circle.

2.2 Psychophysical experiments about color constancy

I
n the previous section we have summarized the two parallel approaches of color

research in history. During the 20th century, with the growing interest in a deeper

understanding of color perception mechanisms, due also to the the availability of

more details regarding the different areas of the brain and their roles, interesting psyco-

physical experiments have been proposed in order to better investigate color constancy

phenomenon from a different point of view, less correlated to the spectral characteriza-

tion of the light reflected from the observed objects, but more focused on the subjective

processing of the incoming stimuli. Some of these experiments led to interesting hypo-

thesis and theories about the effective nature of color constancy.

However we begin proposing two older experiments at first, contemporary to the

previously presented theories, that shows how some remarkable efforts had been already

done in investigating the real nature of color sensation, even if many physical and

biological details about vision processes were unknown. We then present more recent

and complete proposals of experimental setups, that investigate in robust and efficient

way color constancy phenomenon.
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Long-wave filter

It casts “pink” light

It reflects “pink” + “white” light It reflects “white” 
light only, but it is 
perceived green!

It casts “white” light

Figure 2.6: Scheme of the colored shadow experiment using projectors.

2.2.1 Colored shadows

First of all, we want to recall the so-called ”phenomenon of coloured shadows”. These

phenomenon has been presented by Goethe43 (there are also some studies in Leonardo

Da Vinci’s notebooks). The experiment can be easily replicated today illuminating a

screen with two projectors, one casting white light, the other filtered with a not-too-

peaked long wave pass filter, so to perceive a uniform pale pink observing the screen.

Introducing an object in front of the filtered projector, we obtain a shadow on the screen

that appears vivid green, despite the fact that the shadow area is physically illuminated

only by white light (see the scheme in fig. 2.6).

2.2.2 Monge’s experiment

In 1789 Gaspard Monge77 proposed an experiment to demonstrate that color can not

be described and defined only considering the nature of light incoming to the retina,
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but that some perceptual process based on the analysis of the surrounding exists. He

attached a sheet of red paper on a wall of a house. Then he invited the observers to

look through a red glass and to analyze the color of the paper. Following the accepted

theories about color, looking at a red paper through a red glass would have had to result

in a red sensation, however the observers reported that the paper appeared whitish.

From this experiment, and considering also the phenomenon of colored shadows,

Monge suggested that our visual system makes an estimation of the illuminant from the

averaged spectral flux in the surrounding field of the observed object, applying then a

cromatic correction. Even if currently it is proved that the HVS performs color con-

stancy without any information regarding the illuminants, this approach (very remark-

able considering the scientific knowledge regarding vision processes in Monge’s historical

period) is currently very considered by many scientists in the design and implementation

of computional models of machine color constancy.

2.2.3 Land and McCann’s experiments

However, probably the most famous experiments regarding color constancy are those

proposed by Edwin Land and John McCann66,63 in 1960-1970, and that represent the

basis of the well-known Retinex theory of color vision.

In their first experiment they projected two black and white images of a scene: the

first image was acquired using a long-wave pass filter, while a middle-wave pass filter

was used for the second image. The first image was then projected using another long-

wave pass filter in front of the equipment, while the second image was projected without

filters, but using white light. Despite any expectation, the projected image presented a

full gamut of colors and not simply white-pink shades.

Literature reports that, like most scientific discoveries, this important result was

originally generated by an occasional event: Land was experimenting using three filtered

projectors (one with long-wave, one with middle-wave, one with short-wave pass filter) to

display three achromatic images acquired using a corresponding pass filter. ”Short wave”

projector was shut down, because he is investigating the lack of short wavelenghts in
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Figure 2.7: An electronic reproduction of the first Land and McCann’s experi-

ment. The resolution of the final result here presented is not the most adequate to

eliminate the stripes effect and to fully display the desidered effect, but however still

is remarkable the green-blue shade of the object on the lower right. Original image

courtesy of Wendy Carlos.

spectral composition of light typical of sunrise. Somehow, some of his assistant removed

the middle-wave pass filter from projector, leading him to that astonishing result.

In fig. 2.7 is presented an electronic reproduction of the experiment: the original

black and white images have been manipulated with a image processing software in

order to represent two interlaced frames, applying also a red filter to the first image.
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Figure 2.8: The setup of Mondrian experiments.

Combining the two frames, working at a good resolution and looking at the result at some

distance from the screen, we can obtain a good simulation, even if quite desaturated, of

the original effect.

In their second experiment Land and McCann used a panel made of diffusive patches

of paper of different colors, that they called ”Mondrian”, due to the resemblance with

the paintings of the famous Dutch artist Piet Mondrian. The rectangular and square

shapes of the patches avoided any form of recognition, while in the setup of the Mondrian

particular care was taken to not surround a patch with another of a single color, so to

avoid color induction effect.

The Mondrian was illuminated by three projectors, equipped with long-wave, middle-

wave, short-wave pass filters and whose emitted light was adjustable using rheostats. A

spectrometer was used to measure the spectral composition of light reflected by each
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patch of the panel. In fig. 2.8 is shown the experimental setup.

During the experiment they adjusted the projectors light intensities in order to have

the reflected light from a green patch characterized by a long wavelength dominant, and

then asked the chosen observers to report the color of the patch. The observers reported

the color to be green instead of red, as traditional color theories would suggest. The

experiment was next repeated with a blue patch, adjusting the projectors so to have

reflected the same spectral distribution as before. Again the observers reported the color

of the patch to be blue.

Repeating the experiments with the two patches, but this time not viewed in the

context of the Mondrian setup, but in void conditions, the observers reported the color

of the patches to be white or light grey.

Starting from the impressive results of these experiments, Land and McCann con-

cluded that the color of an object is determined not only by the wavelength dominant

of the light reflected from it, but that is determined by comparing it with the spectral

composition of the light reflected by the surrounding surfaces.

In their theory three separate channels, whose spectral sensitivities collide appro-

ximately with the cone responses, build a separate lightness record of the observed

scene applying comparisons between reflected light from different surfaces, regardless of

the spectral composition of the illuminants. The three independent records are then

merged to form the final color sensation. They called their theory Retinex from Retina

and Cortex, because they thought that both of them were involved in this processing.

Retinex theory became rapidly very popular in the scientific community, but it was

also source of many discussions and criticisms: some scholars simply did not agree with

Land’s conclusions, others declared that color constancy phenomenon was already known

and addressed by scientists with experiments and theories before Land and McCann’s

researches. In conclusion, they stated that Land was not giving such an innovative

contribution, and that too much publicity has been given to the Retinex theory regarding

the other approaches.

However, the historical theories for color vision before Land and McCann’s proposal
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were strictly related with the classical assumption that color is directly determined by

the spectral characterization of reflected light, considering color constancy phenomenon

simply as some sort of subsidiary, not well defined and surely not principal mechanism.

The innovative suggestion proposed by Retinex theory is that color is an inter-

pretation of the brain of certain physical properties (the spectral characteristics of the

reflected light from the observed surfaces), strictly related to the context of vision rather

than based on the analysis of an isolated spectral stimulus. Using a definition by Zeki136,

with the proposal of Retinex theory finally ”Colour becomes a property of the brain”.

Moreover, another relevant reason of the popularity of Retinex has been the specific

intention from its authors to formulate a theory directly applicable in computational

models, while other researches regarding color constancy theories or experiments have

been proposed as ”stand-alone” contributions without a pratical application. In chapter

3 Retinex-based computational models will be discussed.

2.2.4 Asymmetric Color-Matching experiments

During the 20th century, two kinds of asymmetric color-matching experiments127 were

used to measure and analyze cone absorptions induced by incoming lights from objects

with same color appearance under different illuminants.

The first is known as memory-matching method: in this experiment the observer

studies the color of a target presented under an illuminant and then he must select a

new target with the same appereance under a different illumination.

The second is called dichoptic matching method: in this case the observer views

simultaneosly a different scene in each eye, one exposed to a uniform background illu-

minated by daylight lamp, the other to an equivalent background but illuminated by

tungsten lamp. A target stimulus is placed at the center of one of the backgrounds, and

the observer has to select an object with the same appearance from a set of possible

targets seen under the other configuration.

These experiments were used mainly to test and discuss the coefficient law proposed

in 1905 by Von Kries125, rather than investigating new hypothesis regarding color con-
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stancy mechanisms. Therefore, these researches did not contribute in a remarkable way

in the development of new computational models.

In his theory, Von Kries suggested that a linear adjusting of the sensitivity of the

three photoreceptors occurs independently in proportion to their responses at spectral

variations of the incoming light. As example, we recall the experimental tests performed

by Wassef130 in 1959.

2.2.5 Brainard and Wandell’s experiment

In 1992 Brainard and Wandell5 used a slightly different memory-matching method in

order to evaluate how well perceptual mechanisms correct illumination changes (i.e. the

correctness of our color constancy).

They presented to the observers on a display virtual patches rendered with computer

graphics techniques simulating daylight illumination. The observers had to memorize

the appereance of a surface. Then the simulated illuminant was changed slowly, over a

period of two minutes, in order to let the subjects to adapt to the new illuminant. Then

they were asked to adjust the appearance of another virtual surface on the basis of the

precedent memorized sensation.

Analyzing the obtained results, the conclusion was that the observers estimated in

their choices a smaller illumination changes than the real introduced variation: quanti-

tatively, their correction was about half the true illuminant change.

2.3 Computational models of color in context

I
n some sense, in this chapter we are presenting a brief description of the main

stages of color research. We have discussed the historical approaches, characterized

by the first, often empirical, assumptions, without physiological nor technological

knowledges, but simply based on the observation of experiments and on deduction, that

during the years have evolved into the modern colorimetry. Then we have presented

the psychophysical efforts in the understanding of perceptual mechanisms, based on the
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continuos discoveries about brain physiology and the theories about the cortical areas

involved in color sensation.

With the introduction and the availability of calculators, we can identify the third

stage in the growing interest in a correct computational reproduction of color and in the

simulation of color perception mechanisms by the development of algorithms.

In the last decades, many computational models for image processing applications

based on color computation have been proposed, each differing for the underlying ap-

proach. Some of them try to simulate in details recent discoveries regarding inner neural

mechanisms of the brain, others instead simply consider and implement macro-behaviors

of the HVS.

We will give a brief description of the main approaches used in the image processing

field, suggesting some examples for each category, following partially a classification

proposed by Gatta40.

Many simple algorithms have been proposed based on Von Kries hypothesis125 (see

subsection 2.2.4): these models apply a global linear scaling independently on the three

chromatic channels on the basis of the brightest value found in each channel. This

approach is not perceptually correct, because it does not consider contextual mechanisms

of color vision, and computationally it clearly fails in presence of a single bright (or

noisy) pixel. However in slightly modified versions it is the most used approach for color

correction mechanisms embedded in digital cameras, due to its high computational

efficiency.

Other computational models follow the so-called gray-world assumption, i.e. that

the average surface reflectance of objects in a scene corresponds to gray. Following this

hypothesis, illuminant characteristics can be detected calculating the shift between the

average value of pixels in the input image and the assumed gray value, and then used in

the color correction stage. This kind of algorithms has been introduced by Buchsbaum

in 19809, and some modified versions have been proposed in the following years.

A more sophisticated group of algorithms addresses color constancy problem by

estimating and then discounting the illuminant of the scene. These models are mainly
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statistical methods based on data fitting or correlation. For example, in the Color-by-

Correlation algorithm, proposed in 2001 by Finlayson et al.36, a set of possible lights

are chosen. Then it is determined which colors can occur using each of these possible

lights and how they are distributed, and a correlation matrix is constructed. After

this pre-processing stage, the colors in a input image are compared with the correlation

matrix values, in order to measure the probability that one of the possible lights chosen

in the first stage could be the unknown illuminant in the image. In the final stage,

probabilities are analyzed in order to choose one of the chosen light as an estimate of

the scene illuminant.

However, this kind of approach is more concerned with so-called machine color con-

stancy, i.e. the ability of some algorithms to extract the reflectance property of objects

removing the illuminant, rather than human color constancy, that acts without any il-

luminant estimation and taking inspiration by human perception mechanisms, like e.g.

Retinex computational models.

In this dissertation we propose new Retinex-based computational models for image

processing and computer graphics applications, therefore we will address Retinex algo-

rithms in more details in chapter 3.

The previously cited algorithms have been implemented with the intent to have a

high level approximation of the mechanisms of color perception, starting from the results

of psychophysical researches, rather than accurately implement each neural mechanism.

However, other very complex computational models have been proposed trying to

simulate in details the different stages of color signal processing in the various cortical

areas of the brain, from cone responses in the retina to the opponent signals generation

in lateral geniculate nucleus, until the spatial processing in cortical area V4.

Examples of this kind of computational models, often characterized by a neural

network approach, have been proposed by Moore et al. in 199178, by Courtney et al.

in 199522, by Ross and Mingolla in 1998100 and more recently by Spitzer and Semo in

2002107.



Chapter 3

Retinex computational models

Contents

3.1 The Retinex algorithm . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Sampling vs Integrating . . . . . . . . . . . . . . . . . . . . . 28

3.3 Three examples of Retinex-based computational models . . 29

3.3.1 Brownian Retinex . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.2 McCann Multilevel Retinex . . . . . . . . . . . . . . . . . . . 31

3.3.3 Automatic Color Equalization (ACE) . . . . . . . . . . . . . 31

3.4 Mathematical analysis of the Retinex algorithm . . . . . . . 33

3.5 Random Spray Retinex (RSR) . . . . . . . . . . . . . . . . . 36

3.5.1 From paths to pixel sprays . . . . . . . . . . . . . . . . . . . 37

3.5.2 RSR implementation . . . . . . . . . . . . . . . . . . . . . . . 38

3.5.3 Tuning RSR parameters . . . . . . . . . . . . . . . . . . . . . 43

3.5.4 Future works on RSR . . . . . . . . . . . . . . . . . . . . . . 53

3.6 Comparison between Retinex algorithms: an open problem 55

24



CHAPTER 3. RETINEX COMPUTATIONAL MODELS 25

S
ince its proposal in 197166 by Edwin Land and John McCann, the Retinex

model is widely used as a starting point for new computational models of

color sensation. These models have some common points with the original

Retinex algorithm66,63 but most of them add or modify the basic principles

of the algorithm.

