
Better and Faster Solutions for the Maximum

Diversity Problem ∗

Roberto Aringhieri † Roberto Cordone ‡

April 2006

Abstract

The aim of the Maximum Diversity Problem (MDP) is to extract a
subset M of given cardinality from a set of elements N , in such a way that
the sum of the pairwise distances between the elements of M is maximum.
This problem, introduced by Glover [7], has been deeply studied using
GRASP methodologies [6, 1, 17, 2, 16]. Usually, effective algorithms owe
their success more to the careful exploitation of problem-specific features
than to the application of general-purpose methods. A solution for MDP

has a very simple structure which can not be exploited for sophisticated
neighborhood search. This paper explores the performance of three alter-
native solution approaches, that is Tabu Search, Variable Neighborhood
Search and Scatter Search, comparing them with those of best GRASP
algorithms in literature. We also focus our attention on the comparison
of these three methods applied in their pure form.

Keywords: Maximum Diversity, Tabu Search, Scatter Search, Vari-

able Neighborhood Search

1 Introduction

The Maximum Diversity Problem (MDP) consists in extracting from a set a
maximally diversified subset of given cardinality. Let N be a set of n elements,
and dij a diversity measure between pairs of elements i ∈ N and j ∈ N (dij > 0
when i 6= j, dij = 0 otherwise). The aim of the problem is to determine a subset
M ⊂ N of given cardinality m, such that the sum of the pairwise distances
between the elements of M is maximum. A mathematical formulation for the
MDP can be obtained by setting xi = 1 if element i ∈ N belongs to the solution
M , xi = 0 otherwise:

max z =
1

2

∑

i∈N

∑

j∈N

dijxixj (1)

∑

i∈N

xi = m (2)

xi ∈ {0, 1} i ∈ N (3)

∗The same version of this paper has been submitted the 14th of April 2006 to ESA con-

ference.
†DTI, University of Milan, roberto.aringhieri@unimi.it
‡DTI, University of Milan, roberto.cordone@unimi.it

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIR Universita degli studi di Milano

https://core.ac.uk/display/187781964?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

This model applies to several practical problems. A common requirement
in the identification of work teams, student groups and juries is, for instance,
to gather individuals with strongly diversified characteristics: work teams take
advantage from including the largest possible range of skills, student groups
should encourage the exchange between people with different backgrounds, ju-
ries should represent the widest variety of points of view existing in a community.
The distance between individuals i and j with respect to the relevant charac-
teristics can be modeled by a suitable function dij , and most of the time the
number of individuals in the team is fixed. Other interesting applications con-
cern the allocation of available resources for preserving biological diversity [8],
VLSI design, scheduling final exams, medical treatment, and data mining [12].

The MDP is strongly NP-hard [13] and it was introduced by Glover [7].
Apart from some mathematical programming approaches (limited to instances
up to 40 elements) and from some early greedy and stingy heuristics [9, 18], the
literature on the MDP consists of several Greedy Randomized Adaptive Search
Procedures (GRASP) [5]. These algorithms [6, 1, 17, 2, 16] are characterized by
a strong design effort focused on building good randomized starting solutions.
The subsequent improvement phase is usually limited to a standard local search
technique.

Usually, effective algorithms owe their success more to the careful exploita-
tion of problem-specific features than to the application of general-purpose
methods. In the case of MDP, this is very hard to obtain: a solution for MDP
is a generic subset of m elements without any further requirements. Thus, it
has a very simple structure which can not be exploited for sophisticated neigh-
borhood search. For instance, a typical “trick” is to allow the search to visit
promising unfeasible solutions led by a modified objective function; in the case
of MDP there is no reasonable way to apply it. On the other side, this allows
to compare the effectiveness of general-purpose methods applied in their pure
form. In a previous paper [3], we have devised a Tabu Search algorithm which
explores an opposite approach with respect to the literature, that is to refine
the local search phase while keeping a very simple initialization procedure.

