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Summary. Several methods are currently available to simulate paths of the Brow-
nian motion. In particular, paths of the BM can be simulated using the properties
of the increments of the process like in the Euler scheme, or as the limit of a ran-
dom walk or via L2 decomposition like the Kac-Siegert/Karnounen-Loeve series. In
this paper we first propose a IFSM (Iterated Function Systems with Maps) opera-
tor whose fixed point is the trajectory of the BM. We then use this representation
of the process to simulate its trajectories. The resulting simulated trajectories are
self-affine, continuous and fractal by construction. This fact produces more realistic
trajectories than other schemes in the sense that their geometry is closer to the one
of the true BM’s trajectories. The IFSM trajectory of the BM can then be used to
generate more realistic solutions of stochastic differential equations.

1 Introduction

In this paper we show how to solve the inverse problem for IFSM in the case
of trajectories of stochastic processes in L2. The method is based on the so-
lution of the inverse problem for IFSM due to Forte and Vrscay [2]. This is
an extension of classical IFS methods which can be used for approximating
a given element of L2 thus in particular trajectories of stochastic processes
on this space. The final goal of this approach is simulation. Indeed, several
methods are currently available to simulate paths of stochastic processes and
in particular of the Brownian motion. Paths of the BM can be simulated us-
ing the properties of the increments of the process like in the Euler scheme
[3], or as the limit of a random walk or via L2 decomposition like the Kac-
Siegert/Karnounen-Loeve series [4]. In this paper we first propose a IFSM
(Iterated Function Systems with Maps) operator whose fixed point is the tra-
jectory of the BM. We then use this representation of the process to simulate
its trajectories. The resulting simulated trajectories are self-affine, continu-
ous and fractal by construction. This fact produces more realistic trajectories
than other schemes in the sense that their geometry is closer to the one of
the true BM’s trajectories. The IFSM trajectory of the BM can then be used
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to generate more realistic solutions of stochastic differential equations. The
paper is organized as follows: Section 2 recalls the theory of IFSM on L2,
Section 3 recalls some details for stochastic processes with trajectories in L2

and the link with the IFSM theory. Section 4 presents the application of the
IFSM theory to the problem of simulation with particular attention to the
case of the Brownian motion.

2 IFS with Maps (IFSM) on L2([0, 1])

The basic idea of Iterated Function Systems (IFS) can be traced back to some
historical papers but the use of such systems to construct fractals and other
similar sets was first described by Hutchinson (1981). The fundamental result
on which the IFS method is based is Banach theorem. The mathematical
context is the following: given y in a complete metric space (Y, dY ), find a
contractive operator T : Y → Y that admits a unique fixed point y∗ ∈ Y
such that dY (y, y∗) is small enough. In fact if one is able to solve the inverse
problem with arbitrary precision, it is possible to identify y with the operator
T which has it as fixed point. The fundamental theorems on which the IFS
method is based on are the following:

Theorem 1. (Banach Theorem) Let (Y, dY ) be a complete metric space; sup-
pose there exists a mapping T : Y → Y such that

dY (T (x), T (y)) ≤ cdY (x, y)

for all x, y ∈ Y and some c ∈ [0, 1). c is said to be the contractivity factor of
T . Then there exits a unique y∗ ∈ Y such that T (y∗) = y∗ and for any y ∈ Y
we have dY (Tn(y), y∗) → 0 when n → +∞.

Theorem 2. (Collage Theorem) Let (Y, dY ) be a complete metric space.
Given y ∈ Y suppose that there exists a contractive map T with contrac-
tivity factor c ∈ [0, 1) such that dY (y, T (y)) < ǫ. If y∗ is the fixed point of T
then dY (y, y∗) ≤ ǫ

1−c .