There are some interesting papers that describe Retinex and some modified ver-

sions3,4,70,95,38,53, the analysis and tuning of its parameters18, and some works investi-

gating the application of Retinex in new fields of computer graphics like tone map-

ping104,39,99 or spatial gamut mapping74. Application of Retinex in the tone mapping

field will be addressed in chapter 4.

In this chapter, after a short description of the original Retinex algorithm, we present

a rigorous mathematical definition and analysis89 of Retinex theory. Finally a new

implementation called ”Random Spray Retinex”, in which paths are replaced by 2-

dimensional pixel sprays, is proposed.

3.1 The Retinex algorithm

T
he Retinex theory assumes that human vision is based on three retinal corti-

cal systems, each independently processing the signals produced by l, m and s

cones. Each independent process forms a separate image determining the relative

lightness values of the various regions of a scene63 (see subsection 2.2.3 for details).

Biological studies show that there’s a lack in this theory: if we look at the post-

retinal computation, we found explicit connection between different cone responses136.

However, the Retinex algorithm is not a biological simulation of the color sensation

process. The l, m and s cones are usually approximated using R, G and B values

obtained by digital devices.

According to Land and McCann, edges between adjacent areas of an image play a

fundamental role in color perception. Therefore, the ratio of lightness between two areas

has been chosen as a dimensionless property describing their relationship. If these two



CHAPTER 3. RETINEX COMPUTATIONAL MODELS 26

areas have lightness which are very different, the ratio is far from the unitary value,

and it tends toward the value of 1 where the lightness tend to become equal. If the

ratio is computed and averaged in many locations of the image, Retinex can discounts a

possible chromatic cast and dimensionless character of computation will help to equalize

the overall lightness of the image.

The visual response Sx at the location x of the image is:

Sx
R,G,B =

∫

λ∈(400nm,700nm)

E(λ)Rx(λ)ρR,G,B(λ)dλ (3.1)

where x is a discrete spatial coordinate, E(λ) is the spectral power distribution of

the illuminant light, Rx(λ) is the reflectance at the point x and ρR,G,B is the spectral

sensitivity of the photoreceptor’s (retinal cones) pigment. The relative lightness Li,j
R,G,B

at point x, along a path in the image (Fig. 3.1), for each channel RGB, is computed in

the following way:

Li,j
R,G,B =

∑

x∈path

δ(log(Sx+1) − log(Sx)) (3.2)

where

δ =







1, if | log(Sx+1) − log(Sx)| > threshold

0, otherwise
(3.3)

j

i

S
x

S
x+1

Figure 3.1: Along the path from point j to point i, the relative lightness is com-

puted as the ratio between the visual responses at the generic points x and x + 1.
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Figure 3.2: Example of paths from points J1, J2, . . . , Jn for the computation of

the lightness value at point i.

Hence, the calculated RGB intensity value for each point i is the mean value of

relative lightness Li,j
R,G,B computed over a number N of paths ending at point i (Fig.

3.2):

Li
R,G,B =

∑N

k=1 Li,jk

R,G,B

N
(3.4)

These computations must be executed separately for the three channels RGB.

The model above depends on the number of the chosen paths, and on the threshold

value that makes it possible to disregard low lightness ratios, which correspond to smooth

changes in color due to non-uniform illumination.

The Retinex algorithm has a reset mechanism by means of which, during a path

computation, if a lighter area is found, the cumulated relative lightness is forced to the

unitary value, making the average computation restart from this area. The effect of the

reset mechanism is to consider the lightest area of an image as a local reference value

for white.

The reset process is responsible of the white patch behavior of the Retinex algo-

rithm. Without the reset, Retinex cannot have a reference during the computation.
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This process is highly non linear since it turns to 1 the computed ratios on the path if

the cumulated product is greater than 1. In73 we can found the importance of a non

linear operator to predict simultaneous contrast configurations.

Retinex models66,65 compute the lightness of each pixel in the image using data

collected from other pixels. These models incorporate the concept of locality by gaining

the data to compute lightness in a local way, i.e. considering the data close to the

computed pixel and not an averaged value of the whole data representing the input

image. A description of different ways of exploiting locality is shown in section 3.2.

3.2 Sampling vs Integrating

T
he Retinex computation is strongly related on the concept of spatial color. Spa-

tial color means that the color appearance of an area (or object) is related to the

context. The context is simply the color distribution around an area.

All Retinex algorithms exploit locality. There are two different ways used for giving

locality to the algorithm:

• Sampling : The algorithm samples values in the image using different methods:

Brownian paths69, spiral paths37,38 or double spiral paths19.

• Integrating : The algorithm gain information on context by an averaged value of

the data in the surround. The average could be computed using a weighting

function.65 and its derivations53,54,3 are two examples of this method.

These two methods are very different. The Retinex formulation of65 is described by

the following formula:

Rc(x, y) = log(Ic(x, y)) − log(F (x, y) ∗ Ic(x, y)) (3.5)

where I is the input image, c = {R, G, B}, and F (x, y) is the surround function. It

is important to note that for every pixel only one comparison is made between the pixel

value and the integrated value over the surround function.
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Moreover the convolution process gives a weighted average value of the neighbor-

hoods to summarize the surround contributions to the lightness of the target pixel.

This is different from others Retinex models that sample the image with paths that

travels the image.

However, the integrating method has the disadvantage of summarizing in a single

value the spatial distribution of the surround: this is a critical point and the source of

the major drawbacks of integrating-based Retinex implementations.

In fact using a small surround leads to a significant increase in local contrast but

induces halo artifacts along high contrast edges and an overall effect of desaturation

in final color rendition. However, adopting a larger surround reduces the artifacts, but

provides less increase in local contrast.

The limitation of the integrating method is overcome in a work proposed by Meylan

and Süsstrunk in 200676: the authors determine the surround using an adaptive filter

whose shape follows the image high contrast edges.

3.3 Three examples of Retinex-based computational

models

A
s previously said, many Retinex-based computational models have been pro-

posed. In this section we briefly present three algorithms: the Brownian Reti-

nex proposed by Marini and Rizzi69, the Multilevel Retinex proposed by John

McCann74, and the Automatic Color Equalization (ACE) algorithm from Rizzi et al.97

The first two operators represent two different approaches in the application of Retinex

theory, when ACE otherwise is a new model implemented on the common assumptions

of Retinex theory, but reimplementing them in different ways.
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Figure 3.3: Example of 10 Brownian paths.

3.3.1 Brownian Retinex

In 2000, Marini and Rizzi69 proposed a Retinex implementation called Brownian Reti-

nex.

This implementation is characterized by the construction of Brownian random paths

(see fig. 3.3) in the image, inspired by the distribution of receptive field centroids in

cortical area V4136, responsible for color vision in complex scenes.

The approximation method used to construct the random paths is the well-known

mid-point displacement recursive algorithm102, that displaces randomly the middle point

of a segment and applies recursively the same method on the new two generated seg-

ments.

Along each path, the algorithm scan converts the pixels, computing the relative

reflectance for each pixel along the edge applying the Retinex mechanisms illustrated in

section 3.1.

A relevant effect of the application of random paths was the need of a smaller number

of paths than the other Retinex implementations in order to approximate the lightness

value of each pixel.

The authors tested the color correction effect of the algorithm applying chromatic

distances in CIELAB space on a set of synthetic images rendered using various standard

illuminants. Moreover, they verified the ability of the computational model to simulate

perceptual rensponse applying the algorithm to some classical color illusions.
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3.3.2 McCann Multilevel Retinex

The Multilevel Retinex proposed in 1999 by John McCann74,38 is characterized by the

construction of a multiresolution pyramid from the input image by averaging image

data.

For all levels, beginning at the top level of the pyramid, the new product for each pixel

is computed by applying ratio-product-reset mechanisms to each of its eight immediately

neighboring pixels in clockwise order.

After computing lightness on the image at a reduced resolution, the resulting light-

ness values are propagated down, by pixel replication, to the next level of the pyramid

as its initial lightness estimates. This process continues until new products have been

computed for the pyramid’s bottom level.

A crucial parameter of the algorithm is the number of times a pixel’s neighbors must

be visited. It is equivalent to set the distance at which pixels influence one another:

in fact, the new product values for all pixels are computed in parallel, so, after one

iteration, all neighboring pixels have had their new products values updated. Therefore,

the number of iterations is a crucial parameter in order to have a correct computation

of local and global effects in the output results.

A proposal for an automatic determination of this parameter has been addressed by

Ciurea and Funt in 200418.

3.3.3 Automatic Color Equalization (ACE)

The Automatic Color Equalization (ACE), proposed by Rizzi et al.97 in 2003, maintains

the main Retinex idea that the color sensation derives from the comparison of the

spectral lightness values across the image, but also it considers the lightness constancy

mechanism, i.e. the ability of our visual system to make us perceive as medium gray

the objects which reflect the average luminance of a scene.

The algorithm is subdivided in two parts: in fig. 3.4 is represented the scheme

of the computational model. The first part of the model performs a spatial variant
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Figure 3.4: Scheme of ACE algorithm.

computation and the second performs a spatial invariant display mapping.

Chromatic/Spatial computation

Tha mathematical definition of the first part of the ACE algorithm is defined in equation

3.6:

Pc(i) =
1

ki

∑

j∈I\{i}

g(Ic(i) − Ic(j))w(i, j) (3.6)

where ki is a normalization factor defined as:

ki =
∑

j∈I\{i}

w(i, j) (3.7)

In ACE algorithm each pixel is compared to every other in the input image I:

the pixel to pixel comparison is made by arithmetical difference, and this difference is

modified by the non linear function g, that computes lightness between two pixels value.

This function (shown in fig. 3.5) acts as the non linear reset mechanism of the original

Retinex algorithm, but is able to simulate also the lightness constancy mechanism.

The combination of the difference and of the non linear function g can achieve a

behavior that is comparable to the ratio-reset of Retinex algorithms.

To modify the influence between close and distant pixels in Retinex algorithms, paths

or center/surround approaches are considered. Differently, ACE implements spatial

computation applying a distance function w to every comparison. The authors tested

Euclidean, Inverse exponential, Manhattan and Maximum distances, and in the end
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Figure 3.5: Graph of g(Di,j) function, where Di,j = Ic(i) − Ic(j).

they adopted the inverse of the Euclidean distance because it performed better in their

experiments.

Display mapping

To display the computed values into the available display dynamic range the authors

tested two different solutions.

The first is a simple linear scaling of the values of intermediate image Pc (the output

of the first stage of the algorithm) into the output result Oc. This is done independently

in every chromatic channel c.

The alternative and more satisfactory method uses the maximum value in each chro-

matic channel as white reference, and the zero value in Pc as an estimate for the medium

gray reference point to compute a linear mapping function that makes the dynamic of

the final image to be always centered around the medium gray.

3.4 Mathematical analysis of the Retinex algorithm

I
n89, authors describe mathematically the Retinex algorithm of Land and McCann66.

The Retinex algorithm depends on some parameters (such as threshold, number of

paths and iterations). The authors show that the qualitative behavior of Reti-



CHAPTER 3. RETINEX COMPUTATIONAL MODELS 34

nex in relation with the variation of these parameters can be predicted by using the

mathematical definition.

Given a digital image, consider a collection of N oriented paths γk composed by

ordered chains of pixels starting in jk and ending in i. Let nk be the number of pixels

travelled by the path γk and let tk = 1, . . . , nk be its parameter, i.e. γk : {1, . . . , nk} →
Image ⊂ R

2, γk(1) = jk and γk(nk) = i.

Write, for simplicity, two subsequent pixels of the path as γk(tk) = xtk and γk(tk +

1) = xtk+1, for tk = 1, . . . , nk − 1. Consider, in every fixed chromatic channel c ∈
{R, G, B}, their intensities I(xtk), I(xtk+1) and then compute the ratio Rtk =

I(xtk+1)

I(xtk
)

.

For technical reasons put R0 = 1 and normalize the intensities to take their values in

the real unit interval (the normalization factor is 1
255

if 8 bits are used for each pixel in

every chromatic channel).

The (normalized) value of lightness given by Retinex for a generic pixel i, in every

fixed chromatic channel c, can be obtained by this formula:

L(i) =
1

N

N
∑

k=1

nk−1
∏

tk=1

δk(Rtk) (3.8)

where δk : R
+ → R

+, k = 1, . . . , N , are functions defined in this way: δk(R0) = 1

and, for tk = 1, . . . , nk − 1,

δk(Rtk) =



































Rtk if 0 < Rtk ≤ 1 − ε

1 if 1 − ε < Rtk < 1 + ε

Rtk if 1 + ε ≤ Rtk ≤ 1+ε
∏tk−1

mk=0
δk(Rmk

)

1
∏tk−1

mk=0
δk(Rmk

)
if Rtk > 1+ε

∏tk−1

mk=0
δk(Rmk

)

being ε > 0 a fixed threshold.

It is useful to write the contribution of the single path γk to L(i) as: Lk(i) =
∏nk−1

tk=1 δk(Rtk), so that formula (3.8) reduces simply to the average of these contributions:

L(i) = 1
N

∑N

k=1 Lk(i).

In89 can be found the proof that this mathematical formulation is equivalent to the

algorithm described by Land and McCann. They also note that the threshold mechanism
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makes hard to predict mathematically some properties of Retinex. Thus they decide

to remove the threshold mechanism showing that it does not influence heavily the final

result.