Here we extend this seminal work introducing further metaheuristics, namely
Variable Neighborhood Search and Scatter Search. The three metaheuristics
proposed are based on the same common elements (a greedy algorithm and a
basic Tabu Search). They differ in the intensification and diversification mecha-
nisms used to guide the search, respectively, toward promising regions and away
from unpromising ones. We remark that these mechanisms are not problem-
specific but peculiar of the method.

In Section 2 we introduce some notation and the common elements of the
three algorithms proposed, which are presented in Section 3. Section 4 discusses
their performance in comparison to each other and to the best algorithms re-
ported in the literature. We also report the new best known results. Conclusions
and future work close the paper.

2 Common elements

Given a solution M ⊂ N and an element i ∈ N , let the contribution of i to M

be defined as Di =
∑

j∈M dij (clearly, z =
1

2

∑

i∈M Di).

2

Greedy algorithm

A feasible solution can be built starting from a suitable pair of elements M (0) =
{i, j} ⊂ N (obviously, z(0) = dij) and iteratively adding new elements one by
one. At the h-th step, choose the new element as k(h) = arg maxi∈N\M(h−1)Di

obtaining M (h) = M (h−1) ∪
{

k(h)
}

and z(h) = z(h−1) + Dk(h) . After each step,
Di can be easily updated by adding the value dik(h) . Each step requires O (n)
time, so that the overall procedure is O (mn).

Basic Tabu Search

Starting from a given feasible solution M of value z, the basic Tabu Search
procedure tries to improve it by iteratively exchanging a single element s in the
current solution with a single element t out of it, that is M ′ = M ∪ {t} \ {s}.
All solutions in this neighborhood are evaluated and one of them becomes the
current solution. It is possible to efficiently evaluate the effect of such a move
on the objective function. The value z′ of each solution M ′ is obtained by
subtracting the total contribution of the old element s (that is Ds) and adding
the total contribution of the new element t (that is Dt − dst). More formally,
z′ = z − Ds + Dt − dst.

This simple neighborhood search includes a mechanism to avoid looping over
already visited solutions [10]. This mechanism consists in a finite-length list of
forbidden moves, named tabu list. As we want to avoid both the inclusion of
a recently removed element and the removal of a recently included element,
we define two independent tabu lists: list Lin forbids an element to enter the
solution for `in iterations, whilst list Lout forbids an element to exit for `out

iterations.
The next solution is given by the move yielding the largest z ′, among the

ones which are not tabu. A move improving the best known solution is always
performed, even if it is tabu (aspiration criterium). After applying such a move,
the values of Di are updated as follows: Di = Di − dis + dit , i ∈ N . After ITS

iterations the algorithm stops.

3 Three metaheuristics for MDP

Using the elements introduced in Section 2, we describe the three metaheuris-
tics proposed for the solution of the MDP, focusing on the intensification and
diversification strategies proper to each approach.

eXploring Tabu Search

We extend the basic Tabu Search by adding memory mechanisms, both on a
short and a long term. We refer to this algorithm as XTS-MDP. A more detailed
description can be found in [3].

The short term memory mechanism allows to intensify the search decreas-
ing the length of the tabu list after Ti consecutive improving iterations. On
the contrary, the search is diversified increasing the tabu list length after Tw

consecutive worsening iterations. The length `in of tabu list Lin starts from

`
(0)
in =

(

`m
in + `M

in

)

/2 and varies in
[

`m
in, `M

in

]

by steps equal to ∆`in. This is

3

a self-adapting parameter: it becomes larger when the length of the tabu list
approaches the lower or the upper limit of its range. A similar behavior, ruled
by similar parameters, holds for the length `out of list Lout.