Theorem 3. Let (Y, dY ) be a complete metric space and T1, T2 be two con-
tractive mappings with fixed points y∗

1 and y∗
2 . Then

dY (y∗
1 , y∗

2) ≤ 1

1 − c1
dY,sup(T1, T2)

where
dY,sup(T1, T2) = sup

x∈Y
dY (T1(x), T2(x))

and c1 is the contractivity factor of T1.
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We are going to use a particular class of IFS operators, known as IFSM
(IFS with Maps), introduced by Forte and Vrscay in 1994. Let µ be the
Lebesgue measure on B([0, 1]) (the Borel σ-algebra) and for any integer p ≥ 1
let Lp([0, 1]) denote the linear space of all real valued functions u such that
up is integrable on (B([0, 1]), µ). To build a contraction map T on L2([0, 1])
we need N -map contractive IFS i.e. a set of maps w = {w1, w2, . . . , wN} and
a set of functions (grey level maps) φ = {φ1, φ2, . . . , φN} with φi : R → R.
The operator T corresponding to the N map IFSM(w,φ) is

(Tu)(x) =
N∑

k=1

′φk(u(w−1
k (x))) (1)

where the prime means that the sum operates on all those terms for which
w−1

k (the inverse function of wk) is defined. Let us define the following two
sets

Sim([0, 1]) = {w : [0, 1] → [0, 1] : ∃c ∈ [0, 1),

|w(x) − w(y)| = c|x − y|,∀x, y ∈ [0, 1]}
Lip(R) = {φ : R → R : ∃K ∈ [0,∞),

|φ(t1) − φ(t2)| ≤ K|t1 − t2|,∀t1, t2 ∈ R}
Theorem 4. [2] Let (w, φ) be an IFSM such that wk ∈ Sim([0, 1]) and φk ∈
Lip(R) for 1 ≤ k ≤ N . Then T : L2([0, 1]) → L2([0, 1]) and for any u, v ∈
L2([0, 1]) we have

||Tu − Tv||2 ≤ C||u − v||2
where

C =
N∑

k=1

c
1
2

k Kk

Given u ∈ L2([0, 1]) the inverse problem consists of finding the operator T
such that

u(x) = (Tu)(x) =
N∑

k=1

′φk(u(w−1
k (x))).

In the special case when

• ⋃N
k=1 Hk =

⋃N
k=1 wi([0, 1]) = [0, 1] i.e. the sets Hk “tile” [0, 1]

• µ(wi([0, 1]) ∩ wj([0, 1])) = 0 for i 6= j

we say that the maps wk are nonoverlapping. In [2] it is proved that in the
non overlapping case the problem can be reduced to the determination of grey
level maps φk which minimize the collage distance ∆2

∆2 = ||v − Tv||22 =

∫ 1

0

N∑

k=1

′‖φk(v(w−1
k (x))) − v(x)‖dµ.

Later, in the applications, we will assume that, for 1 ≤ k ≤ N ,
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• wk(x) = skx + ak

• 0 < ck = |sk| < 1
• φk(t) = αkt + βk, Kk = |αk|
The collage distance becomes

∆2 =< v − Tv, v − Tv >=

N∑

k=1

N∑

l=1

< ψk, ψl > αkαl + 2 < ψk, ξl > αkβl+ < ξk, ξl > βkβl

−2N

N∑

k=1

< v,ψk > αk+ < v, ξk > βk+ < v, v >

where
ψk(x) = v(w−1

k (x)), ξk(x) = Iwk([0,1])(x)

∆2 is a quadratic form in αi and βi, that is

∆2 = xT Ax + bT x + c (2)

where x = (α1, . . . αk, β1, . . . , βk). The matrix A is symmetric and

ai,j =< ψi, ψj >, aN+i,N+j =< ξi, ξj >

ai,N+j =< ψi, ξj >, bi = −2 < v,ψi >, bN+i = −2 < v, ξi >

and c = ||v||22. As in [2] we add an additional constraint in order to guarantee
that the minimum of this quadratic form exists on a compact subset of feasible
parameters αi and βi. The additional constraint is

N∑

k=1

ck(αk‖v‖1 + βk) − ‖v‖1 ≤ 0.