They introduce the new formula setting ε = 0:

δk(Rtk) =











Rtk if 0 < Rtk ·
∏tk−1

mk=0 δk(Rmk
) ≤ 1

1
∏tk−1

mk=0
δk(Rmk

)
if Rtk ·

∏tk−1
mk=0 δk(Rmk

) > 1

hence δk, when the threshold is 0, behaves like the identity function or like the reset

function.

They show that, when ε = 0 all the pixels travelled by the path γ before the pixel

with highest intensity are perfectly uninfluential for the computation of L(i). Thus they

point out that only the maximum value xHk
is important for the computation.

Thanks to these properties, and considering that I(i) is independent from k, they

formulate a very compact mathematical description of Retinex:

L(i) = I(i) · 1

N

N
∑

k=1

1

I(xHk
)

(3.9)

which shows explicitly that, at a mathematical level, Retinex without threshold acts

on the intensity of each pixel as a multiplication operator, with the multiplicative factor

given by the average of the inverse values of the highest intensities of the pixels travelled

by the paths γk.

An important proof is that, recalling that the intensity values are normalized, so

0 < I(xHk
) ≤ 1 for every k = 1, . . . , N and then

∑N
k=1

1
I(xHk

)
≥ N . It follows that

L(i) ≥ I(i) for every pixel i and this is a rigorous proof of the fact that an image filtered

with Retinex without threshold is always brighter or equal to the original one.

With the help of the formula (3.9) they prove that if an image is filtered many

times with Retinex without threshold, then it converges to an image characterizable in

a simple way: the image of convergence is obtained when the lightness of (at least) one

pixel in all the paths γ1, . . . , γN reaches the value 1.
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They shows that when N → ∞, where N is the number of the paths that scan the

image, the Retinex behaves like a global White Patch algorithm. This is very important

since this fact shows that the locality of the algorithm is very important to the final

goal.

3.5 Random Spray Retinex (RSR)

I
n order to investigate the local filtering behavior of the Retinex model, we propose

a new implementation in which paths are replaced by 2-dimensional pixel sprays, so

the name Random Spray Retinex 90. A peculiar feature of this implementation is the

way its parameters can be controlled to perform spatial investigation. The parameters

tuning is accomplished by an unsupervised method based on quantitative measures.

This procedure has been validated via user panel tests. Furthermore, the spray approach

has faster performances than the path-wise one. Tests and results are presented and

discussed.

In the basic Land and McCann implementation of Retinex, locality is achieved

through paths scanning images.

All the sampling implementations that use a path-wise approach have to deal with

the following problems: strong dependency on paths geometry, high computational cost

and sampling noise.

On the basis of the mathematical analysis of path-wise Retinex algorithms89 de-

scribed in section 3.4 we will prove the intrinsic redundancy of this approach. Conse-

quently, we will propose an extension that allows to keep the sampling approach highly

reducing the typical problems related to the use of paths.

This alternative technique is constructed replacing paths with random sprays, i.e.

two-dimensional point distributions across the image, so the name Random Spray Re-

tinex (RSR) 90. We will show how it is possible to change the spray density around a

pixel and how this leads to the ability of finding out information about locality of color

perception within the Retinex model.
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3.5.1 From paths to pixel sprays

The information given by the mathematical formulation of Retinex have strong conse-

quences on the structure of Pi(Image): the set of paths embedded in the image and

ending in the point i. After formula (3.9), on this set it is natural to define this equiva-

lence relation: given γ, η ∈ Pi(Image),

γ ∼ η ⇔ max
(x,y)∈γ∗

{I(x, y)} = max
(x,y)∈η∗

{I(x, y)} (3.10)

where γ∗ and η∗ are the codomain of the paths, i.e. the collections of pixels traveled by

γ and η, respectively.

Paths belonging to different equivalence classes give different contributions to the

lightness computation, while every path in a given equivalence class is characterized

by the same value of Lk(i). It immediately follows that, for the purposes of Retinex,

Pi(Image) contains redundant paths and so the really interesting set of paths is the

quotient set Pi(Image)/ ∼, whose elements are the equivalence classes of paths with

respect to the equivalence relation defined in (3.10).

Thence path-wise Retinex implementations are affected by two kind of redundances:

from one side many paths must be used to reduce the sampling noise; from the other

side, as just proved, they can be organized in equivalence classes, so that if one uses two

paths belonging to the same class they will lead to the same chromatic information, i.e.

they are redundant.

In each equivalence class one can choose a single representative path to compute

Lk(i), in particular, the shortest one is the two-points path whose codomain is sim-

ply {xHk
, i}. It follows that the ordering operations needed to generate the paths are

perfectly uninfluential for the final lightness computation.

Moreover, by a mathematical point of view, paths are topological manifolds of di-

mension 1 embedded in the image, which is a topological manifold of dimension 2, so

paths do not really scan local neighborhoods of a pixel, but rather particular directions

in these neighborhoods. This directional extraction of information can lead to halos or

artifacts in the filtered image.
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The classical implementations of Retinex try to remedy this problem using a large

number of paths, but this increases the filtering time and does not really overcome the

problem.

We see that there are three reasons for which paths are not perfectly suitable for

the analysis of locality of color perception within the Retinex model: they are redun-

dant, their ordering is completely uninfluential and they have inadequate topological

dimension.

Thus, we are lead to use 2-dimensional objects such as areas instead of 1-dimensional

paths to analyze locality of color perception. More precisely, our idea is to implement

the investigation about locality selecting pixels from these areas with a density sample

that changes according to a given function of their distance with respect to the target

pixel i. Each function generates a different kind of pixel selection around i, leading to

different kind of ”sprays”, each of which reveals different local filtering properties.

3.5.2 RSR implementation

RSR is a new implementation of the original Retinex model66 which has been inspired

from the results of the mathematical analysis of Retinex89 described in section 3.4. In

RSR the role of a path γk traveling nk pixels and ending in the target i is played by

Sprayk(i), a spray composed by nk pixels and centered in i. In fact, N random sprays

are selected from a pre-computed set (the symbol N now will be used to denote the

number of sprays to put in stronger evidence the correspondence between paths and

sprays).The typical ratio-reset operation along a path is substituted by the search of

the pixel with highest intensity in the whole spray. It will be clear from the following

discussion that, once the number of points per spray is chosen, there is no need to vary

it with k, hence, from now on, we will write n instead of nk to denote the number of

pixels per spray.

The functional expression of the formula (3.9) to compute the lightness remains

exactly the same in both algorithms, so they share the same intrinsic properties described

in section 3.4. This is the reason why the results about locality of color perception that
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we will get thanks to the RSR implementation can be referred to the Retinex model.

Notice that the only operations performed by RSR in each spray are n compar-

isons (needed to find out the pixel with highest intensity) and one division. So RSR is

significatively faster than the previous path-wise Retinex implementations.

Let us now show how to construct Sprayk(i). With a random point generator we

can get a uniform random distribution of n values in the real unit interval [0, 1]. Then,

by multiplication, we can extend this distribution to any real interval, in particular, we

are interested to the intervals [0, 2π] and [0, R], where R is a given positive real number

that will represent the radius of the spray. We denote, respectively, with randn[0, 2π]

and randn[0, R] the corresponding uniform random distributions.

Now, if (ix, iy) are the coordinates of i, we can define the polar coordinates of a

generic pixel j ≡ (jx, jy) belonging to Sprayk(i) in this way:







jx = ix + ρ cos(θ)

jy = iy + ρ sin(θ)
(3.11)

where ρ ∈ randn[0, R], θ ∈ randn[0, 2π].

These are the coordinates of pixels that have an isotropic angular distribution in a

circle of radius R centered in the pixel i.

Notice, however, that the radial density is not isotropic, in fact, because of the

rotation, the spray results more dense near the target pixel i than far away. We can

easily compute the average radial density δ(r) considering, as in fig. 3.6, a circle Cr

of arbitrary radius r, 0 < r < R, centered in i and then taking the ratio between the

number of points inside Cr and its area, i.e. δ(r) = dn/dA.

The number of points inside Cr is n(r) = n r
R
, since we are dealing with uniform

random distributions.

Considering also that A = πr2, and therefore r =
√

A/π (since r ≥ 0), we can

express δ(r) as:
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Figure 3.6: Computation of the areolar density in function of the spray radius.
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(3.12)

Thus the average radial density of spray pixels decreases as the inverse radius.

Fig. 3.7 shows an example of such a spray with 400 pixels and radius R = 1.

The angular isotropy is a natural requirement that must be satisfied by the spray,

since the presence of privileged directions generates artifacts in the filtered image.

Now, the local properties of Retinex can be analyzed in a very simple way applying

a function on the coordinate ρ to change the radial density of the spray pixels around i.

Precisely, given any function f : R
+ → R

+, we can consider the modified spray whose

pixels have polar coordinates defined by:
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Figure 3.7: An example of ”naturally localized” spray.
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x = xi + f(ρ) cos(θ)

y = yi + f(ρ) sin(θ)
(3.13)

where, again, ρ ∈ randn[0, R] and θ ∈ randn[0, 2π]. It is useful to distinguish the

special case in which f ≡ idR+ , the identity function restricted on non-negative real

numbers, calling the corresponding spray ”naturally localized”.

Figs. 3.8-3.11 show some examples of sprays with R = 1, n = 400, obtained with

different functions f .

It can be seen that the normalized logarithmic and hyperbolic sinus functions keep

the spray density quite similar to the one of the naturally localized spray. Instead

powers of ρ with exponent greater than 1 and the normalized exponential function tend

to increase the density around the center. Finally, powers of ρ with exponent in (0, 1)

and the normalized inverse exponential applied on ρ tend to delocalize the spray. The

multiplication of ρ by a constant coefficient m simply changes the radial extension of

the naturally localized spray, expanding the radius, when m > 1, or contracting it, when

0 < m < 1.

To perform the analysis of locality in RSR we must tune f and the other parameters

of the algorithm. Before showing the results about tuning, we briefly summarize all

these parameters and discuss their meaning in the next subsection.
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Figure 3.8: (a) Spray with f(ρ) = log(1+ρ)
log(2)

. (b) Spray with f(ρ) = sinh(ρ)
sinh(1)

.
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Figure 3.9: (a) Spray with f(ρ) = ρ2. (b) Spray with f(ρ) = ρ4.
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Figure 3.10: (a) Spray with f(ρ) = eρ−1
e−1

. (b) Spray with f(ρ) = e−ρ−1
e−1−1

.
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Figure 3.11: (a) Spray with f(ρ) =
√

ρ. (b) Spray with f(ρ) = 5
√

ρ.

RSR parameters and their meaning

RSR depends on four parameters: R (the radius of the sprays), f (the radial density

function) N (the number of sprays) and n (the number of pixels per spray).

The radius R of the spray defines the extension of the circular area analyzed around

the pixel i. This area must be tuned to get enough information about the color distri-
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bution around i.

As already stated, the function f changes the radial density of the spray pixels.

It must be tuned to find out what is the spray pixel distribution that better fits the

computational reproduction of color perception performed by the HVS.

For each Sprayk(i) there is a non zero probability to find the pixel with highest

intensity xHk
in an isolated pixel not related to the context. This, of course, would

produce chromatic noise in the filtered image. Since the spray pixels are generated by a

random point generator, all the N sprays are different and so, statistically speaking, the

influence of isolated pixels on the global computation of L(i) decreases when we average

many sprays contributions Lk(i). Hence, the higher is the number of sprays, the lower is

the chromatic noise in the filtered image. This is confirmed by the tests performed (as

will be discussed later), which also shown that, to avoid pattern replication all across

the image, the sprays must be taken by a pre-computed set of, at least, a thousand

sprays.

Finally, the number n of pixels per spray determines how much information is ex-

tracted from the spray area. If we use very large values of n we cover all the spray

area, losing the locality of the spray distribution, instead, if we use small values of n,

we cannot get enough information to correctly compute L(i).

3.5.3 Tuning RSR parameters

We performed our tests on a set of over 100 very different pictures given by real-world

images, portraits, landscapes and geometric images.

Tuning the spray radius

The easiest parameter to tune has proved to be the radius: for all images and indepen-

dently from the other parameter of RSR, our tests showed that the optimal value for R

is diag, the value of the diagonal of the image.

The reason is easily comprehensible: if one uses a smaller radius, then two pixels

that lie near the extreme points of the diagonals can never be compared. The effect
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of using a smaller radius than diag can be clearly seen comparing figs. 3.12 and 3.13,

which have been filtered with R = diag/2 and R = diag, respectively, keeping all the

other parameters constant: ρ as radial coordinate, N = 30, n = 800.

Figure 3.12: An image filtered with spray radius R = diag
2

.

Figure 3.13: The same image as in fig. 3.12 filtered with spray radius R = diag.

Furthermore, it is not useful to use a radius larger than diag, since the spray loses

part of its density around the target pixel and many spray points lie outside the image

area.

Tuning the radial density function

The radial density of the spray is responsible for the local property of RSR because the

probability to find out the pixel with highest intensity in the spray is greater in the

image areas where the spray is denser, than in the image regions where the spray has

only few points.
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It is well known that tests about human color perception show that the chromatic

influence between two pixels decreases with their distance (e.g.24,23,50,134). This fact

is implemented in every color perception model: path-wise algorithms (e.g.68) sample

the image content with paths that are denser in the immediate neighborhood of the

target pixel than far away, while integrative algorithms (e.g.54) use a center/surround

technique that weights the surround of the target pixel with monotonically decreasing

functions.

Coherently with this, even RSR revealed that delocalized sprays are inadequate to

correctly simulate color perception by the HVS. For example, fig. 3.14(b) shows the

result of filtering the image in fig. 3.14(a) using 5
√

ρ as radial coordinate.

(a) (b)

Figure 3.14: (a) Original ”Gallery” image. (b) Effects of a spray with radial

coordinate 5
√

ρ.

