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Abstract. We study and derive a method to speed up kurtosis-based
FastICA in presence of information redundancy, i.e., for large samples. It
consists in randomly decimating the data set as more as possible while
preserving the quality of the reconstructed signals. By performing an
analysis of the kurtosis estimator, we find the maximum reduction rate
which guarantees a narrow confidence interval of such estimator with
high confidence level. Such a rate depends on a parameter β easily com-
puted a priori combining together the fourth and the eighth norms of
the observations.

Extensive simulations have been done on different sets of real world
signals. They show that actually the sample size reduction is very high,
preserves the quality of the decomposition and impressively speeds up
FastICA. On the other hand, the simulations also show that, decimating
data more than the rate fixed by β, the decomposition ability of FastICA
is compromised, thus validating the reliability of the parameter β. We
are confident that our method will follow to better approach real time
applications.

1 Introduction

Independent Component Analysis (ICA) ([1,2,3,4]) is a method to identify a
set of unknown and generally non-Gaussian source signals whose mixtures are
observed, under the only assumption that they are mutually independent. ICA
has become more and more popular and, thanks to the few assumptions needed
and its feasibility, it is applied in many areas such as blind source separation
(BSS) which we are interested in [5].

More in general, ICA aim is to describe a very large set of data in terms
of variables better capturing the essential structure of the problem. In many
cases, due to the huge amount of data, it is crucial to make ICA analysis as fast
as possible. From this point of view, one of the most popular algorithm is the
well-known FastICA [6], which is based on the optimization of some nonlinear
contrast functions [7] characterizing the non-Gaussianity of the components.
Because of its widespread uses, in this paper we refer only to the kurtosis-based
FastICA [6].
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Our aim is to speed up FastICA by a suitable pruning of the linear mixtures
that preserves the output quality. Essentially, the method proposed consists in
randomly select a subset of data of size d′ less than the original size d whose
sample kurtosis is not too far from the right one. More in details, we perform an
analysis of the kurtosis estimator on the sub-sample with the purpose to find the
minimum reduction ratio ρ = d′

d which guarantees a narrow confidence interval
with high confidence level.

In particular, we identify a data-dependent parameter, called β, which com-
bines both fourth and eighth norms of the observations, from which the reduction
rate depends on.

The main step in our method is to compute β on the mixed signals and obtain
the actual reduction ratio ρ = β

δε2 , where ε and δ are the fixed confidence interval
parameters of the sub-sample kurtosis. Then we randomly decimate the sample
and we apply FastICA to the reduced dataset.

To assess the reliability of β many simulations have been done on different sets
of both real world and artificial signals. The experiments show that, accordingly
to the β, a consistent ratio of reduction can be normally applied when the sample
size is considerable, achieving a great benefit in terms of computation time.
Furthermore, since β (and consequently ρ) decreases also with respect to the
number of signals n, the simulations show that the computation time is weakly
affected by n. Moreover, the experiments give also prominence that when forcing
the reduction ratio over the bounds derived by our analysis, the reconstruction
error of FastICA grows noticeably.

Section 2 describes the pruning methodology. The effect of the data reduction
will be analyzed in term of analysis of the kurtosis estimator in Section 3. In the
same section the statistical meaning of the parameter β is explained. In Section 4
we apply the method on a large set of real signals extracted from audio signals
showing the performance of the proposed method.

2 Random Pruning

The model we assume for ICA is instantaneous and the mixture is linear and
noiseless:

X = AS,

where the n × d matrices X and S are respectively the observed mixtures and
the mutually independent unknown signals, while A is a full rank n × n mixing
matrix. Thus, n is the number of mixed non-Gaussian signals and d is their
length. Therefore, for each i ∈ [1 . . n] the i-th row xi of X represents a i.i.d.
sample of size d of the random variable xi representing the i-th mixture.

