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Abstract

In this paper, the problem of locating ambulance posts over an urban area
is considered. A three steps approach is presented to deal with this prob-
lem, that combines different skills. First, the real life data on the considered
system behavior are analyzed. Then, integer linear programming models are
considered with the aim of finding new post locations. As such models repre-
sent a simplification and an abstraction with respect to the real life situation,
the behavior of the proposed solutions is tested with a simulation framework,
tailored on the considered problem features. The whole approach is tested
over the Milano city area case, with the aim of pointing out the criticality
of the system and providing suggestions for the emergency service manage-
ment. Computational results are presented and discussed.

Keywords: Optimization, simulation, ambulance location, statistical analysis.

1 Introduction

An Emergency Medical Service system is a service providing pre-hospital (or out-
of-hospital) acute care to patients with illnesses and injuries. It exists to fulfill the
basic principles of First Aid, which are to Preserve Life, Prevent Further Injury
and Promote Recovery. The key factors in a successful treatment of an injury are:
early detection (a member of the public finds the incident), early reporting (the
emergency services are summoned), early response (the emergency services get to
scene quickly), good on scene care (appropriate treatment is given), care in transit
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(the patient is looked after on the way to hospital), transfer to definitive care (the
patient is handed to the care of a physician).

One essential step is the early response, i.e. the emergency service, via an ambu-
lance, should get to the event scene very quickly. This is the reason why organizing
and planning emergency medical service in an urban area is an important problem
arising everywhere in the world. Different features have to be considered while
managing similar services, such as ambulance location and relocation, ambulance
routing, assignment of ambulances to each call. In many real life systems different
problems are solved via the experience of the individual operator.

In this paper we deal with the problem of locating the ambulances in agreement
with the official Emergency Medical Service, called also 1181, over the urban area
of Milano, Italy. Here the operation center collects a wide amount of data describ-
ing the services2, from the instant in which a call is received by the operator to
the time an ambulance leaves the hospital after the service. The categorization of
patients, based on their severity of injury, is made by assigning to each call a color
code. Here we refer to an emergency call as the one to which a red or yellow code
is assigned (very severe injury). The Italian law states that the response to emer-
gency calls has to be performed within a mandatory time of 8 minutes in the urban
areas (LA time). At the present, as we show in Section 2, in Milano urban area
only around sixty percent of the emergency calls are served within the LA time. To
provide a better performance of the system, the limited resources must be carefully
managed and mathematical techniques are worthy to be studied to provide decision
aided tools to the emergency service management. The aim of this work is first to
analyze the data on the system behavior to point out possible criticality and then to
provide, through optimization and simulation, suggestions for the emergency ser-
vice management. With the present work we investigate on the possibility that a
different distribution of the ambulance over the territory and/or a different number
of ambulances might improve the performance of the system. Combining different
mathematical tools, the aim of the present work is to find an optimal location of the
ambulances in agreement with the operation center. Starting from the statistical
analysis of these data aimed to estimate some basic variables needed for possi-
ble models describing the activity, we solve optimization problems and performed
simulations.

Although many optimization models on the ambulance location and relocation
problem have been developed [1, 7], to the best of our knowledge none is related
to the Italian legislation about emergency services. From the latter we get the con-
straint of covering the one hundred percent of the high priority calls. It is clear
that this request seems to be too much. In literature, usually a weaker constraint is
considered; however here we try to conform to Italian law.

1In Italy the emergency service phone number is 118.
2A sample of the collected data is available on the web site www.118milano.it.
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The first part of the work is the analysis of the present situation, i.e. the capability
of the system to serve all the emergency calls within the LA time. As already
mentioned, the 118 emergency service is not capable to satisfied this requirement,
as it happens in the most of the Italian towns. In Section 2, we see how the first
problem comes from the stage of early reporting, since in the average the call lasts
two minutes before the operator is able to summon an ambulance. Here we cannot
deal with this problem, since it could often be solved thanks to a better instruction
of the population. The second problem arises from the evidence that currently the
ambulance are not able to cover all the urban area within the LA time. This could
depend either from the bad distribution of ambulances over the urban area or from
the low number of ambulances in agreement3 with the 118 service.

We perform the analysis of the activities within the time interval from 7 a.m. to
11.00 p.m., since in Milano during this time, the ambulances in agreement with the
118 emergency service are placed in a set of locations (ambulance post or post in
the following), where they wait until they are summoned up by the operation center
for beginning of a new service. After the transfer to a definitive care, ambulances
are relocated at one of the free posts. Notice that all these paths are unknown a
priori and, in the common practice, the ambulance drivers do not follow the shortest
distance path. This is due to the fact that each driver is in charge of the path choice
and he usually based its choice on the experience. During the night all ambulances
are located in specific headquarters, that cannot be changed; as a consequence
the problem of optimal distribution of posts does not occur. We have information
about the topology of the town, the current locations of the ambulance posts, and
their number. Furthermore, from the collected data set many other information
can be extrapolated, such as the spatial frequency of calls in different subareas,
the averaged speed of the ambulances, and as a consequence the areas that can be
reached within the given time limit, and so on.

The main part of the work consists of the resolution of optimization problems,
by looking for possible different ambulance post distributions via Integer Linear
Programming models, and of the performance of simulations. In Section 3 we
consider and tested some standard static optimization models. Furthermore, we
propose a new model which considers new constraints which fit for the reality
under study. Both standard and the original models are tested using CPLEX [10].

All the previous models are static one. As a consequence they cannot take into
account some of the peculiarities of the phenomenon under study, e.g. the different
latent time that an ambulance operator spends in the hospital. Indeed, the transfer
to a definitive care does not happen instantaneously as soon as a hospital is reached.
As a consequence, they do not take into account the availability of an ambulance.
This is the main reason why it seems that the static models in Section 3 are able to

3In Milano the 118 service has agreements with voluntary organizations according to which some
of the organizations ambulances are available for the 118 service. We refer to such ambulances,
together with those owned by 118 service management, as in agreement ambulances.
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give a solution to the full coverage within the LA time. Furthermore they do not
consider the fact that when an ambulance is available, it may start a new service,
on the way back to a post. In the paper we refer to such ambulances as smart
ambulances. In order to include in a model all these features, in Section 4 we
present a simulation framework which takes into account the dynamics, and tries
to reproduce the real situation. All the solutions provided by the models in the
previous section are tested through the simulation framework. Results obtained on
the case study are reported in Section 5. Conclusion and suggestions for further
developments are given in Section 6.