As a consequence, the only interesting radial density functions are those that corre-

spond to monotonically decreasing radial densities. Only such functions will be consid-

ered in the next discussion.

We conducted the tuning using both subjective quality match tests and quantitative

tests about color constancy.

The first kind of tests has been developed as follows: we filtered our test set of

images fixing n and N and varying the radial density function. We have displayed the

images on a middle gray background of a calibrated monitor in a dark room. Then we

asked a collection of users to indicate in a scale between 1 (poor) and 5 (excellent), the
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degree of naturalness (color plausibility in relation to the personal experience), absence

of noise and detail visibility of the filtered images. The results of our tests, averaged on

the three questions and on the test set images, are shown in Fig. 3.15.

Figure 3.15: Quality test for different radial density functions.

The images filtered with the naturally localized spray have always received the best

judgement by the users. Starting from ρ2, the sprays results too localized and the

corresponding filtered images show an increasing amount of noise, as can be seen in Fig.

3.16, that has been filtered with ρ4 as radial coordinate and with N = 30, n = 800 (to

be compared with Fig. 3.13, which has been filtered with the same values of n and N ,

but with ρ as radial coordinate).

Regarding color constancy tests, we considered the pictures of the database described

in98, consisting in a series of photographs taken under different color casts. We filtered

each series of pictures with different radial density functions. Then we computed the

CIELab differences between the images filtered with every given radial density function

to have a measure of the corresponding algorithm ability to reduce color cast. This

Figure 3.16: Noise induced by a spray with radial coordinate ρ4.
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methodology is motivated by the fact that RSR always preserves the image content and

does not collapses the dynamic range.

For more readability we report only the results of our tests on the picture in Fig.

3.17 taken under three different casts: Cast 1 = PHILIPS Neon Neutral Daylight 6500K

(TLD965), Cast 2 = PHILIPS Neon Fluotone 4100K (TLD840), Cast 3 = PHILIPS Neon

Daylight 5000K (TLD950). Tests with the others casts shown analogous results. We

choose the database in98 since it has been devised to test color correction algorithms

without facilitating any of them. In fact, instead of choosing a white, gray or black

background, we used two white noise backgrounds.

Figure 3.17: An image of the database in98 for color constancy tests.

The values visualized in the graphics of Fig. 3.18 correspond to the parameters

N = 20 and n = 400, when these parameters are varied the numerical values of the

differences change, but the relationship between the different radial density functions

does not change.

Figure 3.18: Color constancy test for different radial density functions.



CHAPTER 3. RETINEX COMPUTATIONAL MODELS 48

It can be seen that the density function that minimizes the CIELab difference be-

tween the filtered images is the identity function. Tests on the other images exhibit

analogous results.

The consequence of our subjective and quantitative tests is that the naturally local-

ized spray is the most suitable to reproduce the behavior of the HVS within the RSR

implementation of the Retinex model. From now on, RSR will be considered only with

ρ as radial coordinate.

We recall from formula (3.12) that the areolar density of the naturally localized spray

decreases as the inverse distance from the center. It follows that, in RSR, fixed a pixel

i, every other pixel of the image, considered as a single entity, has a ”mean chromatic

influences” on i that decreases as the inverse distance from i. This fact implies that,

statistically speaking, the chromatic influence of pixels close to i is comparable only with

that of entire areas of pixels far from i, the wideness of which must increase, according

to formula (3.12). This seems to be a good motivation to study multilevel extensions of

RSR.

Finally, we notice that the result of this section corresponds to what found in the

tuning experiments of another color perception model: ACE (Automatic Color Equal-

ization)97. In that algorithm the target pixel is compared with the other image pixels,

each of which is weighted with a coefficient. In97 it has been shown that the optimal

weight coefficients are the inverse distances from the target.

Tuning the number of sprays and pixels per spray

One of the consequences of the mathematical analysis performed in89 is that, as the

path length of a path-wise Retinex implementation grows to great values, the algorithm

loses its local properties showing a global white patch behavior. The tuning of paths

length or number is still an open problem for path-wise Retinex implementations.

We are now going to show that, with the RSR implementation, it is possible to

perform an unsupervised tuning of the parameters N and n in a self-consistent way,

highly reducing the range of their optimal values.
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These two parameters are strictly related because the lightness is computed averaging

the N contributions of the sprays, each of which depends on how many points are used

to find out the pixel with highest intensity.

We carried out the tuning as follows. We filtered the images of our test set increasing

N from 5 to 60 with a constant step of 5 sprays and increasing n from 250 to 900 with

a constant step of 50 points. Then we calculated ∆EN (n) and ∆En(N), the CIELab

differences between the images filtered with a fixed value of N and two consecutive values

of n, and viceversa, with N playing the role of n. We observed that both ∆EN (n) and

∆En(N) decrease monotonically for all images.

Now, since two images are considered chromatically indistinguishable if ∆E < 1, it

is natural to tune N and n taking the smallest values of these parameters for which this

inequality holds true. In other words, this procedure is a natural compromise between

the minimization of filtering time and the maximization of filtering quality.

To have a quantitative example to discuss, let us consider the tests performed on the

image in Fig. 3.19.

The interpolation graph of ∆E, viewed as function of N and n, and its intersection

with the hyperplane ∆E ≡ 1, is visualized in Fig. 3.20.

Fig. 3.21 and Fig. 3.22 represent the interpolation graphics of the functions ∆EN(n)

and ∆En(N), which are the level curves of the surface in Fig. 3.20. In the horizontal

axis are indicated the two consecutive values of n or N corresponding to the CIELab

difference values displayed in the graphic. Only the significant part of the curves are

Figure 3.19: Image for the tuning of the parameters n and N .
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Figure 3.20: Surface of ∆E(n, N) intersecting the hyperplane ∆E ≡ 1.

visualized.

Since the parameters n and N control two different characteristics of the filtered

image, it is not sensed to take high values of n and little values of N or viceversa, because

the corresponding image would have good chromatic quality, but high chromatic noise,

or viceversa, respectively. Instead the optimal couple (N, n) must be chosen as the

”minimal” couple of intermediate values of N and n such that the surface ∆E(n, N) lies

under the hyperplane ∆E ≡ 1, where with ”minimal” we mean the couple that minimizes

the product n · N . For example, it can be seen from Figs. 3.21 and 3.22 that both the

Figure 3.21: Graphics of ∆EN (n) for different values of N .
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Figure 3.22: Graphics of ∆En(N) for different values of n.

couples (N = 25, n = 350) and (N = 20, n = 400) correspond to intermediate values of

N and n such that the surface lies under ∆E ≡ 1, but 25 ·350 = 8750 > 20 ·400 = 8000,

so that the optimal choice is (N = 20, n = 400), because it corresponds to 750 operations

per pixels less than the other couple.

We combined the procedure just described with subjective matches analogous to

those performed for the tuning of the radial density function, but now changing every

time the values of N and n. The results of the tests performed on the image shown

in Fig. 3.19 are presented in Fig. 3.23. The surface is obtained interpolating the

values at the nodes (n, N), the value at each node is calculated averaging the degree of

naturalness, absence of noise and detail visibility indicated by the users.

It can be seen from the graphic in Fig. 3.23 that the surface reveals a wide constant

area after the couple of parameters (N, n) overcomes (20, 400), as predicted by the

quantitative procedure described above. It is evident that there is no reason to increment

the filtering time taking greater values for N and n. All the other tests performed

has revealed agreement between the unsupervised procedure described above and the

subjective tests involving users.

Now that we described the tuning procedure, we show in Figs. 3.24-3.26 some output

results of RSR with tuned parameters (all the images in this section are courtesy of P.

Greenspun).
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As can be seen from the different values of optimal values of N and n for the various

images, the tuning of N and n strongly depends on the different image content. The

problem to find out a formula to precisely determine the variation of the parameters N

and n in relation with the image content still remains open.

Filtering the same image with different sizes

If we consider a given image at different sizes, then we need a formula to extend the

optimal values of N and n for a certain size to the other sizes of the same image. Our

tests shown that the optimal value of N remains constant, but, as expected, the optimal

value of n changes. In fact n determines the amount of information needed to compute

the lightness and obviously this amount must increase or decrease in relation with the

image size.

We can formalize the problem in this way: suppose we have the same image at the

sizes W0×H0 and W1×H1, and suppose that nopt(W0, H0), the optimal value of n for the

image of width W0 and height H0, is known. The easiest way to find out nopt(W1, H1),

the optimal value of n for the image of width W1 and height H1, is to impose this

mathematical proportion:

Figure 3.23: Quality test for the parameters n and N with respect to Fig. 3.19.



CHAPTER 3. RETINEX COMPUTATIONAL MODELS 53

Figure 3.24: ”Gallery” filtered with tuned parameters: N = 25, n = 800.

(a) (b)

Figure 3.25: (a) Original ”Books” image; (b) ”Books” filtered with tuned param-

eter N = 25, n = 750.

nopt(W1, H1) : W1H1 = nopt(W0, H0) : W0H0 (3.14)

i.e to impose the fraction of spray pixels per unit of image area to remain constant.

Applying the unsupervised tuning procedure previously described, all the images of

our test set shown that, once the optimal value of n is found for a given image size,

formula (3.14) enables to correctly compute the changes of the optimal value of n in

function of the new image sizes.

3.5.4 Future works on RSR

In the previous subsections we have described the RSR implementation and the tuning

of its parameters. Obviously, many aspects need further analysis and consideration, so
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(a) (b)

Figure 3.26: (a) Original ”flowers” image; (b) ”Flowers” filtered with tuned pa-

rameter N = 20, n = 450.

to contribute to the enhancement of the proposed computational model.

As suggested in subsection 3.5.3, future works will address surely the implementation

of multilevel version and the problem to determine the variation of the parameters N

and n in relation with the image content.

Moreover, the intrinsic parallel nature of Retinex algorithms (each pixel computation

is completely independent from the others) make RSR very adaptable for parallel or

distributed computation. Also the implementation of RSR as a fragment shader using

some high level languages for GPU programming will be considered.

Finally, a merge between RSR and ACE97 computational models is under conside-

ration, so to develop an advanced algorithm that considers both color constancy than

lightness constancy in an efficient way.
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3.6 Comparison between Retinex algorithms: an open

problem

I
n section 3.5 we have used the information resumed in section 3.4 to prove that if

the path-wise structure is abandoned and it is substituted with the random spray

structure, interesting information about local Retinex properties arises naturally89.

This is, of course, a first step toward the full comprehension of the spatial properties of

the Retinex model.

Naturally, there is a big interest in the comparison among spatial properties of the

great amount of different Retinex implementations available in literature. However, we

believe that this is a very challenging task and it should be considered still an open

problem. The main reason is that local properties of a perceptual based color correction

algorithm affect many features of its output images: contrast, frequency content, ability

to remove color cast, saturation, pleasantness and quality. The perceptual analysis of

these features shows that a proper perceptual comparison should face many difficulties,

probably the most important is that there is not yet a universally accepted perceptual

measure to compare image pleasantness, quality or contrast, hence such a comparison

would be subjective. For an introduction on standard psycophysical measures (like e.g.

panel tests, paired comparison, category judgment) see29.

Moreover, differently from machine (or perfect) color constancy, the human color

constancy property is far from being perfect and it depends on several factors such as

temporal transients or illusive visual configurations.

Another great difficulty for a complete comparison is the fact that every Retinex

implementation highly depends on its own parameters, whose tuning, in the few cases

in which it has been performed18, is based on very different criteria and image test sets.

Finally, by a theoretical point of view, a mathematical description of all the algo-

rithms considered would be needed to create the basis for a common background where

performing rigorous comparisons about the intrinsic properties of each implementation.

Unfortunately, there still remain further Retinex implementations with no mathematical
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characterization.

All the open problems briefly described above make a proper and exhaustive com-

parison an important yet difficult task that we deem interesting for future researches.
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H
igh Dynamic Range Imaging (HDRI) has become one of the most relevant

research field of the last years: it has influenced the design and imple-

mentation of advanced acquisition devices, of new compression techniques

for image and video formats, of advanced global illumination algorithms,

of computational models of visual perception and of advanced display

devices.

However, currently display devices supporting the direct visualization of HDR values

are not still available, so there is the need to have mapping techniques that convert the

large dynamic of the acquired scene to the supported values of standard output devices:

the process that address this problem is known as tone mapping.

The complexity of this problem is particularly evident trying to display a HDR image

of a scene with, for example, direct sunlight together with deep shadows: the remark-

able adaptation mechanisms of the HVS make us perceive details in both areas when

observing the real scene, where the application of simple numerical mapping techniques

like a linear or logarithmic scaling will produce an output image too dark or too bright.

Many computational models (called tone mapping operators (TMOs)) have been

proposed in the last years93, each addressing the tone mapping problem differently.

Since the HVS is too complex to be modelled completely, the proposed operators try

to simulate only some particular perception mechanisms, like e.g. contrast sensitivity,

color sensitivity and threshold versus intensity functions, using data from perceptual

researches and experiments.

However, McNamara75 noticed that HVS data considered so far derive from experi-

mental set-ups that cannot test all the complex adaptive mechanisms active in natural

scenes perception, on which usually a TMO should work. Following this idea, we de-

cided to consider more the overall HVS behavior under natural conditions rather than

some psychophysical data, derived from laboratory controlled conditions (so called ”void

conditions”). This approach is largely accepted by researchers in the visual appearance

research field64,107.

From our point of view, as researchers in color reproduction in imaging and computer
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graphics field, the relevance of HDR images is obviously represented by the opportunity

to consider as input tristimulus values commensurate to those physically measurable in

a real scene, and consequentely to implement advanced color computational models that

work in a more ”realistic” context.

In this chapter we don’t want to address in details all the basical aspects of HDRI

and tone mapping, due to the great amount of scientific papers addressing these argu-

ments. Moreover, a comprehensive book has been published recently93, covering all of

the aspects of HDRI cited at the beginning of this chapter.

