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Setting the optimal limit value of motor         

insurance coverage by stochastic optimization 

Lucie HANELOVÁ, Jiří VALECKÝ 
 

1. Introduction 

Decisions about the policy conditions of an insurance 

product, such as the limit value, coinsurance and so on, 

are generally made in a passive manner; that is, the pol-

icyholder chooses an insurance product from one of the 

available insurers or selects one of the available settings 

of a given insurance product. Clearly, the final choice 

represents a solution that is satisfactory rather than op-

timal. By contrast, this paper deals with an active ap-

proach to setting policy conditions, specifically the 

limit value, for motor insurance to maximize the cover-

age as well as to minimize the costs of insurance. 

Thus, the decision making about the optimal insur-

ance product is limited mainly to the coverage of po-

tential insurance claims. However, higher coverage 

also yields a higher premium. In addition, when several 

criteria are considered, the decision-making process in-

volves one of various multi-criteria methods that con-

sist mainly of calculation weights representing the im-

portance of each of the criteria for the policyholder. In 

the process, the weights need not be determined via the 

AHP process of Saaty (1980) (see for instance Bo-

rovcová, 2017) but may also be derived in a more un-

derstandable manner (see Tzeng and Huang, 2011; 

Zmeškal et al., 2013; or Rao, 2014 for an overview of 

the methods). However, this process is sensitive to the 

correct evaluation of the policyholder’s preferences, 

and the final choice may be influenced significantly by 

the importance weights. 

If only financial criteria existed, it would be possi-

ble to evaluate the total costs related to each variant, 

that is, the claim severity, required premium, amount of 

coinsurance and deductibles and so on. In our case of 

two criteria, comparing the premium with the limit 

value appeared to be sufficient. However, insurers usu-

ally apply a multiplicative tariff, yielding a constant ra-

tio of the premium and limit value. It follows that a 

given percentage increase in the limit value yields the 

same percentage increase in the premium. 

Unfortunately, these approaches do not respect the 

stochastic nature of insurance claims and even the fact 

that the premium is supposed to be paid even if no in-

sured accident occurs. As a result, the potential loss is 

totally covered but the policyholder, on the other hand, 

pays for expensive insurance that will never or rarely 

be used (with a very small probability). By contrast, an 

active approach to setting policy conditions provides 

the optimal condition when the insurance is not so ex-

pensive and the potential loss is not fully covered with 

very low probability. However, this alternative ap-

proach requires one of the stochastic programming 

techniques. For an introduction to stochastic optimiza-

tion, we recommend some general books addressing 

this issue, for example those by Kall and Mayer (2011) 

and King and Wallace (2012). 

Studies representing the active approach to setting 

insurance conditions, in particular the problem of the 

optimal limit value and deductibles, are available in the 

journal literature and are based mainly on the expected 

utility theory (e.g. Zhou et al., 2010; Lu and Meng, 

2011; Liu et al., 2015). However, Wang and Huang 

(2016), for instance, extend this approach by incurring 

VaR and CVaR in optimization, and Pflug et al. (2017) 

even incorporate the model uncertainty as a decision 

variable. Further, an extension involving the prospect 

theory is available (e.g. Sung et al., 2011; Chen et al., 

2015; Cheung et al., 2015). 

However, some studies do not use the utility theory 

and establish the expected costs of the insured directly; 

for example, Gaffney and Ben-Israel (2016) derive the 

optimal deductibles as well as the limit value under the 

insurance budget, and Valecký (2017) determines the 

optimal limit value under the assumption that the po-

tential loss follows an exponential probability distribu-

tion. Although the premium is set as an increasing func-

tion of the limit value, the insurance rate is determined 

ad hoc and does not respect the true relationship be-

tween the pure premium and the limit value. 

The goal of the paper is to determine an optimal 

limit value of motor insurance coverage and to respect 

the trade-off between the pure premium and the given 

limit value as well as the stochastic nature of the poten-

tial individual loss that is assumed to follow a gamma 

distribution. However, we consider the pure premium 

only because the safety, as well as the expense loadings, 

are not known. 