2 The actual emergency service in Milano

In this section we analyze the situation of the emergency service in Milano; in
particular we consider a set of data describing the activities of the 118 operation
center in the urban area of Milano during the year 2005.

Ambulance request 118 agreement Assigned to posts

emergency calls 51413 41647 34663
non emergency calls 44681 36368 29808

Total 96094 78015 64471

Table 1: Frequencies of the ambulance requests in Milano.

The amount of calls received and of required ambulance were 145844 and 96094,
respectively. As described in Table 1, out of the number of requests, 78015 ser-
vices were carried out by ambulances in agreement with the 118 service; among
them 64471 services are covered by the ambulances located at the posts, during the
day (7a.m.-11p.m.). The remainder 18079 calls are covered by other ambulances,
whose expenses are covered by the 118 management for each service.

This is the reason why the aim of the management is to cover the whole city with
ambulances in agreement, since their services over the whole year are already paid
by contract. As a consequence we consider the performance of the services of
the ambulances in agreement located at the 29 ambulance posts. In Figure 1 the
demand and the ambulance post distributions are shown.

The first question we want to answer to is whether or not the actual post distribu-
tion on the urban area is suitable to cover all the emergency demands within the
mandatory time. In order to estimate the area covered by each ambulance loca-
tion, we first perform a statistical analysis of the random variable describing the
time needed by a 118 operator to assign the call to a specific ambulance, from the
time when he answered to the call. We call this variable ”118 performing time”.
We have estimated an averaged 118 performing time of 2.328 minutes with a 95%
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Figure 1: Spatial distribution of the request of ambulances in Milano (grey spots)
and the ambulance posts (numbers). The positions are described by the Gauss-
Boaga coordinate system.

Figure 2: Box-Whisker plot for the distance covered by the ambulances within the
LA time (emergency calls).

confidence interval, given by [2.32, 2.34]. We observe that the interval is rather
tight. We recall that now we consider only the emergency calls. Indeed for the
low priority calls (green code) the 118 performing time is much higher, i.e. 4.58
minutes, with a 95% confidence interval [4.53, 4.63]. From now on we consider
as LA time the mandatory time minus the averaged time needed by the operation
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center to alert an ambulance for a high priority calls.

Post mean radius st. dev. Post mean radius st. dev.

1 912.81 737.21 16 1191.06 852.95
2 1086.03 699.75 17 1330.48 942.88
3 1078.12 759.13 18 1195.63 761.97
4 1123.90 720.76 19 1189.59 841.25
5 1172.10 811.49 20 1220.30 812.21
6 1197.85 727.19 21 1229.68 776.43
7 1201.34 756.30 22 1159.82 992.76
8 1051.60 682.56 23 1236.45 798.10
9 1013.60 815.68 24 1245.59 925.65

10 1517.76 795.56 25 1310.55 1099.48
11 1288.56 799.61 26 1540.21 1053.64
12 1434.16 917.69 27 1648.05 1108.41
13 1242.67 986.16 28 1068.27 686.50
14 1190.31 853.27 29 1058.16 663.94
15 1022.78 765.21

Table 2: Mean and standard deviation for the distance covered by a post within the
LA time (meters).

In order to estimate the area covered by the ambulances within the LA time for
emergency calls, we consider a random variable which describes the Euclidean
distance between the post and the scenes reached within the LA time, for each post.
In Figure 2 and in Table 2 a Box-Whisker plot and basic statistics for the distance
covered by the ambulances within the LA time are shown, respectively. From the
data one can deduce that the urban area of Milano is not covered by the emergency
service within the LA time. The estimated percentage of the demands served within
the LA time per ambulance post is shown in Table 3, while the average over all
posts is 60,1%.

Post % Post % Post % Post %

1 62.1% 9 61.1% 17 58.4% 25 66.8%
2 59.1% 10 54.0% 18 66.2% 26 57.4%
3 61.1% 11 64.9% 19 53.5% 27 46.4%
4 63.0% 12 63.4% 20 61.4% 28 57.6%
5 60.1% 13 66.3% 21 61.7% 29 49.4%
6 61.4% 14 59.0% 22 51.5%
7 65.2% 15 57.5% 23 71.3%
8 65.2% 16 69.3% 24 48.6%

Table 3: Percentage of demands served within the LA time for each post.
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Hence, it seems to be necessary to optimize either the spatial distribution of the
ambulance posts or the number of ambulances. Currently, at each post only one
ambulance is located. By means of an analysis of variance, by considering as
dependent variable the mean radius per post, and as independent variables the hours
of a day, we try to estimate homogeneous daily time intervals. We have divided the
daily time (from 7 to 23) in seven time intervals: 7-9; 9-11; 11-14; 14-16; 16-19;
19-21; 21-23.

Figure 3: Spatial distribution estimates of the demand in the urban area of Mi-
lano: demands with hospitalization. The space is described by the Gauss-Boaga
coordinate system.

The third step of the analysis is meant to built up some interesting fields, useful for
the application of the optimization models. In particular, we estimate the spatial
distribution of the demand using a square grid with a side per element of about
593 meters. From Figures 3 and 4, it is clear how a higher number of demands
is located in the center of the town with low tails in the suburb. The same trend
is highlighted both for the calls which needed a hospitalization and for the other
ones. We have also carried out the estimate of this field for the seven relevant time
intervals.

As already mentioned, the Euclidean metric (dE) is used as spatial distance. The
last significant issue is the relation between this metric and the distance dGIS cal-
culated using a geographical information system, GIS. In order to understand if it
possible to consider the Euclidean distance instead of the real one we have per-
formed a regression among the two distance. It comes out the it is statistically
significant to consider the linear relation dGIS = 1.4 ∗ dE . As discussed later on,
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Figure 4: Spatial distribution estimates of the demand in the urban area of Milano:
demands without hospitalization. The space is described by the Gauss-Boaga co-
ordinate system.

we may consider the Euclidean distance qualitatively correct since we do not have
any information about the true route followed by the ambulance.