The long term memory mechanism allows the search to escape from un-
promising regions of the solution space. This mechanism is known as eXploring
Tabu Search [4]. We maintain a list M of fixed length, composed of second
solutions, that is the second best computed during each neighborhood explo-
ration. The search restarts from the best solution in M every time any of the
following conditions is verified: either the best known solution is not improved
for Ic1

iterations or the length of one of the two tabu lists resides in the upper
half of its range, that is

[(

`m + `M
)

/2; `M
]

, for Ic2
consecutive iterations. The

first condition suggests that the currently explored region is not promising, the
second one that the short term mechanism is insufficient to diversify the search.

Variable Neighborhood Search

Variable Neighborhood Search (VNS) is a metaheuristic which systematically
exploits the idea of neighborhood change, both in the descent to local minima
and in the escape from valleys which contain them. Here we propose a simple
VNS algorithm, named VSN-MDP, specifically developed to allow the basic
Tabu Search to better explore the solution space. Due to the space limitations,
our description traces the general scheme proposed in [11]; here we report only
the specific adaptations necessary for MDP.

Let Nk(M) be the k-th neighborhood of solution M , including all solutions
M ′ obtained from M by replacing k elements in the solution with k elements
out of it. The starting solution is generated by the greedy algorithm, choosing
the first pair of elements i and j as the ones with the largest diversity dij . Each
single iteration consists of at most kmax steps. At the k-th step, we obtain M ′′

from M by randomly generating a solution M ′ in Nk(M) and improving it with
the basic Tabu Search. Let ρ be the Hamming distance between M and M ′′.
If z′′ + αρ(M,M ′′) > z, that is, if M ′′ is better than M or it is sufficiently far
away from M , then it replaces M as the current solution and the algorithm sets
k = 1; otherwise M is unchanged and k = k + 1. The acceptation of worse
(but distant) solutions is a known variant of VNS known as skewed VNS [11].
Parameter α is set equal to (zmax − zmin) /m in order to make the value of ρ
comparable to that of z′′; zmax and zmin are the best and the worst values of
the solutions M ′′ generated from the current solution M . Therefore, as the
solutions generated get worse, the search accepts them more and more easily,
to move away from M . On the contrary, when a better solution is generated,
zmax = zmin = z (M) and classical VNS is adopted.

When k exceeds kmax, a new iteration starts, and k gets back to 1. After
IVNS iterations the algorithm stops the search.

Scatter Search

Scatter Search (SS) is an evolutionary method which uses strategies for search
intensification and diversification. The algorithm maintains a set of solutions
R, named Reference Set, composed of two subsets B and D: B contains the
best solutions computed during the search, whereas D contains solutions which
largely differ from each other and from the best ones. The reference set evolves

4

by combining its members to obtain new solutions. The combination of two so-
lutions in B intensifies the search, while the diversification is given by combining
two solutions in D. We denote our Scatter Search algorithm as SS-MDP. Due
to the space limitations, our description traces the general framework proposed
in [15]; here we report only the specific adaptations necessary for MDP.

The initial generation of R has been done as follows. A starting solution is
computed by the greedy algorithm, randomly selecting a pair of elements not
yet used as starting point, and then improved by the basic Tabu Search. The
algorithm tries to insert this solution first in B, then in D. If both insertions fail
because the solution is neither good nor different enough from the reference set,
it is randomly modified in order to improve the diversification, by exchanging
the elements more frequently belonging to a solution with those which appear
in a solution less frequently. Then, the algorithm tries to insert the resulting
solution in R. In all insertion attempts, duplicate solutions are rejected.

The combination method merges two solutions M ′ and M ′′ drawn from
R into a new one in the following way. First, we sum the contributions D′

i

and D′′
i which element i ∈ N provides to solutions M ′ and M ′′. Clearly, the

contribution is null if the element does not belong to the solution. Then, we
rank the elements by decreasing values of the total contribution. Finally, the
new solution is composed by selecting the first m elements and improved by
basic Tabu Search.