The goal of ICA is to estimate the demixing matrix Ŵ ≈ A−1 in order to
reconstruct the original sources signals

Ŝ = ŴX.
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Kurtosis-based FastICA is a very simple fixed-point algorithm with satisfac-
tory performance, but it is time consuming for large scale real signals because
its computational complexity is O(nd3) [6].

In order to spare running time, before running FastICA we operate a random
pruning on the mixtures procedure reducing the data by decimating the sample
up to the minimum size allowed by β.

Denoting with ‖xi‖p the usual p-norm, the overall procedure, with the pre-
processing pruning preliminary phase, can be summarized in the following steps:

Pruning preprocessing

1. β(xi) =
‖xi‖8

8

‖xi‖8
4

∀i ∈ [1 . . n]

2. β = max
xi

β(xi)

3. d′ =
1

δε2 (dβ − 1) ≈ dβ

δε2

4. random draw Id′ ⊆ [1 . . d] of size d′

5. ∀i ∈ [1 . . n] ∀j ∈ Id′ yij = xij so that yi = (yij1 , . . . , yijd′ )
FastICA

1. Perform FastICA on the matrix Y (whose i-th row is yi) instead
of X, obtaining Ŵ by maximizing the sequence kurt

[
wT

i Y
]
, where

wT
i is the i-th row of Ŵ

2. Reconstruct the signals Ŝ = ŴX.

Note that the decimation process throws away the same set of intermediate
data points in all mixtures.

3 Theoretical Motivation

In this section we look for a lower bound for the reduction ratio ρ. The main
step in FastICA where the sample size is relevant is when the kurtosis is being
estimated on the data set.

Assuming, as usual, that each mixture xi has zero mean and unitary variance,
the kurtosis of each random variable xi reduces to its fourth moment M4[xi].
Thus we analyze the effects coming from the use of a reduced data set in terms
of confidence interval of the sample fourth moment.

The fourth moment estimate is generally performed on the whole sample xi

of size d via the sample fourth moment M̂
d

4[xi]:

M̂
d

4[xi] =
1
d

d∑

t=1

x4
it,

having the following mean and variance:

E
[
M̂

d

4[xi]
]

= M4[xi], var
[
M̂

d

4[xi]
]

=
1
d
(M8[xi] − (M4[xi])2).
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Let us now estimate M4[xi] on the basis of the sub-sample yi.
Using the Chebyschev inequality we obtain the probability bounds:

Pr
{

M4[xi](1 − ε) ≤ M̂
d′

i

4 [yi] ≤ M4[xi](1 + ε)
}

≥ 1 −
var

[
M̂

d′
i

4

]

ε2(M4[xi])2

= 1 − M8[xi] − (M4[xi])2

d′ε2(M4[xi])2
.

Setting the previous term equal to the confidence 1−δ, fixing the margin of error
ε and introducing the sample moments, we derive the minimum sample size d′i
which respects the probability bound above:

d′i =
M̂

d

8[xi] − (M̂
d

4[xi])2

δε2(M̂4[xi])2
.

Expressing the sample moments in terms of norms:

M̂
d′

4 [xi] =
1
d′

‖xi‖4
4 and M̂

d′

8 [xi] =
1
d′

‖xi‖8
8,

we obtain:

d′i =
1

δε2

(
d‖xi‖8

8

‖xi‖8
4

− 1
)

.

It is evident that the minimum allowed sample size depends on the ratio of the
two norms ‖xi‖8

8 and ‖xi‖8
4. Their statistical meaning is related to the variance

of the estimator of the fourth moments estimated on the whole sample as:

var
[
M̂d

4 [xi]
]

=
1
d2 (‖xi‖8

8 − 1
d
‖xi‖8

4)

Of course a low variance implies a good estimate and the possibility of highly
reduce the sample size d′i.