3 Optimization Models

There is a widespread literature on the vehicles post location problem and in partic-
ular on the problem of optimal locating ambulance posts. A recent survey is given
in [1], where static models (such as in [16, 2, 3]) and dynamical ([4]) models are
discussed. One aspect we would like to highlight here is that the static ones do not
describe the relocation of ambulances after the end of a service. Furthermore both
deterministic (such as in [16, 2, 3]) and probabilistic (such as in [6, 11, 12, 13]) de-
scriptions of the phenomenon have been studied. Indeed, there are many random
parameters involved, as the instant of a new call occurring at the emergence service,
the time of response, the waiting time in a hospital. etc. This randomness influ-
ences the availability of a free ambulance, that becomes a random variable itself.
In deterministic models, in which this randomness is neglected, the optimization
of post distribution imposes constraints on the coverage.

In this paper we focus on static deterministic models. In this section we first con-
sider some well known basic models, able to capture some features of our case
study. Then we propose a new model, including some peculiar aspects.
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3.1 Standard optimization models

The first model (LSCM) we discuss has been proposed in [16] and it is a location
set covering model. The only constraint taken into account is the coverage of the
considered area. Each area of the city must be covered by at least one ambulance
post. Let us recall that we say that a post covers an area if the distance between
the post and the area is less than a given threshold, or equivalently, the mean time
needed to reach the area starting from that post is less than a threshold time. The
objective is to minimize the total number of ambulance posts. If it is assumed that
there is one ambulance in each post, the total number of ambulances is minimized,
as well.

Let W be the set of candidate locations for the posts. Let V be the set of points
to be covered. In order to represent the city area with a set of points, the city is
divided into grid squares, as mentioned in Section 2. Each grid square represents a
subarea of the city such that every part of the subarea is covered by the same subset
of candidate post locations. Thus, by guaranteeing that each i ∈ V is covered, we
guarantee that any possible origin of an emergency call is covered by at least one
chosen post, and therefore served within LA time. For each grid square i ∈ V , let
Wi be the set of candidate posts covering i. Let xj ,∀j ∈ W , be binary variables
such that

xj =

{
1 if an ambulance post is set in site j,

0 otherwise.

The model can be formulated as follows:

(LSCM)

min
∑
j∈W

xj , (3.1a)

s.t.
∑

j∈Wi

xj ≥ 1, ∀i ∈ V; (3.1b)

xj ∈ {0, 1}, ∀j ∈ W. (3.1c)

The LSCM may be consider as a first simple description of the problem under
study. Since the traffic conditions, and therefore the average speed of the ambu-
lances, and the coverage radius of each candidate post change during the day, then
different instances of the problem can be derived by considering time partition in
such a way that the mean distance covered by each post in each time interval may
be considered the same by hypothesis. These data have been estimated, as de-
scribed in Section 2. In this first model ambulance availability and amount of calls
are not considered. Therefore, although the ambulances provided by the optimal
solution can cover the whole city area, they might not be able to serve all the emer-
gency calls. Thus the optimal number of ambulances given by the model represents
a lower bound of the needed ambulances.
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The next model (BACOP1), first proposed in [9], considers the importance of cov-
ering twice at least a fraction of the demand, in order to guarantee at least one
backup ambulance for a fraction of the demand. An additional binary variable is
introduced

ui =

{
1 if i is covered twice,
0 otherwise.

The importance of double coverage is represented by the objective function, aiming
at maximizing the amount of demand covered by at least two posts, while the
covering by one post is guaranteed. The model is the following:

(BACOP1)

max
∑
i∈V

diui, (3.2a)

s.t.
∑

j∈Wi

xj − ui ≥ 1, ∀i ∈ V; (3.2b)

∑
j∈Wi

xj = p, (3.2c)

xj ∈ {0, 1}, ∀j ∈ W; (3.2d)

ui ∈ {0, 1}, ∀i ∈ V. (3.2e)

Parameter di, defined as the number of emergency calls in grid square i, can be
easily estimated. Parameter p represents the given number of ambulance posts to
be located.

As LSCM, also BACOP1 does not take into account the fact that a post might not
be able to serve a call, if the ambulance is already busy because of a previous call.
Therefore this model provides a lower bound of the needed ambulances. Further-
more, post dimensioning, i.e. considering a number of ambulances located in the
same post larger than one, is not considered.

A slightly different model (BACOP2) is also presented in [9]. Its objective function
aims at maximizing a combination, using parameter θ, of the demands covered
once and twice. The coverage of all urban area is not required in this case. Actually,
in many real life systems the one hundred percent coverage is not guaranteed. A
new binary variable yi is introduced, for each subarea i ∈ V , such that

yi =

{
1, if i is covered,

0, otherwise.
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The model reads as the following

(BACOP2)

max θ
∑
i∈V

diyi + (1− θ)
∑
i∈V

diui, (3.3a)

s.t.
∑

j∈Wi

xj − yi − ui ≥ 0, ∀i ∈ V; (3.3b)

ui − yi ≤ 0, ∀i ∈ V; (3.3c)∑
j∈Wi

xj = p, (3.3d)

xj ∈ {0, 1}, ∀j ∈ W; (3.3e)

ui ∈ {0, 1}, ∀i ∈ V; (3.3f)

yi ∈ {0, 1}, ∀i ∈ V. (3.3g)

3.2 A new optimization model

As some of the features of the considered real life case are not present in the above
described models, we developed a new model tailored on the Milano case. How-
ever, the developed model is a static one and does not consider the arriving calls
from a dynamic point of view. The model considers the dimensioning of the ambu-
lance posts, i.e. the number of ambulances to be located in each post, to satisfy the
total demand. We consider both the emergency (red and yellow code) and the low
priority calls (green calls). As regards the green code calls, the law only mentions
that they have to be served in a reasonable time; so we consider a second time
limit, less tight than the LA time. Furthermore, since they have a non trivial impact
on the ambulance availability, their assignment to an emergency vehicle is to be
optimized as well.

The problem is to assign the red and yellow demand of each grid square to the
posts, conditioned to the constraints on the time limit, while the green demand can
be assigned to any post. However, to guarantee a good service, at least a given
fraction of the low priority calls must be served within a reasonable, although less
tight, time limit. For each post the number of needed ambulances is to be set, with
respect to the demand assigned to the post.

Although the model is a static one and does not represent the dynamic behavior
of the system, we want to take into account somehow the availability of the am-
bulances. An ambulance can afford a limited number of missions in a given time
interval. This average value depends on both the time needed for the rescue and the
time spent at the hospital and can be computed on the base of the data provided by
the 118 service. Then it is possible use such number as an ambulance capacity. By
guaranteeing that the ambulance capacity is not exceeded, i.e. by guaranteeing that
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the number of missions assigned to each ambulance is smaller than the computed
limit, the availability of ambulances is taken into account, although in a static ap-
proximation. Even though the assignment provided by the model solution cannot
be applied in real life, the model has to assign calls to posts to take into account
the ambulance capacity.