The remainder of the paper is organized as follows. 

The general approach to setting the pure premium is de-

scribed in Section 2. In Section 3, we formulate the op-

timization problem of stochastic programming and de-

scribe the approximation to the closed-form solution as 

well as showing how to evaluate the quality of the so-

lution obtained from this approximation. Finally, we 
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present an illustrative example in Section 4, in which 

the optimal limit value is determined for a specific pol-

icyholder using sample average approximation and the 

quality of the solution is evaluated. Section 5 provides 

a discussion and concluding remarks.  

2. Pricing motor hull insurance with a limit value 

In this section, the fundamental principle for setting the 

pure premium is described. For more details on how the 

final premium is determined, we refer the reader to 

Olivieri and Pitacco (2011) or Gray and Pitts (2012).   

2.1 Insurance claim and benefit  

A policyholder may suffer an individual potential loss 

X  that is split as follows:  

 
   

,
I P

X X X   (1) 

where 
 P

X  is the part retained by the policyholder and
 I

X  represents the loss reimbursement claimed by the 

policyholder and paid by the insurer, that is, the insur-

ance benefit. 

The method for determining the benefit 
 I

X  de-

pends on the policy conditions; let us say that it is a 

function of the individual potential loss, thus 
   .I

X f X   

Assuming an insurance policy with a limit value, 

say L , both parts of the potential loss are defined as 

  if ,

if ,

I X X L

L X L
X






 


 
  0 if ,

if ,

P X L

X
X

L X L



 


 


 (2) 

where X  is the random potential loss.  

2.2 Setting the pure premium  

However, the policyholder has the possibility of suffer-

ing several individual losses with varying severity. 

Thus, the total potential loss S  is a result of the random 

sum of individual random losses, that is  

 1 2 ,nS X X X     (3) 

where n  is the random number of insured accidents. 

Recalling the rule for splitting the potential loss (2) 

applied to each individual loss, the total insurance ben-

efit is a random variable defined as follows: 

        
1 2 .

I I I I

nS X X X     (4) 

General formula for the pure premium  

In addition to the insurer’s costs and required profit as 

well as the market conditions in the insurance market, 

the final premium is determined primarily by the 

amount of the total potential benefit 
 

.
I

S The part of 

the premium that is supposed to cover these potential 

claims is referred to as the pure premium and is yielded 

by the equivalence principle as a present value of the 

expected total potential benefit, thus 

   .I
P PV E S 

 
 (5) 

However, in motor insurance or non-life insurance 

generally, the discounting of future losses is omitted be-

cause of short maturity (less than 1 year). The formula 

for a pure premium may be rewritten as 

 
     

,
I I

P E S E N E X    
   

 (6) 

where  E N  and 
 I

E X 
 

 are the expected claim fre-

quency and the expected claim severity, respectively.  

Recall that the loss covered by the insurer depends 

on rule (2) and that the potential individual loss X  is 

random. Then, the expected severity depends on the 

probability that X  exceeds the limit value ,L  thus 

 

     

 

|

,

I
E X Pr X L E X X L

Pr X L L

     
 

  
 (7) 

where  Pr X L  is the cumulative distribution func-

tion of ,X  that is,  XF L , and 

   1 .Pr X L F L    

Note that the expected frequency, as well as the 

probability distribution of X , does not depend on the 

limit value .L  Then, the equivalence principle involv-

ing the limit value gives the following general formula 

for the pure premium: 

          | .1X XF L E XN XP L LE F L     

Pure premium with gamma-distributed severity 

Let us assume that the distribution of claim frequency 

follows a discrete probability distribution, for example 

a negative binomial with the rate parameter   and the 

overdispersion parameter  , while the claim severity is 

gamma distributed,  ,Ga   , where   is the shape 

and   is the scale parameter.  

The probability density function of the gamma dis-

tribution is defined as 

  
 

11
x

Xf x x e 
 





   (8) 

and the cumulative distribution function (cdf) is given 

by  

    
 0

1
, ,

x

X

x
F x f u du  

 

 
   

  
  (9) 

where  , x    is the lower incomplete gamma func-

tion. 
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Let us assume a policyholder with an expected 

claim frequency with the value of 0.0841 and a gamma-

distributed severity that has shape and scale parameter 

values of 1.1193 and 29,362.736, respectively. The 

next figure shows the pure premium of this policy-

holder for various limit values. 