After creating all possible combinations, the algorithms tries to insert them
in R. If R is modified, the combination process is repeated using only pairs
which the newly added solutions. Although it is possible to combine three or
more solutions, the combination of pairs can be sufficient to obtain good results
improving also the algorithm running time [14].

When R is no longer modified by the combination phase, the current iteration
terminates, a new subset D is generated in the same way described before and
a new iteration starts. The algorithm stops after ISS iterations.

4 Computational results

In this section we report the computational results of the three algorithms previ-
ously described and compare them with those obtained by various GRASP [6, 1,
17, 2, 16]. Due to the limited amount of space, we will discuss in deeper detail the
comparison between XTS-MDP and the best known results in the literature,
since, among the three approaches proposed, Tabu Search appears to be the
best compromise between solution quality and computational time. Then, we
will comment on the different performance of VNS-MDP and SS-MDP. Before
discussing the computational results, however, we introduce the computational
environment, the benchmark instances and the tuning of algorithm parameters.

Setting up the computational experiments

Our algorithm is coded using the C standard 2 and runs on a Linux machine
with g++ 3.3.6 compiler. The PC is an Intel Pentium 4 Mobile 2.8Ghz with
512MB of main memory.

For our experiments, we have used two sets of benchmark instances available
in the literature: benchmark B1, proposed in [1], consists of 40 instances with

5

n ranging from 50 to 250 and m from 0.2n to 0.4n; benchmark B2, proposed
in [17], consists of 20 instances with n ranging from 100 to 500 and m from
0.1n to 0.4n. These instances are also available at http://www.dti.unimi.it/
\homediraringhieri.

Preliminary computational experiments have been done in order to tune the
parameters of our three algorithms. For the basic Tabu Search, `in starts from
11 and varies in [8; 14], `out starts from 5 and varies in [3; 7]. The length of the
lists increases after Tw = 5 worsening moves, it decreases after Ti = 3 improving
moves. The update steps ∆`in and ∆`out depend on the current length:

∆`in =

{

2 `in = `m
in or ` = `M

in

1 `m
in < `in < `M

out

and ∆`out =

{

2 `out = `m
out or ` = `M

out

1 `m
out < `out < `M

out

.

As for XTS-MDP, the number of second solutions is |M| = 15, Ic1
= 300

and Ic2
= 25. The total number of iterations is ITS = 2000 . For VNS-MDP,

kmax = 9, IVNS = 100 and ITS = 300. For SS-MDP, |B| = |D| = 10, ISS = 5
and ITS = 40.

The previously best known results for benchmarks B1 and B2 have been ob-
tained by 15 different algorithms under distinct environment conditions: Ghosh’s
GRASP heuristic [6, 1], Andrade’s GRASP heuristic [1], Silva’s six GRASP
heuristics (named from G3 to G8) [17], Andrade’s six GRASP heuristics with
path-relinking (named from T1E1 to T3E2) [2] and Hybrid GRASP with Data
Mining (DM-GRASP) proposed in [16].

Results for benchmark B1

It is not easy to establish a comparison on this benchmark, since the best known
values have been obtained from all the competing algorithms except for DM-
GRASP, but detailed values are available only for the six GRASP algorithms
with path-relinking, as also reported in [2].

XTS-MDP equals the best result reported in the literature for 32 instances
out of 40. Table 1 presents the remaining 8 instances. The four columns report,
respectively, the name of the instances, the result of XTS-MDP, the best known
in the literature, the difference between them. The best result is bolded: we
improve it in 5 cases out of 8 and in 2 cases the difference is remarkable; our
performance is worse in 3 cases, one of which is remarkable. We remind that
this comparison opposes XTS-MDP to 14 variants of 4 different algorithms.