As the standard models, the model aims at providing a lower bound on the number
of the needed ambulances, as the model gives a simplified representation of the
problem, e.g. the calls are considered as evenly distributed along the considered
time horizon.

For each subarea i ∈ V of the city the amount of red and yellow demand are
denoted with dr

i and dy
i respectively, while the green demand are denoted with dg

i .
All the demands are computed on the base of the available data over the whole
year 2005. For each subarea i the set of candidate posts covering i within the given
time limit is denoted by W 1

i . A second, less tight, time limit is given, according to
which for each i a subset W 2

i ⊆ W is defined. Finally, let kj denote the number
of missions that an ambulance located in post j can afford in the time horizon
considered by the problem.

Two continuous variables wij and zij are defined, zij representing the fraction of
red/yellow demand of grid square i assigned to post j and wij representing the
fraction of green demand of subarea i assigned to post j. An integer variable xj is
defined for each post j representing the number of ambulances to be assigned to j.

The model (Lower-Priority Calls Coverage) can be formulated as follows.

(LPCC)

min
∑
j∈W

xj , (3.4a)

s.t.
∑

j∈W1
i

xj ≥ 1, ∀i ∈ V; (3.4b)

∑
j∈W1

i

zij = 1, ∀i ∈ V; (3.4c)

∑
j∈W

wij = 1, ∀i ∈ V; (3.4d)

∑
i∈V

∑
j∈W2

i

dg
i wij ≥ q

∑
i∈V

dg
i , (3.4e)

∑
i∈V

(dr
i + dy

i )zij + dg
i wij ≤ kjxj , ∀j ∈ W; (3.4f)

xj ∈ Z+, ∀j ∈ W; (3.4g)

wij ∈ [0, 1], ∀i ∈ V, j ∈ W; (3.4h)

zij ∈ [0, 1], ∀i ∈ V, j ∈ W; (3.4i)

12



The objective function aims at minimizing the number of needed ambulances. The
first constraint (3.4b) states that there must be at least one ambulance close enough
to each subarea, guaranteeing the coverage of the whole city. Constraint (3.4c)
guarantees that all the emergency calls are served within the given time limit, while
constraint (3.4d) guarantees that all the low priority calls are served from any post
and (3.4e) forces at least a given percentage q of the low priority demand to be
served within a second, less tight, time limit. Constraint (3.4f) states that the num-
ber of missions assigned to a post must not exceed the number of missions that
the post can afford. This value is given by the number of ambulances assigned to
the post (yj) multiplied by the capacity of each ambulance. Finally, (3.4g), (3.4h)
and (3.4i) set the variables domain.

In Section 5 we provide a comparison of the models by the estimation of the pa-
rameters and subsets in the case study of Milano area.

4 Simulation Framework

The models presented in Section 3 provide solutions, given estimates of the in-
volved parameters, i.e. averaged behaviors are considered. Furthermore, as dis-
cussed in the previous Sections, only a static description has been considered, and,
as a consequence, some features have been neglected. In order to test the solutions
given by the static optimization models in a dynamics environment, a simulation
framework has been developed to model the behavior of the emergency service
with respect to the dynamic call arriving. We consider an agent based simulation
model for the case under study, developed using the multi-paradigm simulation
tool AnyLogic [14].

4.1 The Agent based Simulation Model

An agent based model allows to track the behavior of each individuals acting in
the simulated environment. A set of rules describes the agent behavior and its
interactions with the environment; as a consequence, the state of the each agent
is determined. Different agents communicate via messages or signals [15]. Note
that in AnyLogic, the rules are described by using a statechart, as those reported in
Figures 5 and 6, in which a box represents an agent state whilst an arc represents a
transition between two states.

Whenever a call is generated, a color code is assigned and the operator at the call
center selects a free ambulance. Then the latter starts the service (mission) and get
to the scene. After the appropriate care is given, if required, the patient is taken to
the nearest hospital. So after the patient is handed to the care of a physician, the
ambulance moves to a post, waiting for the next service assignment.

13



Therefore, a crucial point to be taken into account by the model is the movement
of the ambulance. In literature a discrete event approach is often considered: in
this framework, the movement of an ambulance from a place to another place is
represented by a new event, whose occurrence is set in the time horizon after a
given interval from the occurrence of the current event. The time interval represents
the time needed by an ambulance to reach a given place and is computed using
a travel time model such as the one proposed in [8]. In the agent based model
we present here, the ambulance movement is continuous and is represented by a
continuously varying state of the agent related to the ambulance itself. The state
is given by a set of features of the agent, such as position, speed, direction, etc.
This makes the model more flexible in testing different ambulance management
policies. For instance, it allows to change the destination of an ambulance while it
is moving, if a more serious disease occurs.

The main agents considered in our models are the call, the operator at the operation
center and the ambulance.

The Call. Although our model is able to generate randomly the calls following a
suitable probabilistic distribution, we have implemented a trace-driven simulation
in which each call is generated by using the real data of a given day. In this way, the
performance – number of not served calls – of the post location computed by the
models can be tested on the set of data representing a given day. In a trace-driven
simulation, each call agent state is given by spatial coordinates, the color code, and
the hospital where the patient is moved.

The Operation Center. The operator at the call center is the decision core of the
whole system. He takes two important decisions: which ambulance has to serve a
given call and the time when it happens. The target is to serve the emergency calls
as fast as possible, trying to keep the whole urban area covered. Clearly, these two
targets contrast when the number of calls increases for an extended period, e.g. epi-
demic flu, summer hot days, etc. Currently, the operation center of Milano adopts
the following simple strategy: it serves all the emergency calls quickly assigning
the service to the nearest available ambulance, whereas the green calls queue in the
case the number of available ambulances is below a threshold.

The agent modelling the operation center follows the set of rules shown in Figure 5:
the operation center assigns an ambulance to the calls, ranked by their color code,
if at least one ambulance is available; when two or more ambulances are available,
the nearest one is selected.

The Ambulance. If not busy, an ambulance waits in a post until the operation
center activates it for a new service. Then it starts its task: first it reaches the scene;
then, if necessary, it brings the patient to a hospital. In our simulation framework
the type of diseases is not considered: as a consequence a patient is carried to the
closest hospital. At the end of the service, the ambulance moves to the closest
empty post. The speed assigned to each ambulance is an estimated mean speed.
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Figure 5: The statechart describing the behavior of the agent modeling the opera-
tion center.