We will just recall some relevant points, focusing more our attention on the problem

of a correct color computation in the tone mapping field: to this aim we will present a

Retinex implementation for the visualization of HDR images, called HDR Retinex.

4.1 Overview of TMOs state of the art

S
o far, several tone mapping methods have been developed. In the following sub-

sections we will give only a brief description of some of the most representative

TMOs proposed in the years. In section 4.2 we will comment in more details if

and how color computation is addressed in TMOs state of the art.

Following the classification proposed in93, four groups can be identified:

• Spatial invariant operators

• Spatial variant operators

• Frequency based operators

• Gradient domain operators

However, some of the spatial operators proposed present both invariant and variant

mechanisms. In literature there is not an accepted convention about their classification:

it is possible that in this dissertation some of the cited operators are classified differently

than in other documents.
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4.1.1 Spatial invariant operators

Spatial invariant operators apply the same global mapping function to all the pixels of

the input HDR image: this is in contrast with all the evidences about the local behavior

of HVS perception mechanisms. However, they are obviously characterized by a high

computational efficiency.

The non-linear operator proposed by Tumblin and Rushmeier in 1993122 is designed

to replicate the variations in brightness as the illumination level in the scene change.

This operator was later improved121, and applied in an interactive algorithm based on

the simulation of foveal adaptation.

In 1994, Ward128 described a method that uses a linear scale factor to simulate

contrast perception and visibility thresholds around a particular adaptation level.

In 1996, Ferwerda et al.35 introduced a similar operator to match visibility thresh-

old, but accounted for visual acuity and color sensitivity in relation to changes of the

illumination levels.

In 2003, Drago et al.27 introduced an operator based on logarithmic mapping. The

logarithmic bases are adaptively adjusted according to each pixel’s value, in order to

preserve details and contrast.

In 2005, Reinhard and Devlin91 proposed a dynamic range reduction algorithm in-

spired by photoreceptor physiology. This method presents an interesting tunable be-

havior able to achieve Von Kries-style color correction.

4.1.2 Spatial variant operators

Spatial variant operators change the mapping function according to the spatial context

of the scene, therefore two pixels with the same value in the original image can be

mapped to different values in the output image.

The operator described by Chiu et al. in 199314 scales the luminance value of every

pixel using the average value computed on a neighbor set.

In 1995, Schlick103 proposed a first degree rational polynomial function to perform
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the mapping function. He applied it as a spatially invariant method at first, considering

then three alternative techniques (low pass filtering, micro-zones and segmentation) for

local adaptation simulation.

In 1997, Ward et al.129, extending previous works, introduced a complex operator,

that, starting from an analysis of the luminance histogram, computes the local adapta-

tion levels used in the mapping process. The algorithm has been extended to simulate

other HVS properties including visual acuity, color sensitivity and glare.

In 1997, Jobson et al.54 proposed the application of their Multiscale Retinex on

HDR images. Their algorithm is based on the original center/surround formulation by

Land65.

In 1998, Pattanaik et al.88 described a complex multi-scale operator that simulates

adaptation and spatial vision. The algorithm works by constructing a DoG pyramid

from the original image, and applying to each frequency filtered image different gain-

control factors, aiming at simulating the inner mechanisms of the HVS.

The LCIS operator proposed by Tumblin et al. in 1999123 is based on a hierarchical

decomposition of the input image in many sub-levels, each generated by solving a partial

differential equation based on anisotropic diffusion.

In 2003 Johnson and Fairchild55 applied the iCAM color appearance model31 to

render HDR images for display. The iCAM model consists in a chromatic adaptation

step (based on Von Kries transform) followed by an exponential function. Like most

color appearance models, the inverse application of the model is needed to prepare the

image for display.

In 2004, Funt et al.38 discussed the use of the implementation of the original Land’s

Retinex66. They followed the suggestion in20 to avoid haloing problems. However they

used the algorithm only on luminance without performing any color correction.

In 2002, Reinhard et al.92 proposed a photographic tone reproduction method based

on a two stage process: a first spatial invariant operator based on Ansel Adams’ zone

system and a second local operator based on center/surround contrast enhancement. A

GPU implementation of this method has been proposed by Goodnight et al.44 in 2003.
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In the same year Kang et al.57 applied a modified version of the photographic operator

to convert HDR video.

In 2002, Ashikhmin2 presented a three stage approach: the first stage estimates local

luminance adaptation at each point of the image, the second stage applies a compression

function on the input dynamic to the required display range, the last stage re-introduces

details to the image by a local analysis of input local contrast.

In 2004, Rizzi et al.99 proposed a modified version of ACE97 algorithm (see subsection

3.3.3) for tone mapping. In the modified operator two non-linear controls have been

introduced: the first control allows the model to find a good trade off between visibility

and color distribution modifying the local operator at each pixel-to-pixel comparison,

while the second modifies the interaction between pixels estimating the local contrast.

In 2005 Krawczyk et al.61 proposed a framework for GPU real-time processing of

HDR video that, starting from the application of Reinhard et al.’s photographic tone

reproduction method92, considers also visual acuity, glare, night and day vision.

In 2006, Krawczyk et al.60,62 proposed a tone mapping operator inspired by an an-

choring theory of lightness perception42. The method is based on the decomposition of

an HDR image into areas (frameworks) of consistent luminance and on the local calcu-

lation of the lightness values. The final lightness of an image is calculated merging the

frameworks proportionally to their strength.

4.1.3 Frequency based operators

Tone mapping may be achivied by transforming the original HDR data into a different

representation: frequency based operators reduce the dynamic range of image compo-

nents selectively, based on their spatial frequency.

In 2002, Durand and Dorsey28 presented a one stage local non-linear operator in the

framework of bilateral filtering. It uses two influence functions, one with arguments in

the spatial domain, the other in the intensity domain.

In 2003 Choudhury and Tumblin15 presented an operator based on trilateral filtering.

The difference with bilateral filtering lies in the technique used to separate the image
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into layers.

4.1.4 Gradient domain operators

Gradient domain operators search for large gradients in the input HDR data: these

gradients are then manipulated before to compress the original dynamic range.

In 2002, Fattal et al.33 presented a method that attenuates large gradients and then

constructs a low dynamic range image by solving a Poisson equation on the modified

gradient field.

4.2 TMOs and Color Computation

A
ll the algorithms described in the previous subsections approach the tone mapping

problem focusing only on some particular perception mechanisms. However, it is

clearly evident how in nearly fifteen years of research in the implementation of

TMOs, color perception mechanisms and their simulation have been rarely addressed,

despite the undeniable relevance of these aspects in an attempt to simulate the experi-

ence of real observation of a scene.

Most of the operators usually derive a luminance channel from the HDR chromatic

triplet in input, apply the compression of the dynamic range only to this achromatic

channel, and then recombine the resulting values with the uncompressed RGB values to

form the final tone mapped color image.

Looking at the few operators that explicitely consider color correction, we can dis-

tinguish between two different approaches:

• Retinex-based approach: the operators belonging to this group often apply in tone

mapping field former Retinex implementations adjusted and accurately tuned for

a correct computation of HDR values. Two examples of Retinex-based tone map-

ping operators are Jobson et al.’s Multiscale Retinex54 and Rizzi et al.’s ACE

algorithm99. Even the TMO operator proposed in this dissertation in the next

section belong to this group.
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• Von Kries-based approach: the other operators (Pattanaik et al.’s Multiscale Ob-

server Model88, Johnson and Fairchild’s iCAM color appearance model55 and Rein-

hard and Devlin’s Photoreceptor Model91) solve color computation by following

Von Kries hypothesis125. In its original formulation, this theory assumes that

the brightest value found in each chromatic channel of the input image represent

the reference white for that channel, and thus all the values are globally scaled

consequentely.

It is a generally accepted fact that there does not exist a TMO that works perfectly for

all images. Regarding color computation TMOs, some critical aspects are well-known:

• Retinex-based algorithms often suffer, as most of the spatial variant operators,

for the presence of halos and artifacts, due to the local computation in areas

characterized by high contrast gradients. Some efforts have been made to avoid

these problems, adding local and automatic tuning of the parameters according to

the image content40.

• Von Kries-based algorithms must consider that one of the major flaws of the

original Von Kries hypothesis to color constancy is its spatial invariant behavior:

in critical cases the method is cheated by even a single highlight or noisy pixel.

4.3 HDR Retinex

I
n this section we propose a Retinex implementation for the visualization of HDR

images. The operator, called HDR Retinex, is mainly based on the Brownian Re-

tinex algorithm69 described in subsection 3.3.1; however, we have improved the

computational model, implementing a new methodology in the exploration of the input

image, roughly inspired from the characteristics of eye movements, in order to tune the

intrinsic color correction behavior of Retinex algorithms for a correct tone mapping of

HDR images.
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The new approach in the construction of the random paths have been mainly ideated

and tested to tune the Retinex implementation to work with HDR data avoiding as

possible halos and artifacts typical of local operators.

Regarding the observation process, we recall that it is composed by a sequence of

two different stages: the movement of the eye, called saccade, shifting the gaze direction

from a point to another, and a short interval between two saccades, called fixation.

Information on the scene observed is taken only during fixations; no information is

acquired during saccades26,51,59,132,135.

4.3.1 Some comments about eye movements

The saccades movements are mainly due to the high concentration of cones (and thus

to the high visual acuity) in the 2-5 degrees area of the retina, centered in the gaze

direction, called fovea. Therefore human eyes must move to compensate the drop in

both resolution and color sensing in the most part of retina outside the fovea.

However, the analysis of eye movements is a complex topic, due to the fact that

saccades present both conscious and unconscious aspects94.

Saccades are often affected by several elements, e.g. the context of the scene ob-

served135 (the eye moves in different ways if we are looking to a panorama instead of a

room or a face, because different is the kind of information and features that must be

analyzed).

Saccades could also be generated by a sudden visual stimulus, like a rapid light

impulse or a moving feature in the scene, or they could be guided by specific intentions

or decisions of the viewer26, as the research in the scene of a particular object or the

reading of a text; in some cases, even the past experience and the attitude of the viewer

influences the eye movements135 .

Relevant are also the effects of memory and recognition: the second time we look at

a room our eyes move differently compared to the first time.

A terminology has been proposed to address the different processes of visual attention

mechanisms, that rule the movements of the eye during the observation of a scene: this
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terminology distiguishes between bottom-up and top-down processes6. Bottom-up pro-

cesses are automatic and unconscious mechanisms, that are supposed to be ruled by the

presence of some features in the scene attracting the attention automatically. Top-down

processes are, on the contrary, task-dependent mechanisms, i.e ruled by predetermined

intentions of the observer (e.g searching for an object).

In the perceptually-based rendering field, many computational models have been

proposed to automatically determine regions of interest in an input image, so to set the

best rendering quality only where the attention of the viewer is predicted to be most

attracted.

Models that try to simulate bottom-up processes extract features from an image that

are presumed to attract the attention of the viewer: saliency maps 58,52,34 are constructed

analyzing edges, orientations, high frequency regions, intensities etc.

On the other hand, models simulating top-down processes are based on task maps 67,79,80

that highlight task-relevant objects in the input image.

Even if the results are promising and quite useful for many applications, they are

not good enough to predict very accurately eye movements: the main problem is that

real vision presents both of the bottom-up and top-down aspects at the same time, and

these algorithms only address one of them at a time. Some works71 have investigated

the discrepancy between real eye movements captured using eye tracking devices and

the results of the cited algorithms.

Some recent works10,111 investigated how to use both saliency maps and task maps

together to have a more accurate simulation.

A comprehensive description and validation of these methods can be found in110,85.

4.3.2 Our approach

In this dissertation we have decided to not consider the techniques illustrated in the

previous subsection.

Evidently, task-dependent approaches are not suitable for the purpose of this dis-

sertation, but, on the other hand, it has been proved that bottom-up methods are not



CHAPTER 4. COLOR IN CONTEXT AND TONE MAPPING 67

sufficiently accurate71 to simulate precisely eye movements. Probably this is due to the

influence of some ”personal” behaviors of the observers, as memory of the scene, recogni-

tion of some objects, sudden interest for particular features or details in the image, that

”shift” in some way the unconscious and automatic observation (the ”bottom level”) up

to some ”higher level” of visual attention. It is evident that such particular aspects are

very hard (if not impossible) to be simulated.

Therefore, even if a good approach to avoid artifacts and problems in spatial in-

variant tone mapping operators is to consider local image content to adaptively tune

their parameters, as suggested in subsection 4.2, we have decided at the moment to

ignore these issues. However in subsection 4.3.8 we will discuss about a more accurate

consideration of eye movements in the implementation of the proposed computational

model using eye tracking devices.

We have decided to modify the random paths construction procedure of the original

Brownian Retinex implementation, with the aim to obtain paths that in an abstract

way have some characteristics noticeable in real scanpaths of eye movements.

We can notice that many eye scanpaths132 generally present an alternation between

different types of saccades: quick jumps among largely spaced points and shorter shifts.

Visually this alternation consists in a sequence of some segments that lie almost on the

same line, that suddenly changes direction (see movements circled in fig. 4.1).

This is more evident where the eyes are not attracted to some specific points of

attention (e.g. eyes and nose in fig. 4.1): in that cases the scanpaths appear more

crumbled.

Ignoring all the complex components that have influence on voluntary saccades,

whose computational simulation is still an open problem, we tried to construct random

paths with both the characteristics described above (quick jumps and shorter shifts) in

a uniform way across the image, and whose appearance resembles those that can be

observed in many eye scanpaths, as the one circled in fig. 4.1.