 

Figure 1 Relationship between the pure premium and the 

limit value for the given policyholder 

Clearly, the pure premium is increasing, and it ap-

pears to be constant for the limit values higher than 

250,000. In fact, it is still increasing as the limit value 

moves towards infinity. However, the probability that 

the individual loss will exceed the given limit value is 

so small that it yields a very small increase in the pure 

premium. 

2.3 Rate making 

The pure premium actually represents the statistical 

premium that covers the expected benefit. However, 

the premium is rarely set in this way; rather, insurers 

apply rates. Then, the pure premium, as well as the final 

premium, is determined as a multiple of the limit value. 

To derive the rate for our purpose, we regress the 

pure premium on the limit values in the interval 

 0,92000 , setting the constant to zero. The final rate 

for a given policyholder corresponds to the slope pa-

rameter, which is estimated to have a value of 0.0334. 

Then, the pure premium is given by 

 ,P r L   (10) 

where r  is the insurance rate. 

3. Stochastic optimization problem 

The goal of the optimization problem is to set the opti-

mal limit value to minimize the potential loss that is re-

tained by the policyholder, that is, 
 

,
P

X  who is also 

supposed to pay the premium .P   

Thus, the total financial costs of the policyholder 

can be defined as  

 
 P

X P X L P    , (11) 

which may be rewritten as  

  1 .X L r L X r L       (12) 

However, even if the loss is smaller than the limit 

value, the policyholder only pays the premium. Both 

cases may be rewritten as the objective function in the 

form of 

  
 1 if ,

,
if ,

X r L L X
G L X

r L L X

   
 

 
 (13) 

or 

    , max ,0 .G L X r L X L     (14) 

Having a loss of value of 450,000, the next figure 

shows the premium as well as the part of the loss re-

tained by the policyholder for various limit values.  

 

Figure 2 Loss retained by the policyholder (dotted line) and 

the pure premium (dashed line) for various limit values when 

the loss is assumed to be 450,000 

By contrast, as the limit value moves towards infin-

ity, the premium increases while the policyholder’s loss 

decreases and equals zero for limit values higher than 

the loss at 450,000. Clearly, the minimum of the objec-

tive function is 450,000; thus, the limit value is identi-

cal to the loss incurred, as shown in the next figure. 
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Figure 3 Values of the objective function for various limit 

values when the loss is assumed to be 450,000 

However, the decision about the level of the limit 

value must be made before the random loss is known. 

Clearly, the various levels of loss X  yield different op-

timal limits .L  Therefore, it is necessary to find such 

an optimal limit that minimizes the expected total fi-

nancial costs of the policyholder, thus 

  
0

min , .
L

E G L X


    (15) 

3.1 General form of the objective function 

Let    ,g L E G L X    , where  g L  is a convex 

continuous function. Then, for 0L  , it is possible to 

write the objective function in the form of 

            
0

0 0 0

L

g L g L g g g g z dz      .   

Since 0L  , we have that 

    0g E X    

and 

    max ,0
d

E X L P X L
dx

     ,   

so 

 

   

 

  

max ,0 ,

,

1 ,

d
g z r E X L

dz

r P X z

r F z

     

  

  

   

where F is the cdf of the random loss .X   

Thus, it is possible to rewrite the objective function 

into the general form of  

        
0

1 .

L

g L E X r L F z dz       (16) 

Clearly, the solution generally depends on the prob-

ability distribution of X  and solving the integral of the 

relevant cdf. 

3.2 Sample average approximation  

The closed-form solution to (16) is not always availa-

ble, especially if the loss is gamma distributed. In these 

cases, it is possible to approximate the objective func-

tion using the Monte Carlo technique.  

First, a sufficient number of scenarios 1, ,j N  

is drawn from the assumed probability distribution. 