Distances are considered as Euclidean: in fact such hypothesis reduces the running
time of the simulation, with respect to a GIS based one. In Section 2 we have
estimated a linear relation between the GIS and Euclidean distances. Moreover,
we cannot calculate the distances a priori, since a priori we might not know the
starting point of the ambulance (e.g. when a new service starts before it has reached
a post). Finally, it allows a fair comparison, since coverage radius of the models are
computed according to the Euclidean distance. Figure 6 shows the rules followed
by the ambulance agent.

Notice that a transition to “startNewMission” is possible from several different
states. This fact models the capability of the operation center to use an ambulance
when it is moving back to a post after the end of a service. Such a capability might
depend on both technological and human factors. We refer to this case as smart
ambulance. Notice that this feature is clearly and advantage of the simulation
model improving its flexibility. We also observe that the implementation of this
feature depends on the fact that the model simulates an effective movement of the
ambulance. Hereafter, we refer to the other case as standard ambulance.
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Figure 6: A simplified version of the statechart describing the behavior of the agent
modeling the ambulance.

5 Case study

The models described in Section 3 have been tested on the data available discussed
in Section 2. The urban area has been partitioned into subareas via a squared grid:
the grid is built in such a way that each point of each element of the grid is covered
within the LA time by the same subset of ambulance posts. Each subarea represents
a demand point.

Following the analysis in Section 2, we have considered six homogeneous daily
time intervals (intervals 9a.m -11a.m. and 11a.m-2p.m. have been collapsed into
one for computational reasons), such that in each interval the mean radius covered
by a post, within the LA time, may be considered equal, for each post. As a con-
sequence, seven different instances can be derived for each model, one for each
interval and one related to the whole day. Data referred to each instance represent
the values of the considered data over one year. Each of these instance has been
solved with CPLEX 8.1 on an Intel Xeon, at 2.80 GHz, with 2Gb of RAM mem-
ory. The models are solved on the seven instances. The tightest solution found,
i.e. the one requiring the maximum number of ambulances, is validated with the
simulation framework.

5.1 Results for the standard optimization models

The model LSCM provides the minimum number of posts to guarantee a coverage
of the whole urban area within the given time limit. The constraint of the model
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guarantees that the whole city area is covered by any feasible solution of LSCM.
However, the availability of ambulances is not taken into account nor is the number
of calls: a solution provides a coverage of the city area but does not guarantee that
each call is served. Therefore, a feasible solution represents a lower bound of the
number of needed ambulances.

In Table 4 the minimum number of needed ambulance posts, together with the
computational time needed to solve the model, is given for each time interval and
for the instance over the whole day.

Time interval Minimum number of posts CPU time [sec]

7a.m.-9a.m. 20 2.43
9a.m.-2p.m. 17 1.24
2p.m.-4p.m. 18 2.60
4p.m.-7p.m. 18 1.27
7p.m.-9p.m. 19 0.57

9p.m.-11p.m. 20 2.45

whole day 17 0.49

Table 4: Results for LSCM model.

The ambulance speed, as well as the coverage radius of each candidate post, varies
during the day, due to the different traffic conditions. Therefore the minimum
number of ambulance posts changes as well. For instance, the minimum number
of ambulances is twenty during the time interval 7a.m.-9a.m., while it is seventeen
for the whole day instance. This is due to the fact that the average speed is low
in the early morning, since the traffic level is higher due to the moving mass of
workers, and therefore the coverage radius of the posts is small. On the other
hand, in the whole day instance the speed is averaged out over the whole day and
also the higher speed values of other time intervals contribute to its value. Then
the average speed computed over the whole day is higher than the one computed
over the interval 7a.m.-9a.m.: the coverage radii are larger. Beside, the optimal
location of ambulance posts changes for different time interval; this may suggest
the opportunity of relocating ambulances during the daytime. This may be seen as
a first step toward a dynamical approach.

In Figures 7 and 8 the position of selected posts is shown together with the current
ones for the interval 7a.m.-9a.m. and for the whole day. The demand distribution
is shown as well. Both the solution move the post locations towards the suburbs of
the city, with respect to the current posts. The solution for the interval 7 a.m.-9 a.m.
locates more posts in the city center, due to the smaller coverage radius. Besides,
both solution locate post on the city suburb even if the amount of demand is low on
the suburb. This is due to the fact that the whole coverage of the area is required,
without taking into account the amount of demand. Results show that the needed

17



Figure 7: Current and computed post locations for the interval 7 a.m.-9 a.m. Cur-
rent post locations are represented by circle, computed ones by star. The space is
described by the Gauss-Boaga coordinate system.

computational time is always negligible, and this allows, if necessary, to test the
model under different assumptions on the data.

Figure 8: Current and computed post locations for the whole day. Current post
locations are represented by circle, computed ones by star. The space is described
by the Gauss-Boaga coordinate system.

The model BACOP1 allocates posts and guarantees the coverage of the whole city,
while maximize the amount of demand covered by at least two posts. As in the
first described model, the availability of the ambulances is not taken into account,
and the number of ambulances per post is not dimensioned. First the number of
posts is set to twenty-nine, as the actual one. In Table 5 BACOP1 model results are
shown. It comes out that with the actual number of posts, almost the whole demand
is covered twice: in fact even in the worst case about 95% of the demand is covered
twice. However, as the ambulance availability is not considered, the solution does
not guarantee that when an emergency call occurs there is always one ambulance
available to serve it. Results show that computational time is reasonable for all the
considered time intervals, rising up to about 17 minutes in the worst case, while
being about 500 sec. in the average.

18



Time Demands covered Total Percentage CPU time
interval twice demands [sec]

7a.m.-9a.m. 3939 4129 95.40 1044.08
9a.m.-2p.m. 14830 14838 99.95 11.33
2p.m.-4p.m. 4869 4887 99.63 493.33
4p.m.-7p.m. 7885 7904 99.76 701.58
7p.m.-9p.m. 4985 5013 99.44 212.05

9p.m.-11p.m. 5399 5526 97.70 835.05

whole day 49955 50071 99.77 156.55

Table 5: Results for BACOP1 model. Number of posts: 29.