We would like to recall that our approach does not intend to exactly simulate eye

movements, but only to take inspiration from them in order to develop an efficient
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Figure 4.1: An example of eye scanpath132: in the ovals the path structure we

have tried to simulate.

exploration of the image. To this aim, we have made some experiments focusing our

attention on the random distribution of the mid-point displacement algorithm102, that

rules the position of the points of the paths in the image, and therefore their final shape.

As discussed in the next subsections, we applied uniform and Gaussian distributions

in the recursive steps of the algorithm in order to obtain a sequence of different shifts

in the paths. Moreover, we propose an alternative technique to compute Retinex ratios

on the generated paths.

A preliminar description of the experiments have been published in39.

4.3.3 The algorithm

To speed-up HDR Retinex computation, a set of 5000 paths have been calculated and

saved on an external text file using MATLABTM.

During computation, for each pixel in the input image N paths are randomly selected

from the set, and then Retinex ratio-reset mechanisms are applied on the pixels of

each path. The resulting value for each path is added to the final contribution for the

considered pixel. Finally, contributions are averaged, and the final results are linearly

scaled to the available dynamic range of the ouput device and saved to file. In fig. 4.2
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Load_HDR_Image( immin );

Load_Paths( paths );

for each row r {

for each column c {

Select_N_paths();

for each path p {

result = Apply_Ratio_Reset( r,c,p );

Add_To_Chain( result );

}

Average_Contributions();

}

}

Map_to_Output();

Save_LDR_Image( immout);

Figure 4.2: Pseudo-code of HDR Retinex algorithm

pseudo-code is used to resume algorithm steps.

The only two parameters to set are the number N of paths to consider for each

pixel, and the levels of recursion of the mid-point displacement algorithm, that rule the

number of pixels condidered in each path. We have found that considering 250 paths

per pixel and 2 levels of recursion (i.e. each paths is composed of 5 points) leads to good

results for almost all the HDR images considered.

However, in fig. 4.3 and 4.4 we show as example paths composed by a different

number of pixels: this is due only for a better explanation of the chosen techniques.

4.3.4 Testing different random distributions

Looking at the structure of the algorithm, in subsection 4.3.3, is evident that testing

different random distributions in the paths construction process does not affect Retinex

computation: simply, different external files containing the different kind of paths are
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passed as input to the main program.

Applying Uniform distribution

We have initially considered only uniform distribution in the calculation of the random

shifts, obtaining as results very crumbled paths, largely spaced across the image, with

long jumps from one point to another, similar to the first saccades type cited in sub-

section 4.3.2. Examples of this kind of paths are graphically shown in fig. 4.3, marked

with circles.

Using paths constructed only with uniform distribution in Retinex computation, we

observed in output a good color recovery effect in all the situations, but with poor

rendition in dark areas (see fig. 4.5(a) and 4.6(a)).

Applying Gaussian distribution

Trying to simulate the other saccades type cited in subsection 4.3.2, the shorter shifts,

we needed a random distribution that gives as results little displacements for the mid-

dle points of the segments in the various levels of recursion of the paths construction

algorithm.

Our choice was to use Gaussian distribution in the algorithm instead of the uniform,

because the obtained Gaussian paths are almost straight, presenting much smaller shifts,

exactly the effect of this kind of movement (see the paths marked with squares in fig.

4.3).

Using in the Retinex algorithm paths constructed only with Gaussian distribution

we have obtained slightly brighter and more detailed images, but, in most cases, with

halos and artefacts, due to both the Retinex reset mechanism and the strong Gaussian

paths directionality (see fig. 4.5(b) and 4.6(b)).

Applying both distributions together

In the third experiment we have tried to simulate the two movements together. To this

aim we used the uniform distribution only in the first level of recursion of the mid-point
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Figure 4.3: An example of paths (from point S1 and S2 to point E), constructed

applying uniform distribution (lines with circles), Gaussian distribution (lines with

squares), and both distributions together (lines with triangles).

displacement algorithm, and the Gaussian distribution in the other levels, generating

paths with both the characteristics of the saccades types considered in subsection 4.3.2

(see the paths marked with triangles in fig. 4.3). These paths are quite similar to those

indicated in fig. 4.1.

The images filtered using in the Retinex algorithm paths constructed using this new

technique have the same brightness of those filtered using Gaussian paths, but with

halos and artefacts removed in many images (as fig. 4.5(c)).

However, undesired artefacts are still present in some images (e.g. fig. 4.6(c)) in

which bright light sources of reduced dimensions cause the presence of small areas with

high local contrast that lead to a relevant reverse gradient effect.

4.3.5 Scanline vs Sampling

The results obtained with the experiments illustrated in subsection 4.3.4 are promising,

but not completely satisfactory: the enhancement in the overall brightness of the output

images obtained using both distributions must be improved.

Thus, we focused our attention on how the paths are used to compute Retinex ratios.
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Figure 4.4: Schemes of Bresenham algorithm (top) and of the proposed method

(bottom). In the first case Retinex algorithm is applied on all the marked pixels, in

the second case it is applied only on the line terminal points.

In fact, the basic Brownian Retinex uses the Bresenham algorithm7 to determine all the

pixels along a path segment.

Retinex ratio-reset mechanisms are then applied on all the pixels involved by a path,

as shown in the top half of fig. 4.4.

In the saccades analogy, this could be as considering the eye capturing information

from all the points during its movement, but this is not what happens: information is

acquired only during the fixations. Thus vision can be considered a kind of sampling

process of the information of the observed scene.

Consequently, we decided to simulate this sampling process computing the Retinex

ratios only on the terminal points of each segment chain (see bottom half of fig. 4.4),

without scan converting each path segment.

The obtained results are satisfying: the images are pleasant and appear natural, with

a relevant enhancement of their overall brightness. Also color recovery is enhanced, one

example is the sky in fig. 4.5(d); it can be noticed that halos and artifacts still present

in some previous results are now completely eliminated, like in fig. 4.6(d).
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(a) (b)

(c) (d)

Figure 4.5: Images filtered with paths constructed applying uniform distribution

(a), Gaussian distribution (b) and both distributions together (c). Retinex ratios

are applied to the pixels determined by the Bresenham algorithm. In fig. (d) the

ratios are applied instead only to the terminal points of each path. See the evident

artefacts near the street lamps in the bottom left corner of fig. (b), and how they

are eliminated in fig. (c). Also, see the improvement in the color rendition of the

sky and of the clouds between fig. (c) and (d). The images are no gamma corrected.

Original HDR image by Paul Debevec.

4.3.6 Discussion of the results

In fig. 4.9 to 4.16 some results of the computation of HDR Retinex are shown. All

images have been filtered using 250 paths per pixel (each path composed by 5 points)

constructed using both uniform and Gaussian distribution, and applying the sampling
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(a) (b)

(c) (d)

Figure 4.6: Images filtered with paths constructed applying uniform distribution

(a), Gaussian distribution (b) and both distributions together (c). Retinex ratios

are applied to the pixels determined by the Bresenham algorithm. In fig. (d) the

ratios are applied instead only to the terminal points of each path. See the evident

halos in fig. (a) and the artefacts in fig. (b) around the light sources. In fig. (c) we

notice only an attenuation of the undesidered features, still present and relevant. In

fig. (d) artefacts are completely eliminated and the image brightness is improved.

The images are no gamma corrected. Original HDR image by Simon Crone.

technique to compute Retinex ratios.

HDR Retinex performs very well in a great number of situations; however, unfortu-

nately is not yet a perfect computational model.

Some results are affected by gaussian noise: it is particularly evident on some old

images of synthetic scenes, with poor details and textures, and on some of the older HDR

images obtained applying Debevec and Malik’s well-known algorithm25; in more recent
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HDR images noise is completely absent or not noticeable. In particular the results of

the application of our operator to HDR images acquired by last-generation CCDs able

to capture directly all the dynamic range of a scene with a single pass106 are completely

noise-free (fig. 4.15 and 4.16). We will investigate if the presence of noise may be due

to some errors in the calibration or interpolation of the input data to the Debevec and

Malik’s algorithm.

The obtained results show that our operator is able to avoid halos and artefacts in

many situations where other spatial variant operators fail. Some problem still occurs

in very extreme situations, where very large gradients still cause some gradient reverse

effect. An example is shown in fig. 4.7. This is probably due to the fact that in this

situation glare simulation must be considered, but this effect is not considered in original

Retinex theory.

Some problems occurr also in extremely dark HDR images, characterized by scotopic

viewing condition, because Retinex theory was introduced to explain color perception

in photopic viewing condition only, when cones are completely stimulated.

4.3.7 Parallel implementation

Retinex algorithms are generally computationally expensive. To avoid this, often some

speed-up techniques are applied, like e.g. multilevel approaches or LUT-based algo-

rithms.

HDR Retinex computation has been optimized as much as possible: paths have

been precomputed and saved to external file, logarithmic conversion is applied before

the main ”for” cycles, conditional statements have been avoided when possible. The

sampling process introduced to compute Retinex ratios contributes also to obtain better

performances. Unfortunately, computational time needed is still relevant.

However a good characteristic of HDR Retinex is its intrinsic parallel nature: a

pixel computation is completely indipendent from its neighborood, and also the three

chromatic channels are computed indipendently.

We have tested a parallel version of HDR Retinex on a HP 9300 XW workstation
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(a)

(b)

Figure 4.7: One of the few images where HDR Retinex does not avoid halos: here

is presented a false color image to show the very large gradient near the windows

(a) and the obtained image after HDR Retinex computation (b). Even though the

filtering of the windows is quite good, gaussian noise and halos are present in the

neighborood. Original HDR image by Paul Debevec.

with two AMD Opteron dual core at 2.0 GHz and 3 GB of RAM. To parallelize the

code, we have just added simple OpenMP84 preprocessor directives before the first ”for”

statement of fig. 4.2, without any other relevant changes in the original C code. Given

R the number of rows of the input image, R/4 rows are assigned and indipendently
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Dimensions of input image 1 Processor 4 Processors

256x256 13 s 3 s

512x512 63 s 15 s

1024x1024 272 s 65 s

2048x2048 1135 s 290 s

Table 4.1: Performances of HDR Retinex on a single processor and on four pro-

cessors (AMD Opteron at 2.0 GHz) using OpenMP

processed by each of the 4 computational cores of the workstation.

We have investigated the computational performances between the original version

(i.e. using a single processor) and the parallel implementation (using four processors),

filtering HDR images at increasing resolutions. The results, shown in table 4.1, confirms,

as expected, that parallel computation is 4 times faster.

These results are very promising, because a relevant diffusion and implementation

of multi-processor architectures (like e.g. the CELL architecture11) is attended in the

next years.

4.3.8 Future works

Regarding HDR Retinex implementation, we are investigating mechanisms to ”weight”

the contribution to the ratios of the pixels of the paths according to local properties

of the input image, e.g. considering a measure of local contrast, in order to tune the

computation when very large gradients occurr.

Moreover, there are some other aspects we will address, regarding speed-up methods

and different computational environments.

Local Linear Lut (LLUT)

In 2006, Gatta et al.41 proposed an algorithm called Local Linear LUT (LLUT) to

speed-up the computation of high computational cost color correction algorithms, like
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Figure 4.8: Scheme of LLLUT algorithm.

Brownian Retinex or ACE. The main idea of LLUT is to apply the color-enhancement

algorithm only to a small sub-sampled version of the input image, and to determine a

local linear interpolation function to apply to the image at the original resolution in

order to maintain the local filtering effect. A scheme of the algorithm is shown in fig.

4.8.

LLLUT is a very appealing approach to consider together with the parallel imple-

mentation of HDR Retinex to achieve good computational performances, even for HDR

video processing.

However, to overcome possible loss of detail due to sub-sampling, the authors in-

troduced in LLUT implementation an optional and additional stage to maintain high-

frequency content. Unfortunately, an accurate tuning of this stage (that, for Brownian

Retinex, is quite similar to the last step of the Ashikhmin’s TMO2) is still an open

problem.

We think that probably best results may be achieved applying as interpolation

method some kind of non-linear function based on the frequency content of the input
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image, rather than reintroducing high frequency information as additional stage.

GPU implementation

The continuous growth in computational power of the graphics processors (GPUs) of

today’s video cards, and the availability of high level programming languages for graphics

hardware has brought to a great interest on GPU programming in the computer science

community.

Many researchers have exploited the highly parallel nature of GPU architecture

”mapping” general purpose offline computations on graphics hardware originally de-

signed for video games development. This research field is known as ”General Purpose

computation on GPU (GPGPU)” 46.

This is not a straightforward process, since the programming model and environment

have some rigid constraints that do not allow just a trivial conversion of usual CPU

applications: often the developers are forced to completely reimplement the structure of

their algorithms. Moreover, only single precision arithmetic is available, and this could

be a serious limit for some scientific calculations where high precision is absolutely

necessary.

In subsection 4.3.7 we have discussed about the parallel nature of HDR Retinex:

therefore the proposed computational model is well suited for SIMD pipelines of GPUs

pixel processors.

We want to investigate the technical problems in implementing the algorithm on

GPU, as using only single precision arithmetic, storing random paths set into textures

in GPU memory, avoiding texture access overhead, considering instruction limits, im-

plementing an efficient multipass approach using e.g. Frame Buffer Object extension to

OpenGL.

Moreover, we want to compare the computational performances between the GPU

implementation and the parallel multi-CPU version introduced in subsection 4.3.7.

Probably even the GPU implementation of HDR Retinex will need some speed-

up technique to achieve real-time performances: we will implement a GPU version of
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LLLUT to address this problem.

Towards Virtual Reality applications

Currently, different solutions for immersive visualization of Virtual Reality (VR) sce-

narios are available. High-end devices like CAVEs or 150◦ cylindrical screens allow to

consider a more realistic simulation of the observation process, because viewing condi-

tions are not limited to simply looking at a monitor: eyes and head movements are more

similar to those noticeable during real observation of a scene.