Second, the value of (16) is evaluated for each of the 

scenarios and then the expected value of the objective 

function is approximated by averaging, thus 

       
1

1
, ,

N
j

N

j

g L g L G L X
N 

    (17) 

where N  is the number of scenarios and  j
X  is the 

loss of the jth scenario. 

3.3 Evaluating candidate solutions 

The solution to (17) is actually not the solution to the 

general objective function (16), and the optimal value 

obtained from the SAA problem may be far from the 

true optimal limit value.  

To evaluate the quality of the SAA solution as an 

approximation of the true problem, the so-called opti-

mality gap is given by 

       ,SAA N SAA optd L g L g L   (18) 

where  N SAAg L  and  optg L  are the objective func-

tion value for the optimal limit value from the SAA and 

the true problem, respectively.  

We do not know the value of  optg L , but we can 

estimate it by solving the SAA problems M  times and 

averaging the values of (17), thus 

        ,

1

1 M
i

opt N M N

i

g L g L g L
M 

   , 

where 
   i

Ng L is the value of (17) for the ith SAA prob-

lem each of size ,N  thus 

       ,

1

1
, .

N
i i j

N

j

g L G L X
N 

   

It follows that the optimality gap can only be ap-

proximated. To evaluate the quality of ,SAAL  it is nec-

essary to obtain the statistically valid bound on the true 

optimality gap (18). 

First, the sample variance of  N SAAg L  is calculated 

as 
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 

    
2

2

1

1
,

1

N
j

N SAA N SAA

j

G L X g L
N N




  
 

 , 

which gives the approximate  100 1 %  confidence 

upper bound for  ,N SAAg L  that is, 

      1 ,N SAA N SAA N SAAU L g L z L   

where 1z   is the critical value of the standard normal 

distribution. 

Second, the variance of  ,N Mg L , defined as  

 
 

     
2

2

, , ,

1

1

1

M
i

N M N N M

i

g L g L
M M




  
 

 , 

gives the  100 1 %  confidence lower bound for 

 , ,N Mg L  thus 

  , , , , ,N M N M N ML g L t    

where ,t   is the critical value of the t-distribution with 

1M    degrees of freedom. 

Then, the statistically valid bound on the true opti-

mality gap with confidence of at least 1 2  is deter-

mined as follows: 

     ,
ˆ .SAA N SAA N Md L U L L   (19) 

4. Setting the optimal limit value for a given poli-

cyholder 

The goal is to set the optimal limit value for a given 

policyholder with the expected frequency at the value 

of 0.0841. Recall that the insurer sets the rate at 0.0334 

per unit of limit value and that the individual loss fol-

lows a gamma distribution with shape and scale param-

eters of 1.1193 and 29,362.736, respectively. Further, 

we assume a car value of 700,000. 

Because the closed-form solution is not available, 

we solve the problem of stochastic optimization in 

Matlab using the SAA technique. Thus, we minimize 

the following objective function:  

 
  

1

1
min , ,

N
j

j

G L X
N 

   (20) 

subject to 

 0,L   

where 
  ,

j
G L X  is function (14) of the jth scenario. 

First, we draw 100,000 scenarios from the gamma 

distribution that represent the realizations of random in-

dividual loss. The histogram is shown in the next fig-

ure. 

 

Figure 4 Histogram of the generated individual loss from a 

gamma distribution with shape and scale parameters with the 

values of 1.1193 and 29,362.736, respectively 

Clearly, all the generated realizations of the individ-

ual loss are significantly smaller than the car value. It 

follows that there is a low probability of maximum 

damage to the car. 

The minimum of the objective function (20) is 

found in 16 seconds at the limit value 106,472, giving 

a premium of 3,552 and total expected financial costs 

with the value of 4,553. In addition, the probability that 

the individual loss will exceed the optimal limit value 

is 0.0338. The SAA approximation for the true problem 

is shown in the next figure. 