Since it holds that:
1
d

≤ ‖xi‖8
8

‖xi‖8
4

≤ 1,

we note that the better ratio for the variance is ‖xi‖8
8 = 1

d‖xi‖8
4. On the other

side, the variance of the estimator is highest when ‖xi‖8
8 = ‖xi‖8

4.
Introducing the parameter

β = max
xi

‖xi‖8
8

‖xi‖8
4

the minimum allowed sample size is:

d′ =
1

δε2 (dβ − 1) ≈ dβ

δε2

and the reduction ratio is:

ρ =
d′

d
=

β

δε2 .
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4 Numerical Experiments

In this section we report the summary of extensive computer simulations ob-
tained from the executions of FastICA on different set of sampled source signals:
speech, musical and environmental sounds of various nature, mixed with ran-
domly generated matrix. All the experiments have been carried out on Pentium
P4 (2GHz, 1GB RAM) through software environment MATLAB 7.0.1.

The main purpose of the simulations is to apply the preprocessing pruning
technique in order to appreciate the performance of FastICA both in terms of
computation complexity and of quality of the reconstructed signals. Specifically,
we are interested in validating the reliability of the parameter β observing the
performance decay. This attitude may find application in real time scenarios
where high sampling rate can make prohibitive the use of the ICA technique.

All signals considered in the experiments are very big (order of magnitude 105

and 106) because for short sample size FastICA sometimes fails to converge or
gets stuck at saddle points [8].

To measure the accuracy of the demixing matrix we use the performance index
reported in [9], which represents a plausible measure of discrepancy between the
product matrix P = (pij)n×n = AŴ and the identity matrix, defined as:

Err =
n∑

i=1

⎛

⎝
n∑

j=1

|pij |
max

k
|pik| − 1

⎞

⎠ +
n∑

j=1

⎛

⎝
n∑

i=1

|pij |
max

k
|pkj |

− 1

⎞

⎠ .

Due to the limit of space we present here only the most illustrative example,
which examines signals of size d = 106. Table 1 shows the results on different
groups of n signals (with 2 ≤ n ≤ 10).

Table 1. Average performance index and average computation time of FastICA on
various groups of signals (from 2 to 10 with d = 106). Second column reports the
reduction ratio ρ < 1, third and fourth columns report the performance index both with
full and reduced sample size respectively. The last two columns report the computation
times in both the cases. The numbers between brackets are the standard deviations
calculated on the 30 trials.

n ρ < 1 Err (ρ = 1) Err (ρ < 1) Time (ρ = 1) Time (ρ < 1)

2 0.03 (0.01) 0.02 (0.05) 0.03 (0.02) 2.5 (0.9) 0.1 (0.0)

3 0.27 (0.01) 0.04 (0.02) 0.05 (0.02) 4.5 (0.8) 1.3 (0.6)

4 0.25 (0.07) 0.11 (0.11) 0.11 (0.05) 6.7 (0.8) 1.7 (0.6)

5 0.22 (0.07) 0.18 (0.07) 0.33 (0.63) 9.4 (1.3) 2.1 (0.7)

6 0.19 (0.07) 0.37 (0.15) 0.46 (0.14) 12.0 (1.7) 2.4 (0.9)

7 0.16 (0.06) 0.62 (0.70) 0.97 (0.97) 14.7 (1.1) 2.4 (1.0)

8 0.16 (0.06) 1.08 (0.75) 1.44 (1.12) 18.5 (2.1) 2.9 (1.1)

9 0.12 (0.04) 1.23 (1.30) 1.75 (2.70) 26.5 (3.8) 2.8 (0.9)

10 0.11 (0.04) 1.43 (0.29) 1.91 (2.23) 33.5 (3.4) 2.8 (1.0)
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For each group we randomly generated 30 mixtures in order to observe, on
average, both the time of convergence and the performance index of FastICA for
the whole and the reduced samples respectively. All the experiments are obtained
at confidence level 0.9 and margin of error 0.1.

Based on the simulations we can draw the following conclusions.