Otherwise, obtaining real-time high quality visualization in VR environments is a

complex goal, due to the very high resolution images to be processed and displayed to

achieve the sensation of being inside the virtual world.

In subsection 4.3.1 we have discussed about eye movements, their nature and the

computational solutions proposed for their simulation in the perceptually-based render-

ing field.

An interesting research in this field, proposed by Chalmers and Cater12, show how

the visual acuity and visual attention mechanisms can be considered to obtain real-time

high quality rendering. The main idea, supported by some experiments involving many

observers, is that outside foveal resolution low quality rendering can be considered: it

has been proven that observers do not notice any difference.

We want to investigate a similar approach to implement a real-time Retinex-based

TMO for VR environments, based on the relevation of eye movements using a eye

tracking device, that computes a high level filtering only into the foveal area centered

around gaze, and a fast, low-level filtering outside foveal resolution.
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Figure 4.9: Original HDR image by Paul Debevec.

Figure 4.10: Original HDR image by Paul Debevec.
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Figure 4.11: Original HDR image by Greg Ward.

Figure 4.12: Original HDR image by Paul Debevec.
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Figure 4.13: Original HDR image by Cornell Program of Computer Graphics.

Figure 4.14: Original HDR image by Fredo Durand.
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Figure 4.15: Original HDR image by Spheron AG106.

Figure 4.16: Original HDR image by Spheron AG106.
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T
he overall process of color sensation consists of two steps: the first is the

retinal color stimulus generation, the second is the analysis of this color

stimulus made by the HVS perception mechanisms. In the previous chap-

ters we have addressed the explanation of these mechanisms, and their

computational simulation in the imaging and computer graphics research

field. We have stated the relevance of considering accurate computational models in

order to achieve a correct and realistic color reproduction.

In this chapter we want to focus, in a computational way, on the relation between

retinal color stimulus and the following perceptual processing, in order to investigate

if spatial color computation is affected by changes in the determination of tristimulus

values or if, otherwise, it is able to decrease the effect of changes in the triplet definition.

From a physical point of view, color stimulus comes from the interaction between

spectral light distributions and surface reflectances: when this resulting spectral dis-

tribution comes to the eyes retina, three values per point are generated by the three

different kind of cones (L-cones, M-cones and S-cones, so called because their sensitivity

peaks are situated in long, medium and short wavelengths).

In colorimetry, a set of Color Matching Functions (CMFs), or alternative integration

curves are used instead of cone responses, in order to convert continuous or stepwise

spectral information into a triplet of chromatic values.

CMFs are determined on the basis of visual matching experiments131, and they have

the role to supply a usable numerical definition of ”color” applicable in many fields of

science and technology. On the other hand, cone responses have been only estimated109

and not directly measured, and their numerical range is not well-suited for pratical

applications.

In the next sections we will give a brief historical overview about colorimetry re-

searches and CMFs determination, and also we will introduce some comments and dis-

cussions about the former experiments and the data used to set the actual colorimetric

standards, the so-called Standard Observers. We will then present an experiment to

investigate how spatial color computation can decrease the effect of CMFs variation on



CHAPTER 5. SPECTRAL INFORMATION AND SPATIAL COLOR COMPUTATION 87

color rendition in synthetic image generation.

5.1 CIE Standard Observers

E
ven if many researches in the colorimetry field have been done in the last 75 years,

only two standard observers have been currently proposed by the Commission

Internationale de l’Eclariage (CIE).

In 1931 CIE used the results from the experiments of Wright (1929) and Guild (1931)

to determine the 2◦ CIE 1931 RGB Standard Observer 16,131, graphically shown in fig.

5.4. Both the experiments have been done considering only foveal vision in controlled

conditions, to avoid the rod intrusion effect, i.e. the stimulation of rods in the periphery

of retina, that was considered to introduce distortions in the final results.

Following Grassman’s laws131, CIE decided to determine and apply linear transfor-

mations to the RGB curves in order to obtain a new set of curves, known as the 2◦ CIE

1931 XYZ Standard Observer 16,131 ,with specific features: the most important require-

ments were that the new curves had non-negative values and that the Y curve must

be equal to the photopic luminous efficiency function V (λ)131. To notice how Judd

in 195156 and Vos in 1978126 proposed modified versions of V (λ) that better consider

sensitivity at wavelengths below 460 nm; these results led obviously to changes in the

determination of XYZ curves.

The XYZ Standard Observer is a more ”abstract” color system, in the sense that

the numerical triplet used to determine a color is not directly related to some mixture

of spectral ”basical” wavelenghts, as in RGB Standard Observer, but it expresses an

acromatic stimulus plus two adimensional parameters.

In 1959 two different experiments have been done by Stiles and Burch108 and

Speranskaya105 in order to consider also extra-foveal conditions. The relevant problems

in considering a larger visual field (10◦ in both the experiments) have been related to

the contribution of rods rensponse outside the fovea (the previously cited rod intrusion

effect) and to the so-called Maxwell spot effect, i.e. the presence, in some cases, of an
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irregular area centered in the gaze direction that appears non-uniform to an observer,

even if the color stimulus presented fills uniformly a large field. This is due to the

presence of a yellow pigment (called macular pigment) over the photoreceptors in the

retina, whose concentration is greater close to the fovea and declines highly moving out

into the peripherical areas.

The visual matching setups and conditions considered in the two experiments were

quite different: Stiles and Burch removed explicitely the rod intrusion effect considering

only photopic conditions in their tests, and asked the observers to simply ignore central

area to eliminate the Maxwell spot effect, avoiding rods stimulation; Speranskaya does

not address the rod intrusion at all, but instead she avoided Maxwell spot effect masking

the 2◦ central area in the visual matching setup. However, the obtained results are quite

similar, in fig. 5.4 are represented the curves determined by Stiles and Burch.

In 1964 CIE decided to establish the 10◦ CIE 1964 RGB Standard Observer for

large-field vision, starting from the results of these experiments: Judd17,131, acting for

the CIE, first of all applied numerical transformations to the Speranskaya results, to

eliminate distortions due to rod intrusion, then averaged these new values with those

from Stiles and Burch experiments; however in the merging process he gave more weight

to the Stiles and Burch results.

Following the same approach of the 2◦ Standard Observer, linear trasformations

have been applied to the new curves to determine the 10◦ CIE 1964 XYZ Standard

Observer 17,131.

5.2 Comments on CIE Standard Observers and other

researches

M
any scholars have proposed comments and discussions regarding many aspects

of the former experiments and of the CIE standard determinations, also con-

sidering that in the last 75 years many new results regarding vision processes

knowledge have been proposed, and also more advanced technologies are now available
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to adopt in the visual matching experiments.

In the official CIE documents16,17 on Standard Observers definition some mathema-

tical details are missing regarding the merging procedures of the original data sets from

Wright, Guild, Stiles and Burch, Speranskaya experiments, and also the description of

the applied linear transformations for RGB to XYZ spaces conversions are incomplete.

Researches regarding the reconstruction of these missing steps have been proposed only

recently: in 2004 Broadbent8 attempted to reproduce the steps taken in the definition

of the 2◦ CIE 1931 Standard Observer, while similar works regarding the 10◦ CIE 1964

Standard Observer determination have been proposed by Trezona and Parkins120 in

1998 with a further investigation by Trezona119 in 2001.

In a series of six papers112,113,114,115,118,116 published in 1992, Thornton, using multiple

alternative primary sets and considering particular cases regardind strongly metameri-

cal stimuli, presented results that appear to challenge Grassman’s laws, that are the

basical assumptions of the definition of CIE 1931 Standard Observers, and therefore he

suggested that CIE standard curves are not the best choice for the characterization of

a standard observer. In the articles he also described new setups and data for a more

correct definition of color matching experiments and curves. The results presented by

Thornton in his articles have been further analyzed and extended in 2004 by Oulton86,87.

In 1997 Fairman et al.32 analyzed in details the principles adopted by CIE in each step

of the definition of the 2◦ CIE 1931 Standard Observer from the results of Wright and

Guild experiments, in order to critically examine, after six decades of new researches and

knowledge, if those first assumptions would be acceptable and adoptable reformulating

from the beginning the definition of the Standard Observer, and their conclusion was

that none of the original principles would be suitable today.

On the contrary, other scholars, like e.g. Fairchild in 198930 and North and Fairchild

in 199382,83 defended the adequacy of the CIE 1931 Standard Observer.

More recently some efforts have been done in considering more natural vision condi-

tions in the determination of new CMFs, starting from new scientific proposals stating

that also peripherical areas of retina are involved in visual processes, and that the 10◦
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field considered in the CIE 1964 Standard Observer is not sufficient to simulate extra-

foveal situations adeguately: this has led to large field color matching experiments49.

5.3 Our approach to CMFs

I
n this dissertation we do not want to analyze the mathematical steps in the determi-

nation of the Standard Observers, nor to discuss details about experimental setups

used in the colorimetry field, rather we are interested in investigating the effect of

different choices of CMFs when color transformations is considered in the context of

complex scenes.

In fact, in visual matching experiments CMFs have been proposed considering color

as an isolated stimulus, in comparison with a control one, without considering all the

perceptual mechanisms illustrated in the previous chapters of this dissertation that show

how color sensation is highly contextual.

Another interesting point is that a recent research48 prove that the spatial distri-

bution of cones in human retina has high variance among different subjects: we would

expect a corresponding difference in subjective color perception, that however has not

been observed. This suggests that some perception mechanisms compensate this varia-

bility, as suggested by many studies on visual perception1,136,66,9,125. A second element

that reinforce the existence of a compensation mechanism for spatial color perception

is the evidence that human cones spectral sensitivities are highly overlapped and une-

ven131,109, and moreover they are very different from proposed CMFs.

We ask therefore what is the relationship between contextual models of color per-

ception and different CMFs: to this aim, computer graphics techniques are useful to si-

mulate first steps of human vision and color generation, applying different sets of CMFs

to synthetically generated spectral color distributions in order to calculate tristimulus

values.

The question addressed in the next sections is to investigate how spatial color com-

putation can decrease the effect of CMFs variation on color rendition in synthetic image
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generation. To this aim we have devised an experimental setup to test the interdiffe-

rence among tristimulus colors obtained using different CMFs and the change of this

interdifference when a spatial color correction is applied.

In the next sections we will describe the experimental setup and we will present a

discussion about the obtained results.

5.4 Description of the experimental setup

W
e have organized our approach to color rendition in a pipeline, shown graphi-

cally in fig. 5.1, where the ovals on the right represent the main stages of the

experiment and the rectangles represent the inputs and outputs of each step.

This pipeline is at the basis of our experiment.

In the first stage, a global illumination algorithm computes the interaction between

spectral light distributions from light sources and surface reflectances of a synthetic

scene. The renderer generates a high dynamic range spectral luminance distribution,

due to the accurate photometric characterization of light sources specific of the software.

In the second stage, the multispectral image computed by the renderer is converted

into a high dynamic range RGB image, applying three chosen CMFs. In fig. 5.2 false

colors give a hint on the luminance values of the test scene used in our experiment.

In the third and last stage of the pipeline a tone mapping operator is applied to

convert the high dynamic range to the available dynamic range of the output device (a

monitor).

In this approach, the RGB values of the HDR image, output of the second stage,

represent the retinal color stimuli from a ”colorimetric” point of view, i.e. they are a

simulation of the retinal response, while the chromatic triplets in the final LDR image

represent the perceived colors, the output of the processing of the perception mechanisms

of the HVS, computationally approximated by the TMO.

Obviously, if the chosen TMO does not address color computation, but only some

kind of luminance mapping, then the resulting RGB triplets are strictly related to the
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Figure 5.1: Color rendition pipeline

retinal color stimuli determined in the previous stage of the pipeline.

In our experiment, after the generation of several HDR images using different sets of

CMFs, each representing a possible characterization of color sensitivities from a colori-

metric point of view, we have applied to each HDR image three different TMOs, with

and without color computation.

Our goal is to evaluate the effect of color computational models applied to different

characterizations (due to different choices in CMFs) of retinal color stimuli, and to this

aim we applied ∆E measures between LDR images obtained applying the same TMO

on HDR images generated from different CMFs. In fig. 5.3 is shown the scheme of our

experiment, whose details are described in the next subsections.

Our expectations are that when a TMO with no color computation is applied, the

resulting distances will be relevant, because different values and characteristics of the

integrating curves lead to an evident variability in the generated color stimuli, while we

expect a remarkable reduction of the ∆E values when color computational models are

used, justifying the hypothesis that perceptual mechanisms exists that compensate the

interpersonal variability of cone responses and therefore subjective difference in retinal

color stimuli generation.
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Figure 5.2: False color image of the synthetic test scene. Luminance values range

from about 0 to 2700 cd/m2 for D65 configuration.

5.4.1 Multispectral image generation

First of all we have built a synthetic scene, similar to the Cornell box45,21, containing a

simplified Macbeth-like color checker. The Macbeth-like color checker has been charac-

terized by the same reflectances as the original one, without the patch gray separation,

to simplify its geometrical description.

We have then generated two multispectral images using a photometric raytracer by

Rossi et al101, that samples, for each pixel, spectral luminance in 80 frequency values

ranging from 380 to 775 nm at increments of 5 nm.

The two multispectral images have different illuminants configuration: the first has

two D65 light sources, while the second has one A and one C illuminant. In both cases

the positions of the sources are the same: the first in the center of the ceiling, the second

in the top left corner, pointing to the opposite corner.

In the following sections we call these two configurations D65 configuration and A/C

configuration.
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RGB

Figure 5.3: Scheme of the experiment for each illuminants configuration.

5.4.2 The chosen CMFs

In our experiment we have chosen three sets of CMFs, defined by established researches,

with different characteristics. The chosen curves differ about experimental setups and

technologies, and have different peaks wavelength and values, and different numerical

ranges.