 

Figure 5 SAA approximation for  ,E G L X    

Remember that the optimal solution to (20) is only 

a candidate for the solution to the true problem. To 

evaluate how close it is to the closed-form solution, we 

solve the SAA problem 100 times, each with size 

0

5 000

10 000

15 000

20 000

25 000

30 000

35 000

0 200 000 400 000 600 000

O
b

je
ct

iv
e 

fu
n

ct
io

n

Limit value



L. Hanelová and J. Valecký – Setting the Optimal Limit Value of Motor Insurance Coverage by Stochastic Optimization 

 

11 

100,000. With the significance level of 5%, the approx-

imated optimality gap has the value of 35.98, indicating 

that the obtained solution gives the minimum of an ap-

proximated objective function that is not farther from 

the true minimum than 35.98 with 90% confidence. 

Note that the rate per limit value used does not cor-

respond to the real rate of commercial insurers, because 

we mainly consider the pure premium rather than the 

final price of insurance, which also incorporates a 

safety loading as well as a loading for the insurer’s ex-

penses and profit margin and which is affected by the 

competition in the insurance market. The real rates are 

actually unknown to the policyholder, but the premium 

corresponding to the various limit values can be ob-

tained from a web calculator of the commercial insurer, 

and the rates can be determined when these premiums 

are regressed on the limit value. 

Further, the parameters of the loss probability dis-

tribution are unknown to the policyholder. However, 

they may be estimated from publicly available statistics 

or just simply assumed. The parameters of our gamma 

distribution are actually adopted from a gamma regres-

sion model that respects the various characteristics of 

the policyholder, including the car value as one of the 

explanatory variables. However, one may point out the 

imperfections of this distribution. Thus, the distribution 

is unbounded above but the possible maximal loss is 

actually constrained to the car value rather than unlim-

ited. In addition, although the car value entered the 

gamma regression model at 700,000, providing the pa-

rameters of our gamma distribution, there was little 

probability of such damage, yielding a very small in-

crease in the pure premium for a limit value above 

200,000. 

Finally, in contrast to the pure premium calculation 

derived from the part of expected loss covered by the 

insurer, the other part, retained by the policyholder, 

does not respect the probability of insured accidents, 

that is, the claim frequency. The goal of our problem is 

to optimize the coverage in the case of an insured acci-

dent, which concerns the expected potential loss (the 

probability occurrence is neglected) rather than the ex-

pected loss itself, which is crucial for setting the pure 

premium. In addition, respecting the probability of an 

insured accident would induce the situation that any 

limit value is optimal. The pure premium is equivalent 

to the expected loss, and it is not important which part 

is retained by the policyholder and which part is trans-

ferred to the insurer for the pure premium, because their 

sum is invariant to the limit value. However, in real set-

tings, when the specific loadings are added to the pure 

premium, the expected loss is always smaller than the 

final premium; therefore, solving the problem would 

require the use of a utility function. 

5. Conclusion 

The paper presented an illustrative example showing 

how to set the optimal limit value when the random in-

dividual loss is considered. The presented optimization 

problem is actually general, and various relevant prob-

ability distributions may be considered, not only 

gamma distribution. In addition, the problem can be ex-

tended by the chance constraint, which represents the 

need for the probability of individual loss exceeding the 

limit value to be at least a predefined value. Further-

more, adding fixed as well as variable deductibles (co-

insurance) might be an interesting extension.  

The example does not involve real rates, but they 

can be obtained from commercial web calculators and 

can be approximated by regression of the real premium 

on various limit values, as shown in this paper. We also 

pointed out that the potential loss is unlimited because 

of the gamma distribution considered in the optimiza-

tion problem. In addition, it yields a relatively small op-

timal limit value, because there is only a small proba-

bility of losses exceeding this level. Therefore, the 

gamma distribution might be replaced with another dis-

tribution that sets the maximum of the potential loss and 

corresponds better to the loss occurrence. 

However, the objective function of the optimization 

problem was presented in a general form and can ac-

commodate any probability assumptions. Therefore, all 

imperfections related to the gamma distribution are a 

matter of this specific distribution rather than our opti-

mization problem, which can incorporate more conven-

ient probability assumptions as well as additional con-

straints. In addition, the problem allowed the exclusion 

of the expected utility theory, because the objective 

function minimized the potential rather than the ex-

pected loss. 
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