The maps wk are choosen in an infinite set W of fixed affine contraction maps
on [0, 1] which has the µ-dense and nonoverlapping property (in the sense
of the following definition); When (αk, βk) = (0, 0) the corresponding wk is
superfluous and the k-th term can be dropped from (1).

Definition 1. We say that W generates a µ-dense and nonoverlapping family
F of subsets of [0, 1] if for every ǫ > 0 and every B ⊂ [0, 1] there exists a finite
set of integers ik, ik ≥ 1, 1 ≤ k ≤ N , such that

• A = ∪N
k=1wik

([0, 1]) ⊂ B
• µ(B\A) < ǫ
• µ(wik

([0, 1]) ∩ wil
([0, 1])) = 0 if k 6= l

Let
WN = {w1, . . . wN}

be the N truncations of W. Let ΦN = {φ1, . . . , φN} the N vector of affine
grey level maps. Let xN be the solution of the previous quadratic optimization
problem (2) and ∆2

N,min = ∆2
N (xN ). It can be shown that ∆2

N,min may be
arbitrarly small when N → ∞ (see [2]).
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3 IFSM for Stochastic Processes on L2([0, 1])

Let (Ω,F , P ) be a probability space and {Ft, t ∈ [0, 1]} be a sequence of σ-
algebras such that Ft ⊂ F . Let X(ω, t) : Ω×[0, 1] → R be a stochastic process
in L2([0, 1]), that is a sequence of random variables Ft-adapted (that is each
variable X(ω, t) is Ft-measurable). Given ω ∈ Ω a trajectory of the process is
the function X(ω, t) : [0, 1] → R belonging to L2([0, 1]). For a given X(ω, t),
the trajectory of the stochastic process, the aim of the inverse problem consists
in finding the parameters of the IFSM such that X(ω, t) is the solution of the
equation

X(ω, t) = TX(ω, t) for a.a. ω ∈ Ω

In this case the coefficients of the matrix A and the vector b of the previous
section become

ai,j(ω) =

∫ 1

0

X(ω,w−1
i (t))X(ω,w−1

j (t))dt

=

∫

wi([0,1])∩wj([0,1])

X(ω,w−1
i (t))X(ω,w−1

j (t))dt

and if i = j it becomes

ai,i(ω) = ci

∫ 1

0

X2(ω, t)dt

The other elements in the matrix A can be calculated as

aN+i,N+j =< ξi, ξj > =

∫ 1

0

Iwi([0,1])(t)Iwj([0,1])(t)dt

= µ(wi([0, 1]) ∩ wj([0, 1]))

and

ai,N+j(ω) =< ψi, ξj >=

∫

wi([0,1])∩wj([0,1])

X(ω,w−1
i (t))dt

For the vector b

bi(ω) = −2 < X,ψi >= −2

∫ 1

0

X(ω, t)X(ω,w−1
i (t))dt

and

bN+i(ω) = −2 < X, ξi >= −2

∫

wi([0,1])

X(ω, t)dt

In the nonoverlapping case, we have

• ai,j = 0, i 6= j, and ai,i(ω) = ci

∫ 1

0
X2(ω, t)dt, 1 ≤ i, j ≤ N
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• aN+i,N+j = 0, 1 ≤ i, j ≤ N , i 6= j and aN+i,N+i = µ(wi([0, 1]))

• ai,N+j = 0, 1 ≤ i, j ≤ N , i 6= j and ai,N+i(ω) = ci

∫ 1

0
X(ω, t)dt

It also holds this self-similarity property.

Theorem 5. Let (αk, βk) be the solution of the inverse problem with a set of
nonverlapping maps wk and suppose that X̃(ω, t) = TX̃(ω, t). Then

X̃(ω,wi(t + h)) − X̃(ω,wi(t)) = αi(X̃(ω, t + h) − X̃(ω, t)).

for all 1 ≤ i ≤ N .

