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Abstract: The application of AutoRegressive 
(AR) models to extract spectral parameters from 
residual ECG (rECG) signals is exploited. In 
particular, a new method based on AR spectra is 
employed to estimate the dominant atrial cycle 
length (DACL) on ECG obtained from patients 
undergoing episodes of atrial fibrillation (AF). The 
traditional FFT-based spectral approach will be 
compared with the new method. Potentialities and 
possible superior performances of AR spectra are 
documented and discussed. 
 
INTRODUCTION: 

In the last two decades, spectral analysis of the 
residual ECG signal (rECG, i.e. an ECG signal in 
which ventricular components were canceled 
through beat averaging techniques) has been 
employed to characterize atrial activities. The 
method is particularly relevant during atrial 
fibrillation (AF), after infusion of drugs or when 
various abnormal atrial rhythms are present. 
Typically, for a patient undergoing AF, a main 
spectral component f0 is found in the range 3-12 
Hz. The inverse of f0 (the so called Dominant 
Atrial Cycle Length, DACL) has been related to 
atrial refractoriness and therefore to the probability 
of AF-maintenance through atrial electrical 
remodeling [1]. Recently, different authors have 
observed an increase DACL before spontaneous 
termination of AF [2]. 
The same technique was successfully employed 
for the analysis of long-term Holter recordings: in 
this framework however, movement artifacts and 
external noises may become critical factors for a 
reliable spectral estimation. A step forward would 
be the development of techniques able to provide 
robust, automatic estimation of rECG spectral 
parameters in long-term Holter recordings. 
Commonly, non-parametric, FFT-based methods, 
like the Welch's averaged, modified periodogram 
method, are employed for DACL computation [3-

4]. Nevertheless, model-based spectral estimators 
have potential theoretical advantages when dealing 
with low-components, noisy signals. In addition, 
the use of a spectral-decomposition method [5] 
would provide a natural alternative for f0 estimate. 
In this paper, rECG were constructed for each 
recording in the spontaneous termination AF 
database available from PhysioNet. Power spectra 
of rECG were obtained with estimators based on 
AR models and FFT. The different f0 frequencies 
derived from the two approaches were then 
compared. 
 
METHOD: 

Atrial Fibrillation Database. We based our 
analysis on the 2004 PhysioNet/Computers in 
Cardiology Challenge Database. It includes a 
collection of 80 digitized two-channel ECG 
recordings. Each record is a one-minute segment 
of atrial fibrillation, sampled at 128 Hz. All the 
recordings therein were considered. 
 
Signal pre-processing. Extraction of the residual 
ECG was obtained through beat-to-beat 
subtractions of an averaged QRST complex [2-4]. 
Despite the dataset already contained QRS 
annotations, ventricular beats were mainly 
misclassified. Thus, QRS detection was performed 
using a modified version of OSEA [6], a freely 
available ECG library. QRS onsets and widths 
were further refined by means of a second publicly 
available software, ECGPUWAVE [7]. Then, on a 
lead-by-lead basis, separate average templates 
were built for QRS and T waves. Subtraction of 
the templates was performed after a warping 
procedure and subsequent templates were 
connected via linear interpolation. 
 
Spectral Estimation. The power spectral density 
(PSD) of rECG was firstly estimated using the 
Welch’s periodogram (512-points Kaiser’s 
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window with an overlap of 256 points). The 
technique ensured a spectral resolution of 0.25 Hz 
and a reasonably low variance of the PSD 
estimator (averaged over 29 windows). The non 
parametric spectrum was finally inspected for a 
peak in the range 3-12 Hz. The frequency fNP at 
which the peak maximum was occurring is the 
non-parametric estimate of f0 (method M1). 
 
Autoregressive Spectral Estimation. An auto-
regressive (AR) model  
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where wn is a white Gaussian noise with zero mean 
and standard deviation σG, was fitted for each 
rECG series (covariance method). The rECG 
series were preliminarily down-sampled at fS=32 
Hz to simplify the fitting procedure. We found 
empirically that M=8 was a reasonable value for 
the order of the AR model. Please refer to the 
concluding section for a discussion on this issue. 
The PSD for an AR process is given by 
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Using the Cauchy residue theorem, the total power 
of the rECG series, σ