Applying curves with different peaks wavelenghts and corrispondent heights values

to the multispectral image give us very different retinal stimuli (i.e. HDR images) and

therefore a good test to analyze the effect of the application of color correction models.

In 1999 Thornton117 demonstrated how the choice of the peaks wavelengths in color

matching experiments has effect on the peaks values in the resulting curves.

We have tested:

• CIE 1931 RGB curves16,131, because they are the most used standard for RGB

conversion.

• The set of CMFs proposed by Stiles and Burch108,131, because they contribute to

the standard 10◦ CIE 1964.
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• A set of curves that Thornton gave us by personal communication, because they

are a recent example in the direction of CMFs improvement.

The shape of the three sets of CMFs is graphically shown in fig. 5.4.

5.4.3 The chosen TMOs

In the proposed pipeline, TMOs are introduced to mimic in some way some HVS per-

ception mechanisms in order to transform the retinal stimuli in input (represented by

the HDR image) into the perceived signals, stored in the output LDR image. From a

computational point of view, there is also the need to map the large dynamic range of

the HDR image into the supported range of the output devices, as explained in chapter

4.

We have seen in section 4.2 that the few proposed TMOs that address color computa-

tion follow Retinex66 (see chapter 3) or Von Kries125 theory, while the other algorithms

adopt some kind of luminance mapping.

We have decided to consider all these approaches, and therefore the chosen TMOs

adopted in our experiment are:

• A simple logarithmic mapping method that, like a generic gamma correction, does

not perform any color adjustment.

• A basical Von Kries algorithm, that implements a global spatial color correction.

• The HDR Retinex algorithm described in section 4.3, that implements a local and

global color correction.

We therefore have at the end a set of LDR images representing nine simulations

(three for each illuminant configuration) of perceived color signals (see fig. 5.3).

We have decided to use two generic and simple algorithms rather than consider

other published and well-known methods because currently we are interested in the

overall approach of the processing methods, i.e the presence or not of color correction
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Figure 5.4: Graphical plot of the considered CMFs.
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mechanisms, and eventually if color computation is implemented in a global or local

way.

In this dissertation we have discussed about how color perception have a contex-

tual nature, about how color computation is essential in our opinion in imaging and

computer graphics applications and about the strong local characteristics that a good

computational model must have.

On this basis, we want to show in our experiment first of all that not considering

color computation in a TMO leads to a serious lack in the simulation of perception me-

chanisms: therefore we have decided to consider a general algorithm as a representative

of an entire family of computational models.

We have decided also to not consider at the moment other TMOs that implement

global color computation, because an exaustive analysis of their inner structure is needed

in order to not present unfair comparisons, and this is over the objectives of this disser-

tation: in some algorithm color correction is not the main characteristic, but a secondary

option, when in other methods the computation is ruled by a set of parameters to set

manually. Again, we have chosen a general TMO that present a simple global color

computation to represent the entire category, leaving a detailed comparison between all

the color correction TMOs published in literature as a future research.

5.4.4 Discussion of the results

To evaluate how much the choice of CMFs affects the color rendition in the image

synthesis pipeline, we have applied euclidean ∆E measures in perceptually uniform

CIELab space between LDR images obtained applying the same TMO (see fig. 5.3).

To better investigate the relations between different spectrum information and color

computation we present an average of ∆E measures computed on the single patches of

the virtual Macbeth color checker between a couple of images. We have considered a

neighbourhood around the patches centers excluding the edges.

Some interesting conclusions arise from the analysis of the results, shown in fig. 5.7

for D65 configuration and in fig. 5.8 for A/C configuration.
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Figure 5.5: Spectral characterization of the MacBeth color checker patches.

First of all, it is evident that the logarithmic mapping, without color computation,

exhibits a considerably higher interdifference with respect to the two color in context

correction methods. Moreover, Retinex TMO shows an overall more stable behavior at

changes in retinal stimuli generation.

We can also notice a relation between the spectral characterization of the patches (see

fig. 5.5) and the obtained results: ∆E measures suggest a stronger attenuation effect

obtained by contextual color computation in grey patches and in some low saturation

colors (like e.g. Yellow Green patch), while in the patches on the third row (Blue, Green,

Red, Yellow, Magenta, Cyan), where the role of peaks wavelenghts and heights is more

relevant, the distance values are higher, even if the effect of color correction models still

is very impressive.

Moreover, excluding the less significative (from a numerical point of view) values, in

the results regarding the patches of the third row we can find cases where Von Kries

global color computation seems to perform better than HDR Retinex color correction.

These effects are more evident in the A/C configuration results (fig. 5.8) where a

strong reddish dominant is introduced by the A illuminant, leading to a chromatic shift

in the generated tristimulus values.
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Figure 5.6: Numerical legenda for images 5.7 and 5.8.

The results seem to confirm our initial hypothesis that subjective differences in retinal

color stimuli generation are compensated by the HVS color perception mechanisms.

However, the values regarding the patches on the third row suggest that a deeper

investigation about peaks wavelengths and heights in CMFs determination is needed,

and therefore that colorimetric researches in that sense still play a relevant role. In

1999 Thornton in a previously cited paper117 demonstrated how the peaks wavelengths

in most of the CMFs determined in color matching experiments fall near the same

wavelenghts (near 450, 540 and 600 nm), but that moving even slightly from these

primaries lead to a relevant increase in obtained peaks heights.

Two interesting details in the numerical results are that for black patch in fig. 5.8,

for Stiles and Burch vs. Thornton CMFs, ∆E measure is 0 for HDR Retinex color

correction method, while in fig. 5.7, for CIE rgb vs. Styles and Burch CMFs, we can

find in the Light Skin patch the only case where the logarithmic mapping results in a

lower interdifference than Von Kries global color correction method, but still Retinex

shows a lower interdifference.

The figures 5.9 and 5.10 display the computed images in D65 and A/C configuration.

It is evident from a visual comparison that higher degree of color normalization is the

result of a contextual color correction. In fact fig. 5.9(a) shows clearly a high interdiffe-

rence, which is much less noticeable in figures 5.9(b) and 5.9(c). In A/C configuration

we observe the same behavior.

The presented results have been published in96.
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Figure 5.7: Average ∆E on each patch. Numbers on x axis correspond to patches,

as in 5.6. Three diagrams are for D65 illuminant.
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Figure 5.8: Average ∆E on each patch. Numbers on x axis correspond to patches,

as in 5.6. Three diagrams are for A/C illuminant.
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(a) Logarithmic mapping

(b) Von Kries color correction

(c) Retinex color correction

Figure 5.9: D65 illuminant. CIE RGB (left), Stiles and Burch (center) and Thorn-

ton (right) CMFs.
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(a) Logarithmic mapping

(b) Von Kries color correction

(c) Retinex color correction

Figure 5.10: A/C illuminant. CIE RGB (left), Stiles and Burch (center) and

Thornton (right) CMFs.
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T
he purpose of this dissertation was to contribute in the color research field,

with particular attention to the development of spatial color computation

models based on the simulation of contextual color sensation mechanisms.

After a preliminar overview (see chapter 2) of color research history (from

the first proposals regarding color perception nature to the psycophysical

analysis of color constany phenomenon) and of state of the art of computational models

of color in context, we have presented the three main contributions of the dissertation.

Random Spray Retinex

In chapter 3 we have described the Random Spray Retinex (RSR) computational model.

The algorithm is based on a recent mathematical definition and analysis of the

original Retinex algorithm, and it is characterized by the use of bidimensional pixel

sprays instead of paths. This approach share the same intrinsic properties of every path-

based Retinex implementation, but however is more suitable for the analysis of locality

of color perception within the Retinex model, with better computational performance.

We have proposed an unsupervised method, validated through user panel tests, to

tune RSR parameters for having correct results for all the possible input images; how-

ever, in same critical cases, they still strongly depend on the image content.

Future works on RSR will regard surely a more precise and automatic tuning of the

parameters, probably considering some sort of preanalysis of the input images content,

and the introduction in the computational model of lightness constancy mechanisms.

Moreover, the application of RSR as tone mapping algorithm in under evaluation.

Finally, considering parallel nature of Retinex algorithms, we are modifying the

original code for parallel computation on multicore architectures and GPU.

HDR Retinex

In chapter 4 we have discussed the lack and the need for color computation in the

implementation of a correct tone mapping algorithm for High Dynamic Range images

that tries to simulate perceptual response.
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To this aim we have investigated how to change a path-based Retinex algorithm in

order to tune its intrinsic color correction behavior for a correct mapping of HDR values

into accepted dynamic range. We have proposed the HDR Retinex algorithm, based

on the well-known and tested Brownian Retinex computational model, modified using

paths roughly inspired by the eye movements and scene sampling, in order to avoid as

possible halos and artifacts typical of spatial variant tone mapping operators.

We are considering as future works the introduction of adaptive weight mechanisms,

based on the local contrast of the HDR input images, in the Retinex ratio-reset model,

and, as for RSR algorithm, the implementation of HDR Retinex as a fragment shader

for GPU computation.

Moreover, it would be very interesting the implementation of a eye-tracker ruled

version of the algorithm for immersive Virtual Reality environments visualization.

Color Matching Functions interdifference and spatial color computation

Finally, in chapter 5, we have suggested as hypothesis that color perception mechanisms

are able to compensate subjective differences in retinal color stimuli generation, due to

the interpersonal variability in the spatial distribution of cones in human retina among

different subjects.

We have proposed a computational experimental setup in order to evaluate the effect

of spatial color computation applied on tristimulus values obtained using different Color

Matching Functions (CMFs) to integrate spectral luminance distributions generated by

a photometric raytracer.

The results of the presented experiments show a significant decrease of the difference

induced in the tristimulus values by different CMFs when a contextual color correction

is applied, confirming our initial hypothesis and therefore proving the extreme relevance

of a correct spatial color computation in the imaging and computer graphics fields.



Acknowledgments

I thank Ivar Farup, Alessandro Artusi and Majed Chambah for having accepted to be

referees of this dissertation, and for their comments and suggestions.

I thank my supervisors, Daniele Marini and Alessandro Rizzi, for their support and

friendship in these years of work.

I thank Lavinia and my parents, for their love and support. To make them proud of me

has been a great stimulus to continue during the bad days.

I thank all the friends that joined the ”Eidolab” in Milan in these years for the great

time spent, in particular Davide Selmo, Marco Ronchetti, Massimiliano Piscozzi, Dario

Villa, Alberto Viale.

I thank all the people at Crema Department: Carlo Gatta, Edoardo Provenzi, Max

Fierro, and at Politecnico of Milano: Maurizio Rossi, Andrea Siniscalco, Cristina

Fallica, for their friendship and scientific collaborations.

I thank Silvia Zuffi, Angelo Moretti, Claudio Oleari, Osvaldo da Pos and Tiziano

Agostini from the Italian Color Group for the interesting discussions on color perception

during our last national conferences.

107



Bibliography

1. Albers, J.: Interaction of colors. Yale University Press, 1963.

2. Ashikhmin, M.: A tone mapping algorithm for high contrast images. In Euro-

graphics Workshop on Rendering, 1–11. 2002.

3. Barnard, K. and Funt, B.: Investigations into multi-scale retinex. In Colour

Imaging: Vision and Technology, 9–17. John Wiley and Sons, 1999.

4. Brainard, D. H. and Wandell, B. A.: Analysis of the retinex theory of color

vision. J. Opt. Soc. Am. A, 3(10), 1651–1661, 1986.

5. Brainard, D. H. and Wandell, B. A.: Asymmetric color matching: How color

appearance depends on the illuminant. J. Opt. Soc. Am., 9(9), 1433–1448, 1986.

6. Braun, J.: Visual search among items of different salience: removal of visual

attention mimics a lesion in extrastriate area V4. Journal of Neuroscience, 14(2),

554–567, 1994.

7. Bresenham, J.: Algorithm for computer control of a digital plotter. IBM Systems

Journal, 4(1), 1965.

8. Broadbent, A.: A Critical Review of the Development of the CIE1931 RGB

Color-Matching Functions. Color Res. Appl., 29(4), 267–272, 2004.

9. Buchsbaum, G.: A spatial processor model for object color perception. J.Franklin

inst., 310(1), 1–26, 1980.

108



BIBLIOGRAPHY 109

10. Cater, K., Chalmers, A., and Ward, G.: Detail to attention: Exploiting

visual tasks for selective rendering. In Proceedings of the Eurographics Symposium

on Rendering, 270–280. 2003.

11. CELL architecture. URL research.scea.com/research/html/CellGDC05/.

12. Chalmers, A. and Cater, K.: Realistic Rendering in Real-Time. In Euro-Par

2002 Parallel Processing, 21–28. 2002.

13. Chevreul, M.: The principles of harmony and contrast of colours, and their

applications to the arts. Henry G. Bohn, 1854.

14. Chiu, K., Herf, M., Shirley, P., Swamy, S., Wang, C., and Zimmerman,

K.: Spatially Non uniform Scaling Functions for High Contrast Images. Proc.

Graphics Interface ’93, 245–253, 1993.

15. Choudhury, P. and Tumblin, J.: The trilateral filter for high contrast images

and meshes. In Proceedings of 14th Eurographics Workshop on Rendering, 186–196.

2003.

16. CIE Proceedings 1931. Cambridge University Press, 19, 1932.

17. CIE Proceedings 1963 (Vienna Session). Committee Report E-1.4.1, B, 209–220,

1964.

18. Ciurea, F. and Funt, B.: Tuning Retinex parameters. Journal of Electronic

Imaging, 13(1), 58–64, 2004.

19. Cooper, T. and Baqai, F. A.: Analysis and extensions of the Frankle-McCann

retinex algorithm. Journal of Electronic Imaging, 13(1), 85–92, 2004.

20. Cooper, T. J.: Modifications to retinex to relax reset nonlinearity and implement

segmentation constraints. In Proc. of IS&T/SPIE’s 14th Symposium on Electronic
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