A one-to-one comparison is only possible with the six GRASP algorithms
with path-relinking [2]: XTS-MDP provides the same result as T3E2 (the best
of the six) in 29 instances, it proves worse on instance B250m50 and better
for the remaining 10 instances. Moreover, XTS-MDP is from 100 to 250 times
faster (less than one minute against several minutes or hours). Of course, the
machine employed (a 550 MHz Intel Pentium III PC with 384 MB of RAM) is
slower, but this does not fully account for such a difference.

Algorithm SS-MDP reproduces all the results achieved by XTS-MDP (see
Table 1) improving the one obtained on the hard instance B250m50 up to
7389784, which is better than the previous best known value. As a conse-
quence, the performance of SS-MDP is better than the literature in 6 instances
out of 8 (3 of which remarkably) and it is slightly worse in the remaining 2. The

6

Instance XTS-MDP Literature ∆

A250m50 12 654 12 653 1
B200m80 17 544 447 17 544 448 -1
B250m50 7 379 797 7 388 997 -9 200
B250m100 27 168 460 27 162 906 5 554
C100m20 1 207 522 1 205 722 1 800
D150m60 13 611 262 13 611 261 1
D200m80 24 133 321 24 133 320 1
D250m100 37 753 118 37 753 120 -2

Table 1: Comparison between the best XTS-MDP results and the best results
in the literature (when different) on benchmark B1.

computational time ranges from 1 second to 1 hour; therefore, also SS-MDP
results much faster than the GRASP algorithms in the literature.

Algorithm VNS-MDP equals the best known result in 30 instances out of
40, it provides better solutions in 3 cases and worse ones in the remaining 7.
The computational times are comparable to the ones reported for the GRASP
algorithms, that is rather long. When compared to XTS-MDP, VNS-MDP is
always dominated, apart from the hard instance B250m50, in which it achieves
the same result as SS-MDP.

The performance of the three algorithms presented on the hard instance
B250m50 supports the need to introduce accurate techniques to intensify and
diversify the search. The mechanism adopted by Tabu Search, in fact, proves
less competitive with respect to the ones adopted by VNS and Scatter Search,
which were both able to find the new best known result. Some insight can
be gained by studying in deeper detail the behavior of SS-MDP : during the
computation, the subset B including the best visited solutions is updated by
inserting 45 new solutions, 29 of which obtained combining at least one solution
drawn from subset D. Moreover, 8 of these solutions were still present in B at
the end of the computation. We remind that B consists of 10 solutions. This
proves that subset D plays a relevant role in the performance of the algorithm.

Finally, Table 2 reports the previous best known results in literature, the
result of our three algorithms and the new best known values for B1. For each
instance, we bold the best results unless they are all equal.

Results for benchmark B2

The results on benchmark B2 can be compared in a more complete way. All
the best known results have been obtained by the DM-GRASP in [16] except
for instance “n500m150” whose best is computed by G5 algorithm in [17], con-
trary to what stated in [16]. Both the values and the computational times are
available.

For 17 instances out of 20 XTS-MDP equals the best result reported in
the literature. For instances “n400m160” and “n500m50”, it increases the best
known results by 4 and 10 respectively. For the instance “n500m150”, XTS-
MDP computes the same result as DM-GRASP which is 56572 whilst G5 com-
putes 58605.

7

Literature Proposed algorithms New best
Instance [6, 1, 17, 2] XTS-MDP SS-MDP VNS-MDP known