Afterwards, we tested model BACOP1 both by setting the number of posts equal
to the minimum obtained by LSCM, for each time interval, (i.e. twenty for the
interval 7a.m.-9a.m.), and the minimum value increased by one (i.e. twenty-one
for the interval 7a.m.-9a.m.). Results are shown in Table 6 and 7, respectively:
in the first case the percentage of demands covered twice is always less than or
equal to 50%; in the second case, by adding one more post, the percentage of
double covered demand increases between 53% and 65%. These results show that
if only one ambulance is placed in each post, the minimum number of post does
not provide a robust coverage. It is necessary to take into account the availability
of ambulances. Computational times are always limited, rising up to about 30 sec.
only in one case.

Time Demand covered Total Percentage CPU time
interval twice demand [sec]

7a.m.-9a.m. 1596 4129 38.65% 21.59
9a.m.-2p.m. 7362 14838 49.62% 23.55
2p.m.-4p.m. 2475 4887 50.64% 1.56
4p.m.-7p.m. 3757 7904 47.53% 13.18
7p.m.-9p.m. 2380 5013 47.48% 1.38

9p.m.-11p.m. 2371 5526 42.91% 33.93

whole day 16832 50071 33.62% 14.93

Table 6: Results for BACOP1 model - minimum number of posts estimated by
LSCM.

The model BACOP2 does not guarantee the coverage of the whole urban area,
but it maximizes a combination of the amount of demand covered once and twice.
In Table 8 the amount of demand covered once and twice, according to different
values of the parameter θ in equation (3.3a), is given for the whole day instance,
together with the needed computational time. The number of posts is set equal to
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Time Demand covered Total Percentage CPU time
interval twice demand [sec]

7a.m.-9a.m. 2188 4129 52.99% 18.92
9a.m.-2p.m. 9643 14838 64.99% 14.39
2p.m.-4p.m. 2987 4887 61.12% 16.9
4p.m.-7p.m. 4788 7904 60.58% 15.54
7p.m.-9p.m. 3054 5013 60.92% 1.84

9p.m.-11p.m. 3161 5526 57.20% 20.32

whole day 25306 50071 50.54% 10.58

Table 7: Results for BACOP1 model - minimum number of posts estimated by
LSCM plus one.

the current number, twenty-nine.

θ Demand covered Demand covered CPU time
value once twice [sec]

0.1 50046 50004 5470.52
0.3 50046 50003 797.29
0.5 50043 50003 144.215
0.7 50046 50004 105.92

Table 8: Results for BACOP2 model - whole day, total demand 50071.

From these results it seems that, even for different values of parameter θ, it is pos-
sible to reach a good single and double coverage. Computational time are reason-
able for some values of θ, such as 0.5 or 0.7, but they may be quite high for others.
As θ = 0.7 seems to provide a good trade off between quality of the results and
needed computational effort, in Table 9 results are given for all the time intervals
for θ = 0.7. For each interval the percentage of demand covered once and twice is
given, together with the needed computational time. Almost complete coverage is
obtained for all the time intervals, except the one from 7a.m. to 9a.m. However, as
for the previously discussed models, also this model does not guarantee that every
emergency call is served. The CPU time is limited, as it rises up to at most about 6
minutes even in the worst case.

5.2 Results for the new optimization model

The model LPCC guarantees that every demand point is assigned to one or more
posts so that all its calls can be served. It takes into account the availability of the
ambulances through the definition of the ambulance capacity, although assuming
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Time Demand covered Demand covered CPU time
interval once [%] twice [%] [sec]

7a.m.-9a.m. 94.62 97.65 38.66
9a.m.-2p.m. 99.93 99.93 4.89
2p.m.-4p.m. 99.75 99.75 0.43
4p.m.-7p.m. 99.94 99.68 98.43
7p.m.-9p.m. 99.92 99.66 11.57

9p.m.-11p.m. 99.76 98.71 349.08

whole day 99.95 99.87 105.92

Table 9: Results for BACOP2 model - θ = 0.7.

that calls are evenly distributed during the considered time interval. Further, it
guarantees that at least a percentage of the low priority calls is served within a
reasonable time. The number of needed ambulances is minimized. The percentage
of the low priority calls to be served within small time is set to 50% and the less
tight time limit is set to 30 minutes.

In Table 10 the objective function and the computational time for each time interval
are given. Results shown in Table 10 are obtained assuming that the calls are evenly
distributed over the considered time interval. The capacity is computed as the
sum of the calls served in the considered interval along one year. The assumption
on the distribution of the calls is a strong one. The time arrival of calls is not
considered and, as a consequence, when a call occurs it is assumed that there is
at least one available ambulance. Results show that, with these assumptions, the
number of ambulances is the same given by the solution of LSCM. In real life, calls
are not evenly distributed and it happens quite often that a call occurs when all the
ambulances are already busy. In fact, in real life, a low priority call may wait for
a considerable time if ambulances are all busy. Thus, to provide a robust solution,
that can deal even with a not even call distribution and with critical situation, we
test the model also on instances in which the computed ambulance capacity is
reduced by a factor 0.5. Results are shown in Table 11.

Results of Table 11 show that, taking into account availability of ambulances, the
number of posts must be increased or more than one ambulance must be assigned
to some of the posts. In the former models basic coverage constraints are consid-
ered, according to which a post is sufficient to cover a demand point, no matter how
many calls occur in the considered area. In this model, on the other hand, a post
may not be enough to serve an area, if the ambulance capacity is low. Thus, more
posts are to be located or more than one ambulance is to be placed at some posts.
As for the other models, the number of posts is influenced by the coverage radius,
that may change during the day, according to traffic conditions. That, together with
the varying amount and distribution of demands, causes the changing of the objec-
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Time interval # ambulances CPU time [sec]

7a.m.-9a.m. 20 243.06
9a.m.-2p.m. 17 909.68
2p.m.-4p.m. 18 889.14
4p.m.-7p.m. 18 979.24
7p.m.-9p.m. 19 344.62

9p.m.-11p.m. 20 235.26

whole day 17 442.66

Table 10: Results for LPCC model.

tive function value. However, the increasing in the number of ambulances is not
the same for all the time interval. This may be caused by the different distribution
of the calls. If in a time interval the calls are spread over the city area the number of
ambulances is forced by the coverage constraint. For such time intervals the num-
ber of ambulances is great even with the non reduced capacity, due to the coverage
constraint, and therefore reducing the ambulance capacity does not cause a signifi-
cant increase in the number of ambulances. On the other hand, if in a time interval
the capacity constraint is tighter than the coverage one, reducing the ambulance
capacity causes a significant increase. The number of ambulances varies from 20,
in the time interval 9 p.m. to 12p.m., to 25, for the whole day instance. The change
in the solutions in different time intervals suggests that a better representation of
the systems may be provided by dynamic models. In Figure 9 posts located by the
solution are shown (star) together with current posts (circle). The solution locates
more posts on the city suburbs than those currently located to guarantee full city
area coverage. Besides, the solution locates more posts in the city center than those
located by LSCM (Figure 8), due to the ambulance capacity and to the distribution
of demand. As a consequence, the number of needed ambulance for the whole day
is slightly higher than the number required for the interval 9 a.m. - 2 p.m..