Proof. In fact we have

X̃(ω,wi(t + h)) − X̃(ω,wi(t)) = TX̃(ω,wi(t + h)) − TX̃(ω,wi(t))

=

N∑

k=1

αk(X̃(ω,w−1
k (wi(t + h)))) + βk −

N∑

k=1

αk(X̃(ω,w−1
k (wi(t)))) + βk

= αi(X̃(ω,w−1
i (wi(t + h)))) + βi − αi(X̃(ω,w−1

i (wi(t)))) + βi

= αi(X̃(ω, t + h) − X̃(ω, t)). ⊓⊔

3.1 The Kac-Siegert Decomposition of L2([0, 1]) Stochastic
Processes

We suppose that a.e. X(ω, t) is an element of a subspace S of L2([0, 1[) and
that X(ω, t) is a zero-mean process. Let K be the covariance function of this
process that is

K(s, t) = Cov [X(ω, s),X(ω, t)].

and assume ∫ 1

0

K(t, t)dt < ∞.

If λ1 ≥ λ2 ≥ ... > 0 comprises the entire spectrum of eigenvalues of K, where
∫ 1

0

f(s)K(s, t)dt = λf(s), 0 ≤ t ≤ 1

and the associated orthonormal eigenfunctions fi form a complete set of the
subspace S then the Kac and Siegert decomposition holds:

K(s, t) =

∞∑

j=1

λjfj(s)fj(t), 0 < s, t < 1

We also have that

Zj =

∫ 1

0

X(t)fj(t)dt

are uncorrelated random variables with mean 0 and variance λj . The following
theorem states some properties of this decomposition.
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Theorem 6 (see Ch.5, [4]). Suppose that X and K satisfies the properties
above. Then

• i)
∑∞

j=0 λj < ∞
• ii)

∑m
j=1 Zjfj →‖‖2

X as m → ∞ a.s.
• iii) Zj =< X, fj > are with mean 0 and variance λj

• iv)
∫ 1

0
X2(t)dt =

∑∞
j=1 Z2

j =
∑∞

j=1 λjZ
∗2
j where Z∗

j =
Zj√
λj

• v) E[X(t) − ∑m
j=1 Zjfj(t)]

2 → 0 for each t as m → ∞
• vi) X =

∑m
j=1

√
λjfjZ

∗
j with Z∗

j =
Zj√
λj

uncorrelated with mean 0 and

variance 1.

4 Simulation of Brownian Motion via IFSM

In the literature there are several methods of simulation of the trajectory of
the Browian motion, i.e. the stochastic process {B(ω, t), t ∈ [0, 1]}, such that
B(0) = 0 a.s., B(t) − B(s) is distributed with Gaussian law with zero mean
and variance t − s, and with independent increments.

The Euler Method

In this case, the trajectory is obtained simulating the increments of B in the
following way: B(0) = 0, B(ti+1) = B(ti) +

√
ti+1 − ti ·Zi, where the Zi’s are

independent N (0, 1) random variables. In the other points the trajectory is
built by linear interpolation of these simulated data.

The Kac-Siegert Method

Karhunen-Loève / Kac-Siegert decomposition of B is better for pathwise sim-
ulation

B(ω, t) =

∞∑

i=0

Ziφi(t), 0 ≤ t ≤ 1

with

φi(t) =
2
√

2

(2i + 1)π
sin

(
(2i + 1)πt

2

)

φi a basis of orthogonal functions and Zi’s are N (0, 1)

The trajectory generated by Euler method is too simple and regular to
mimic the roughness of the BM; moreover the simulated path is stochasti-
cally equivalent to the true trajectory only on the points of the grid used in
the simulation. The Kac-Siegert decomposition of the BM is a pathwise ap-
proximation which can lead to a too smooth path (see figure 1); our idea is to
use IFSM for generating fractal trajectories of the BM. There are applications
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in finance (for instance pricing of american options) in which the whole path
matters; our IFSM approch produces a global approximation of the trajectory
preserving the geometric fractal nature of the target.