a050m10 491.9 491.9 491.9 491.9 491.9
a050m20 1931.5 1931.5 1931.5 1931.5 1931.5
a100m20 2007.1 2007.1 2007.1 2007.1 2007.1
a100m40 7730.0 7730.0 7730.0 7730.0 7730.0
a150m30 4552.1 4552.1 4552.1 4552.1 4552.1
a150m60 17482.4 17482.4 17482.4 17482.4 17482.4
a200m40 8132.1 8132.1 8132.1 8132.1 8132.1
a200m80 31048.6 31048.6 31048.6 31048.6 31048.6
a250m50 12653.0 12654.0 12654.0 12653.0 12654.0
a250m100 48384.3 48384.3 48384.3 48384.3 48384.3
b050m10 334976 334976 334976 334976 334976
b050m20 1171416 1171416 1171416 1171416 1171416
b100m20 1267277 1267277 1267277 1267277 1267277
b100m40 4544642 4544642 4544642 4544642 4544642
b150m30 2758381 2758381 2758381 2758381 2758381
b150m60 9960461 9960461 9960461 9960461 9960461
b200m40 4788086 4788086 4788086 4788086 4788086
b200m80 17544448 17544447 17544447 17544447 17544448
b250m50 7388997 7379797 7389784 7389784 7389784
b250m100 27162906 27168460 27168460 27168460 27168460
c050m10 316409 316409 316409 316409 316409
c050m20 1094343 1094343 1094343 1094343 1094343
c100m20 1205722 1207522 1207522 1205722 1207522
c100m40 4219476 4219476 4219476 4219476 4219476
c150m30 2613286 2613286 2613286 2613286 2613286
c150m60 9374611 9374611 9374611 9374611 9374611
c200m40 4630545 4630545 4630545 4630545 4630545
c200m80 16759895 16759895 16759895 16759895 16759895
c250m50 7178043 7178043 7178043 7178043 7178043
c250m100 26047022 26047022 26047022 26047022 26047022
d050m10 381379 381379 381379 381379 381379
d050m20 1502908 1502908 1502908 1502908 1502908
d100m20 1570800 1570800 1570800 1570800 1570800
d100m40 6067776 6067776 6067776 6067776 6067776
d150m30 3502567 3502567 3502567 3502567 3502567
d150m60 13611261 13611262 13611262 13611262 13611262
d200m40 6207580 6207580 6207580 6207580 6207580
d200m80 24133320 24133321 24133321 24133321 24133321
d250m50 9685430 9685430 9685430 9685430 9685430
d250m100 37753120 37753118 37753118 37753118 37753120

Table 2: New best known results for B1

8

The computational times of XTS-MDP ranges from 0.1 to 627 seconds while
DM-GRASP ranges from 308 to 557432 seconds. Note that the computational
times reported in [16] refer to the average of 10 runs, thus we have multiplied
the times by 10 before comparing. Our computational times also refer to the
whole run and not to the time to compute the best solution. For the instance
“n500m150”, XTS-MDP, DM-GRASP and G5 require respectively 446, 177421
and 87153 seconds. The computational times show a huge difference. Once
again, the different machine employed (an AMD Athlon 1.3 GHz with 256 MB
for G5 and PIV 1.7 GHz with 256 MB for DM-GRASP) cannot explain the
whole difference.

Algorithm SS-MDP achieves the same results as XTS-MDP in a much longer
computational time (from 3 to 26000 seconds), which is anyway much lower than
the time required by DM-GRASP and G5.

VNS-MDP DM-GRASP
Instance z cpu z cpu ∆

n200m40 4448 5032.75 4450 1305.0 -2
n200m60 9434 3996.29 9437 3320.0 -3
n300m30 2691 3854.05 2694 2121.0 -3
n300m60 9688 22797.62 9689 8594.0 -1
n300m120 35879 34307.00 35881 30620.0 -2
n400m120 36315 58620.00 36317 70064.0 -2
n400m160 62487 55080.00 62483 100662.0 4
n500m50 7141 23960.00 7131 19408.0 10
n500m100 26254 34500.78 26258 83435.0 -4
n500m200 97330 44941.91 97344 263660.0 -14

Table 3: Comparison between VNS-MDP and DM-GRASP (when different) on
benchmark B2 (time in seconds).