Time interval #ambulances used CPU time [sec]

7a.m.-9a.m. 21 7828.87
9a.m.-2p.m. 24 13490.1
2p.m.-4p.m. 21 1842.96
4p.m.-7p.m. 21 20911.6
7p.m.-9p.m. 21 33072.4

9p.m.-11p.m. 20 2247.5

whole day 25 2545.16

Table 11: Results for LPCC model – half capacity.

All the considered instances can be solved to optimality, but the computational

22



Figure 9: Current and computed post locations for the whole day. Current post
locations are represented by circle, computed ones by star.

time rises up to about 9 hours in the worst case. However, since such model is to
be solved out of line, the required effort is reasonable.

5.3 Simulation analysis

The results for LPCC provides a more robust solution with respect to those guaran-
teeing only coverage. Nevertheless, it is a simplification of the real life problem, as
it does not represent the dynamic behavior of the system and does not take into ac-
count the simultaneity of the calls. Due to their static nature and to the assumption
on which they are based, the optimization models discussed in Section 3 provide a
set of lower bounds of the number of ambulances needed to guarantee a good ser-
vice. To understand how tight such lower bounds are, the behavior of the tightest
solution provided is tested with the simulation framework.

In order to carry out the simulation test, we selected 7 different instances. Each
instance represents a day from the available data and reports all the required in-
formation to perform the trace-driven simulation such as time instants, call coordi-
nates and triage codes. Tables 12 reports about the instances composition in terms
of calls.

Hereafter, for each simulation experiment, we report the percentage of emergency
(E) and non emergency (nE) calls not served within LA time. Note that each
experiment requires 1 minute of running time on average. The average speed of an
ambulance is set to 25.8 km/h.

Model validation

Generally, the validation of a simulation model requires a quite complex analysis.
This is particularly true in the case of ambulance simulation [8, 6, 5]. Since we are
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day total # of calls
# of calls hospitalization not hospitalization emergency non emergency

Jan 25 256 221 35 153 103
Feb 02 298 251 47 172 126
Mar 08 270 224 46 170 100
Apr 20 268 236 32 146 122
May 20 303 251 52 204 99
Jun 07 284 235 49 156 128
Sep 05 250 219 31 142 108

Table 12: Description of instances used to perform simulation analysis.

interested in the evaluation of not served calls within the LA time, we focus our
validation process on this value.

Table 13 reports the percentage of calls not served within the LA time running the
simulation model over the 7 test instances starting from the actual post location
using 29 ambulances and posts. From these results, we derive that the 63.92% of
the emergency calls are served within the LA time.

Jan 25 Feb 02 Mar 08 Apr 20 May 20 Jun 07 Sep 05 avg.

E 29.41% 48.26% 32.35% 29.45% 45.59% 43.59% 23.94% 36.08%
nE 38.83% 64.29% 41.00% 41.80% 39.39% 50.00% 28.70% 43.43%

Table 13: Simulation results of the current post location.

Table 3 reports the results from the analysis of the calls served within the LA
time for each current post. As reported in Section 2, the average value obtained
over all the posts is 60.1% with a 99.95% confidence interval [56.13%,64.06%].
Since the average value 63.92% belongs to the estimated confidence interval, we
can consider the simulation outcomes enough representative of the real emergency
system behaviour.

Optimization models comparison

We now compare the results obtained by the simulation of the solutions provided
by the optimization models discussed in Section 3.

Table 14 reports the results obtained applying the post locations provided by the
optimization models except those for LSCM which are always above the 98% of
emergency calls not served within the LA time since it uses just 17 ambulances
confirming the remarks derived from the results in Table 6 and 7. The solution of
both BACOP1 and BACOP2 needs 29 ambulances and posts: their average results
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Jan 25 Feb 02 Mar 08 Apr 20 May 20 Jun 07 Sep 05 avg.

BACOP1
E 50.98% 60.47% 51.76% 45.21% 73.04% 53.85% 43.66% 54.14%
nE 60.19% 81.75% 61.00% 48.36% 65.66% 63.28% 44.44% 60.67%

BACOP2
E 42.48% 58.14% 47.65% 50.68% 68.14% 55.13% 45.77% 52.57%
nE 52.43% 76.19% 66.00% 56.56% 64.65% 61.72% 44.44% 60.28%

LPCC
E 73.86% 76.16% 74.71% 67.81% 82.35% 77.56% 68.31% 74.39%
nE 96.12% 97.62% 97.00% 90.98% 80.81% 92.19% 73.15% 89.69%

Table 14: Simulation results of the solution provided by the optimization models.

are similar but worse than those obtained by the current post location (Table 13).
Finally, the LPCC solution seems the worst one with respect to BACOP models
and to the actual post location. These results are essentially due to the fact that
LPCC uses 4 ambulances less than the other post locations.

In order to have a fair comparison, we tested three extended LPCC solutions. Two
solutions are obtained by fixing in the model the number of posts to 29: the first
solution (F) is just a feasible solution whilst the second (M) is computed by forcing
the model to maximize the number of low priority calls served within a given time
limit, i.e. 30 minutes. Finally, the third solution (R) is obtained by simply adding
four current posts randomly chosen among those whose location does not overlap
the posts computed by LPCC. The three solutions uses 29 ambulances and posts
except for F which uses 28 posts.

Jan 25 Feb 02 Mar 08 Apr 20 May 20 Jun 07 Sep 05 avg.