This method can be also used to simulate paths of solutions of stochastic
differential equations driven by Brownian motion (e.g. diffusion processes)
replacing the linear behaviour of the Euler trajectory with a fractal object.

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

5
0.

0
0.

5
1.

0

time

E
ul

er
 v

s 
K

ac
−

S
ie

ge
rt

Fig. 1: Paths of Brownian motion simulated by the Euler scheme (dotted line) and
using Kac-Siegert decomposition (continuous line). The same (n = 25) pseudo-
random Gaussian numbers were used.
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Fig. 2: Euler scheme versus IFSM trajectory of the Browninan motion. IFSM with
wavelet type maps and M = 8. Both methods used the same 50 Gaussian random
terms to generate the trajectory.
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For the solution of the inverse problem for the BM, we choose the so-called
wavelet type maps [2], that is:

w∗
ij(x) =

x + j − 1

2i

with i = 1, 2, . . . and j = 1 . . . 2i For each fixed i, the family w∗
ij is a set of

nonoverlapping maps. For these maps ci = 2−i < 1. We organize them as
follows

w1 = w∗
11 w2 = w∗

12 w3 = w∗
21 w4 = w∗

22 . . .

To simulate a trajectory of B with non overlapping maps we then need to
simulate the joint distribution of all this objects

1.

∫ 1

0

B2(t)dt

2.

∫ 1

0

B(t)dt

3.

∫ 1

0

B(t)B(w−1
i (t))dt =

∫ 1

0

B(t)B

(
t − ai

si

)
dt

4.

∫

wi([0,1])

B(t)dt

5.

∫ 1

0

|B(t)|dt

but it appears to be still a too difficult problem.
In practice, it is preferable to use all the above maps and not only the

subset of non-overlapping maps. In this case, we need simulate the value
of the trajectory of the Brownian motion on a fixed grid (using one of the
known methods) and we use these points to approximate the integrals in the
quadratic form. We then solve the constrained quadratic programming prob-
lem using standard algorithms (see e.g. [1]). Figure 2 bottom shows an example
of trajectory generated using the IFSM approach using wavelet type maps for
i = 1, . . . ,M , M = 8. Figure 2 top represents the Euler trajectory built on
50 Gaussian terms which has been used to build the IFSM. As one can notice
the IFSM path shows more “fractal” complexity then the corresponding Euler
path.

5 Conclusions

We have proposed a new method to generate paths of the Brownian motion.
These IFSM paths seem to mimic more closely the fractal nature of the tra-
jectory of the Brownian motion than existing schemes. At current stage we
are not able to show formal property of the IFSM path in terms of strong
and weak approximation (see [3]). Open source software for generating IFSM
trajectories written in C and R language [5] is available via ifs package at
http://CRAN.R-project.org for free download.



124 Stefano Maria Iacus and Davide La Torre

References

1. Byrd, R. H., Lu, P., Nocedal, J. and Zhu, C. (1995), “A limited memory algo-
rithm for bound constrained optimization”, SIAM J. Scientific Computing, 16,
1190-1208.

2. Forte, B., Vrscay, E.R. (1995), “Solving the inverse problem for function/image
approximation using iterated function systems, I. Theoretical basis”, Fractal, 2,
3, 325-334.

3. Kloden, P., Platen, E., Shurtz, H. (2000), Numerical Solution of SDE through
computer experiments, Springer, Berlin.

4. Shorack, G., Wellner, J.A. (1986), Empirical processes with applications to
statistics, Wiley, New York.

5. R Development Core Team (2005), R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-
900051-07-0, URL http://www.R-project.org