Algorithm VNS-MDP equals the best known results in the literature for 9
instances. Table 3 discusses the remaining 11 instances. The six columns report,
respectively, the name of the instance, the result and computational time for
VNS-MDP, the result and computational time for DM-GRASP, the difference
between our result and the best known one. The best result for each instance
is bolded. The computational times are all expressed in seconds, and the ones
reported in [16] have been multiplied by 10 because they referred to the average
of 10 runs, while the results refer to the best over 10 runs. VNS-MDP yields
better results in 2 cases and worse results in 9 cases; in all cases the differences
are not remarkable. Moreover, the computational times are similar.

We observe that XTS-MDP and SS-MDP dominate the best competitor
algorithm which is DM-GRASP. Moreover, although VNS-MDP is the worst
performing algorithm among the three proposed, its results and its computa-
tional time are comparable to DM-GRASP.

Finally, Table 4 reports the previous best known results in literature, the
result of our three algorithms and the new best known values for B2. For each
instance, we bold the best results unless they are all equal.

9

Literature Proposed algorithms New best
Instance [6, 1, 17, 2, 16] XTS-MDP SS-MDP VNS-MDP known

n100m10 333 333 333 333 333
n100m20 1195 1195 1195 1195 1195
n100m30 2457 2457 2457 2457 2457
n100m40 4142 4142 4142 4142 4142
n200m20 1247 1247 1247 1247 1247
n200m40 4450 4450 4450 4448 4450
n200m60 9437 9437 9437 9434 9437
n200m80 16225 16225 16225 16225 16225
n300m30 2694 2694 2694 2691 2694
n300m60 9689 9689 9689 9688 9689
n300m90 20743 20743 20743 20743 20743
n300m120 35881 35881 35881 35879 35881
n400m40 4658 4658 4658 4658 4658
n400m80 16956 16956 16956 16956 16956
n400m120 36317 36317 36317 36315 36317
n400m160 62483 62487 62487 62487 62487
n500m50 7131 7141 7141 7141 7141
n500m100 26258 26258 26258 26254 26258
n500m150 58605 56572 56572 56568 58605
n500m200 97344 97344 97344 97330 97344

Table 4: New best known results for B2

5 Conclusions

In this paper, we have presented three algorithms for the MDP, a problem
with applications in a wide range of different fields. All previously proposed
algorithms of some effectiveness are GRASP procedures [6, 1, 17, 2, 16].

Extending our seminal work [3], we have focused our attention on the com-
parison of general-purpose metaheuristics exploiting the fact that MDP has no
specific features to take advantage of.

Algorithm XTS-MDP includes a short term memory mechanism tuning the
length of the tabu lists and a long term memory mechanism which, under suit-
able conditions, restarts the search from a set of promising solutions previously
taken into account but not yet visited. Algorithm VNS-MDP generates new
starting solutions in a progressively enlarging neighborhood. Algorithm SS-
MDP manages a pool of solutions, selected for their quality or their reciprocal
diversity, and combines them to generate new starting solutions.

Regarding to the solution quality, SS-MDP is the best performing algorithm,
closely followed by XTS-MDP (their results differ only on one instance). VNS-
MDP is the worse of the three. As for the running time, XTS-MDP is by far
the fastest of the three algorithms. SS-MDP and VNS-MDP are slower than
XTS-MDP : however, the former is still faster than competitors whilst the latter
takes approximately the same time.

In conclusion, XTS-MDP appears to be the best compromise between so-
lution quality and performance. We observe also that the performances of our

10

worst algorithm (VNS-MDP) are comparable with those of best algorithms pre-
viously proposed in literature.

Ongoing works concern the improvement of VNS-MDP and the implemen-
tation of a new algorithm based on the Iterated Local Search framework.

Acknowledgments

The authors wish to thank Yari Melzani, Gian Paolo Ghilardi, Alberto Ghilardi,
Andrea Beretta and Marco Tadini for their help in performing the computational
experiments.

References

[1] P. M. D. Andrade, A. Plastino, L. S. Ochi, and S. L. Martins. GRASP for
the Maximum Diversity Problem. In Proceedings of the Fifth Metaheuristics
International Conference (MIC 2003), 2003.