1. Sample size is highly reduced (up to one hundred times) while the quality
of the decomposition is preserved, as highlighted by the performance index.
Here, in particular, β = ρ ∗ 10−3 is sufficiently small, lying in the range
between 10−5 and 10−4.

2. The discrepancy between the error given by the whole sample and that given
by the pruned sample increases very slowly with n (number of signals) as
shown graphically in Fig. 1 (the lowest two errors corresponding to the third
and fourth column of Table 1).

3. To assess the reliability of β, in the same figure we report the data obtained
with a reduction ratio of one order of magnitude under that provided by
analysis, i.e., with ρsub = 10−1ρ (highest error in the graphic). This experi-
ment shows that the error grows noticeably.

4. As far as computation time is concerned, Fig. 2 (average times corresponding
to the fifth and sixth column of Table 1) highlights the impressive gain of the
computational cost. This gain depends on the fact that the computational
cost is cubic with respect to sample size. Moreover, it can be noticed that in
our pruning FastICA the computation time depends weakly on the number
of signals because β decreases with respect to n.

2 3 4 5 6 7 8 9 10
0

1
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8

# mixed signals

E
rr

or

Full samples (ρ = 1)

Reduced samples (ρ < 1)

Reduced samples (10−1ρ)

Fig. 1. Three average errors measured for various groups of signals (d = 106): the first is
obtained with ρ = 1 (without reduction), the second decimated with ρ = β∗103 (where
β is computed in according to the previous analysis) and the third with ρsub = β ∗ 102

(reducing β of one order of magnitude)
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Fig. 2. Average times of FastICA on different groups of signals of full and reduced size:
the first is obtained with ρ = 1 (without reduction), the second by decimation with
ρ = β ∗ 103

5 Conclusions

The contribution of this paper is the derivation of a signal-dependent parameter
useful to randomly decimate high-dimensional mixtures in order to reduce the
time in kurtosis-based FastICA executions. Such a parameter has been validated
both in terms of rigorous high-order moments analysis and by means of computer
simulations on real word signals. The results encourage to study the pruning
technique deeper by exploring different sub-sampling methodologies and different
contrast functions used in ICA. Finally, we are confident that our method can be
used in real-time applications dealing with high sampling rate, where the online
decimation permits to reasonably reduce the mixture size enabling FastICA to
operate tightly.

References

1. Comon, P.: Independent component analysis - a new concept? Signal Processing 36,
287–314 (1994)

2. Jutten, C., Herault, J.: Blind separation of sources, part i: An adaptive algorithm
based on neuromimetic architecture. Signal Processing 24, 1–10 (1991)

3. Hyvrinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley
& Sons, Chichester (2001)

4. Cichocki, A., Amari, S.: Adaptive Blind Signal and Image Processing: Learning
Algorithms and Applications. John Wiley & Sons, Chichester (2002)



192 S. Gaito and G. Grossi

5. Cardoso, J.: Eigen-structure of the fourth-order cumulant tensor with application
to the blind source separation problem (1990)

6. Hyvärinen, A., Oja, E.: A fast fixed-point algorithm for independent component
analysis. Neural Computation 9, 1483–1492 (1997)

7. Hyvärinen, A.: Fast and robust fixed-point algorithms for independent component
analysis. IEEE Transactions on Neural Networks 10(3), 626–634 (1999)

8. Tichavsky, P., Koldovsky, Z., Oja, E.: Performance analysis of the fastica algorithm
and cramr-rao bounds for linear independent component analysis. IEEE Transaction
on Signal Processing 54(4), 1189–1202 (2006)

9. Amari, S., Cichocki, A.: Recurrent neural networks for blind separation of sources.
In: Proceedings of International Symposium on Nonlinear Theory and Applications.
vol. I, pp. 37–42 (1995)


	Speeding Up FastICA by Mixture Random Pruning
	Introduction
	Random Pruning
	Theoretical Motivation
	Numerical Experiments
	Conclusions



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