2
rECG, can be decomposed [5] 

into M contributions, one for each pole of the AR 
model: 
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where γk is the residue relative to pole pk. 
Consequently the PSD can be separated into M 
contributions, relative to each pole: 
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We considered three different parametric estimates 
of f0.: namely, fL (method M2), fC  (method M3) 
and fP (method M4). A brief description of the way 
they were computed is reported below. Method 
M2: Firstly, we selected the pole pL in the range 3-
12 Hz with the largest residue γL (thus the largest 
associated power). The frequency fL was given by 

)2/()( πϑ LSL pff = , 

where θ(x) is the phase (expressed in radiant) of 
the complex number x. Method M3: The pole pL, 
compute above, is associated with the PSD 
component SL(f). The frequency fC is the abscissa 
at which SL(f) reaches its maximum value. The 
value was obtained analytically, using a formula 
which is omitted here for compactness reasons. 
Method M4. Finally, we numerically located in the 
range 3-12 Hz the frequency fP at which the 
parametric PSD(f) reached its maximum. fP is the 
parametric equivalent of fNP. 
 
RESULTS: 

The power spectral densities of two different 
rECGs are shown in Fig. 1.  
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Fig. 1. Power spectral densities of two different rECGs: recoding N01 lead 1 (a) and N03 lead 1 (b). The non-
parametric spectrum (rough line), the parametric spectrum (thick line, M=8) and the SL component (dash-dot line) are 
superimposed. The smaller box in the upper right corner of each panel is a magnification of the area contained in the 
dotted box. The vertical dotted lines delimit the range 3-12 Hz. The markers show the position of the four estimates of f0: 
fNP (method M1, star), fL (method M2, cross), fC (method M3, black dot) and fP (method M4, circle). In panel (b), the 
black triangle marks the position of f0 as obtained from lead 2 in the same recording. 
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Figure 2. Mean (gray) and standard (black) errors of the 

differences between f0 estimates, as obtained from the 

two methods indicated in abscissa.  

 
It is worth noting that The FFT- and AR-based 
spectra are in good agreement. In the case of panel 
(a) the four methods lead to very similar results. 
The advantages of the AR approach emerge when 
the intensity of the fibrillatory wave is rather small 
and not well concentrated in frequency, as in panel 
(b). In this case method M1 and M4 failed in 
providing a value of f0 which might be in 
agreement with the other ECG lead (where the 
spectral peak was clearly evident). 
We then tested if the different methods were able 
to provide consistent results. A comparison of the 
different approaches is shown in Fig. 2. All the 
techniques were in broad agreement among them. 
M2 and M3 provided the closest estimates of f0. 
The results obtained using M1 were also in close 
agreement with M2 and M3 but an average over-
estimation of DACL was observed. Conversely, 
method M4 showed the largest deviation from the 
other approaches.  
The database contained two-channel ECG 
recordings and a value of f0.was obtained from 
each lead. We tested if these two estimates were in 
agreement among them, for each of the four 
methods. Given that the estimates were correct, 
the main idea under this comparison was that the 
more the two estimates were close together the 
more a method was likely to be precise. We 
observed that M2 and M3 provided the smallest 
average differences among leads (M1: -0.234 ± 
0.742 Hz, M2: -0.163 ± 0.409 Hz, M3: -0.158 ± 
0.427 Hz, M4: -0.208 ± 0.824 Hz, please note that 
the spectral resolution of the FFT-based method 
was 0.25 Hz). But more significantly, the standard 
deviations of M2 and M3 were the smallest, 
suggesting a possible higher accuracy. 
 

CONCLUSIONS: 

In the paper three parametric methods to estimate 
f0 were suggested. They proved to be in good 
agreement among them and with the classical 
FFT-based approach. In particular, M2 and M3 
showed to be the most consistent among each 
other and they offered the smallest variation 
between estimates on different leads. Being M2 
less computationally demanding, we selected it as 
our first choice method.  
M4 performed poorly, compared to the other three 
methods. This is related to the order of the model 
we selected (M=8). When M is small, the AR 
models extract the prevalent features of the rECG 
signals, among which the fibrillatory wave emerge 
clearly. In this situation, M2 and M3 excel. On the 
contrary, when M is very high, the parametric 
spectrum tends to be identical to the non-
parametric one. Thus M1 and M4 lead to similar 
results, while M2 and M3 are penalized by over-
fitting effects. In this limit, the fibrillatory wave is 
buried among other details and the convenience of 
the AR approach over the classical one vanishes. 
We numerically verified that values of M between 
7 and 10 offered the best compromise among these 
two limits. 
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