F E 58.82% 79.07% 50.59% 54.79% 84.31% 71.15% 56.34% 65.01%
nE 57.28% 94.44% 65.00% 63.93% 75.76% 78.13% 61.11% 70.81%

M E 47.06% 68.60% 51.18% 51.37% 78.92% 58.97% 47.18% 57.61%
nE 55.34% 88.89% 57.00% 52.46% 70.71% 71.88% 44.44% 62.96%

R E 26.80% 46.51% 37.06% 31.51% 37.25% 34.62% 35.21% 35.57%
nE 42.72% 60.32% 45.00% 34.43% 49.49% 47.66% 35.19% 44.97%

Table 15: Simulation results of the extended LPCC solutions.

Solutions provided by F and M improve the initial LPCC solution: the percentage
of the emergency calls not served within the LA time decreases down to 16.78%
whilst the low priority decreases down to 26.73%. A little bit surprisingly is the
great improvement obtained by the R solution: emergency calls decreases down
to 38.83% whilst non emergency down to 44.72%. Moreover, it is the only one
solution comparable with the current location posts.

The above results suggest a way to improve the solution quality of LPCC adopting
a two step optimization approach. The first step consists in the computation of the
minimum number of posts. Then, the second step consists in adding the remaining
available ambulances to new posts in such a way to maximize the number of non
emergency demands assigned to them. The idea is simply to free the posts, com-
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puted at the first step, from serving low priority demands in order to improve their
emergency demand coverage.

Performance analysis

Considering both the current location post (A) and the one provided by the R ver-
sion of LPCC, we evaluate them varying the average speed, the number of ambu-
lances and the use of smart ambulances.

The first experiment consists in the evaluation of the two solutions when the aver-
age speed changes. First we tested a decrement of the average speed to 20.8 km/h
which means to evaluate what happens when traffic jam increases. Then we tested
an increment to 30.8 km/h which represents the case in which the municipality
arranges reserved lanes for ambulances on the main streets. Table 16 reports the
simulation experiment results: on average, the extended LPCC solution seems to
be a little more efficient than the current post location with respect to the speed
variation.

Jan 25 Feb 02 Mar 08 Apr 20 May 20 Jun 07 Sep 05 avg.

A 20.8
E 54.25% 64.53% 54.71% 48.63% 75.98% 66.03% 45.77% 58.56%
nE 61.17% 88.10% 66.00% 56.56% 72.73% 72.66% 50.00% 66.74%

R 20.8
E 16.99% 28.49% 21.18% 17.81% 38.24% 26.28% 14.79% 23.40%
nE 28.16% 47.62% 26.00% 31.15% 28.28% 29.69% 17.59% 29.78%

A 30.8
E 54.25% 61.05% 48.24% 50.68% 63.73% 60.90% 49.30% 55.45%
nE 54.37% 89.68% 56.00% 59.02% 59.60% 69.53% 52.78% 63.00%

R 30.8
E 11.11% 28.49% 17.65% 14.38% 33.33% 21.79% 15.49% 20.32%
nE 28.16% 46.03% 30.00% 27.87% 26.26% 28.91% 19.44% 29.52%

Table 16: Performances changing the average speed.

The second experiment is carried out by adding one ambulances but keeping the
same number of posts and their location. The idea is to evaluate the impact of a
new single ambulances.

Jan 25 Feb 02 Mar 08 Apr 20 May 20 Jun 07 Sep 05 avg.

A+1
E 32.03% 44.77% 38.24% 31.51% 48.53% 48.72% 28.87% 38.95%
nE 33.01% 57.94% 38.00% 35.25% 37.37% 47.66% 28.70% 39.70%

R+1
E 39.87% 54.07% 46.47% 43.15% 55.88% 46.79% 48.59% 47.83%
nE 54.37% 60.32% 54.00% 45.08% 49.49% 53.13% 38.89% 50.75%

Table 17: Performances adding one new ambulance.

Table 17 reports the results of the experiment. We observe that in both cases the
average performance of the system slightly decreases. Notice that to add a new
ambulance, we need to impose that all posts can host two ambulances at the same
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time instead of just one. Since an ambulance is addressed to the closest free post
location, during the simulation it could happens that some posts are uncovered
whilst some other posts are covered by two ambulances. By consequence, it could
happen that the overall coverage is unbalanced, i.e. ambulances are gathered in few
posts. This experiment suggests the need to individuate a proper location for each
new ambulance. Ideally, every time the number of ambulances increases, all the
ambulance posts should be changed.

The third experiment consists in the evaluation of the smart ambulances. In the
previous experiments, the operation center does not have the capability to assign a
new mission to an ambulance which is coming back to a post. From a technologi-
cal point of view, smart ambulances means the use of a Global Positioning System
(GPS) receiver for each ambulance and a secure communication link between am-
bulances and the operation center.

Jan 25 Feb 02 Mar 08 Apr 20 May 20 Jun 07 Sep 05 avg.

A E 17.65% 28.49% 21.18% 26.71% 25.49% 26.28% 15.49% 23.04%
nE 30.10% 50.00% 30.00% 23.77% 19.19% 35.94% 22.22% 30.17%

R E 18.95% 33.72% 25.88% 23.97% 26.96% 23.72% 21.83% 25.01%
nE 22.33% 48.41% 30.00% 29.51% 25.25% 35.94% 25.00% 30.92%

Table 18: Performances using smart ambulances.

Table 18 reports the results of the experiment. We observe a performance improve-
ment with respect to the same solution without smart ambulances. This indicates
the need of a more accurate use of the available ambulances when they are enroute
to a location while they are not serving a call. For instance, the case in which an
ambulance serving a low priority call can be reassigned to a new emergency call
merits further investigation.

6 Conclusions

The emergency service is an important aspect in the life of every city and due
to limited resources requires a careful management. Mathematical tools may be
useful in dealing with such a problem. In this paper, the authors combine statis-
tical analysis, linear programming model and simulation to solve the ambulance
location problem, with the aim of providing a decision aided tool. The models
have been tested on the case of Milano urban area. Computational results show
that the approach might provide suggestions and guidelines, while keeping rea-
sonable the needed computational time. The analysis of the available data point
out the main problems of the system. Then integer linear programming models,
both standard and tailored on the considered case, are used to derive new possible
solutions. Such models cannot capture all the aspects of the problem, especially
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those related to the dynamic behavior of the system. Thus the obtained solutions
behavior is tested, through simulation, over a real life situation. Moreover, the sim-
ulation model allows to evaluate how the performances of the emergency system
can be improved adopting, for instance, smart ambulances. Currently, the results
are subject of discussion with the emergency service management of Milano.
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