[2] P. M. D. Andrade, L. S. Plastino, and S. L. Martins. GRASP with path-
relinking for the maximum diversity problem. In S. Nikoletseas, editor, Pro-
ceedings of the 4th International Workshop on Efficient and Experimental
Algorithms (WEA 2005), volume 3539 of Lecture Notes in Computer Sci-
ence, pages 558–569. Springer Berlin / Heidelberg, 2005.

[3] R. Aringhieri, R. Cordone, and Y. Melzani. Tabu search vs. GRASP for
the Maximum Diversity Problem. Note del Polo 89, Università degli Studi
di Milano, Crema, December 2005. [submitted for publication to 4OR].

[4] M. Dell’Amico and M. Trubian. Solution of large weighted equicut prob-
lems. European Jurnal of Operational Research, 106:500–521, 1998.

[5] P. Festa and M. G. C. Resende. GRASP: An annotated bibliography. In
C. C. Ribeiro and P. Hansen, editors, Essays and Surveys in Metaheuristics,
pages 325–367. Kluwer Academic Publishers, 2002.

[6] J. B. Ghosh. Computational aspects of maximum diversity problem. Op-
eration Research Letters, 19:175–181, 1996.

[7] F. Glover, G. Hersh, and C. McMillian. Selecting subset of maximum
diversity. MS/IS 77-9, University of Colorado at Boulder, 1977.

[8] F. Glover, C. C. Kuo, and K. S. Dhir. A discrete optimization model
for preserving biological diversity. Appl. Math. Modelling, 19(11):696–701,
November 1995.

[9] F. Glover, C. C. Kuo, and K. S. Dhir. Integer programming and heuristic
approaches to the minimum diversity problem. Journal of Business and
Management, 4(1):93–111, 1996.

[10] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers,
1997.

11

[11] P. Hansen and N. Mladenovic. Variable neighborhood search. In F. Glover
and G. Kochenagen, editors, Handbook of Metaheuristics, pages 145–184.
Kluwer Academic Publishers, 2003.

[12] G. Kochenberger and F. Glover. Diversity data mining. Working Paper
Series HCES-03-99, The University of Mississipi, 1999.

[13] C. C. Kuo, F. Glover, and K.S. Dhir. Analyzing and modeling the maximum
diversity problem by zero-one programming. Decision Science, 24:1171–
1185, 1993.

[14] M. Laguna and V.A. Armentano. Lessons from applying and experimenting
with scatter search. In C. Rego and B. Alidaee, editors, Metaheuristic
Optimization via Memory and Evolution: Tabu Search and Scatter Search,
chapter 10, pages 229 – 246. Kluwer Academic Publishers, 2005.

[15] M. Laguna and R. Mart́ı. Scatter Search: methodology and Implementations
in C. Kluwer Academic Publishers, 2003.

[16] L.F. Santos, M.H. Ribeiro, A. Plastino, and S.L. Martins. A Hybrid
GRASP with Data Mining for the Maximum Diversity Problem. In Andrea
Roli Michael Sampels Mara J. Blesa, Christian Blum, editor, Hybrid Meta-
heuristics, Second International Workshop, volume 3636 of Lecture Notes
in Computer Science, pages 116–127. Springer Berlin / Heidelberg, 2005.

[17] G. C. Silva, L. S. Ochi, and S. L. Martins. Experimental comparison of
greedy randomized adaptive search procedures for the maximum diversity
problem. In Proceedings of the 3rd International Workshop on Efficient
and Experimental Algorithms (WEA 2004), volume 3059 of Lectures Notes
on Computer Science, pages 498–512. Springer Berlin / Heidelberg, 2004.

[18] R. Weitz and S. Lakshminarayanan. An empirical comparison of heuristic
methods for creating maximally diverse group. Journal of the Operational
Research Society, 49:635–646, 1998.

12

