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Abstract. Fatigue cracks are found during the regular 
structural inspections. To precisely describe/suggest 
propagation of fatigue cracks throughout structure and it’s 
designed service life, the knowledge of geometry functions 
describing the stress situation in front of the crack tip for 
relative crack lengths are important. The cracks usually 
propagate/initiated from the edge or the surface of the 
structural element, where the maximum value of applied 
load is achieved. The theoretical model of fatigue crack 
propagation is based on linear fracture mechanics (Paris 
law). Steel structural elements are subjected to various 
bending load (three-, four- point bending and pure bending 
etc.). The geometry functions for the edge cracks are 
calculated for various span according to real steel bridge 
elements and appropriate polynomial functions 
independent on the distance are proposed for three- and 
four- point bending load.  
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1. Introduction 

Fatigue failure is one of the major problems of civil 
engineering structures, such as railway roads, steel bridges 
structures or its elements, onshore or logistics structures, 
etc. Especially, three- or four- point bending cycles during 
cars, trucks and trains transportation cause many loadings 
and unloading cycles during the service lifetime (high 
cyclic fatigue damage). This usually leads to penetration 
of a fatigue edge crack at the maximum loading point. 

Detection of structural damage depends on applied 
technics, but for large structures like steel bridges (typical 
dimensions of load bearing structures can have length up 
to 30 m long with width to 3 m height, see [1]) the used 
equipment, usually detects cracks with length from 5 up to 
25 mm. 

 Prediction of fatigue structure behaviour is 
implemented to various software e.g. FCProbCalc (Fatigue 
Crack Probability Calculation). Fatigue progression of the 
cracks from the edge and from the surface is used as a basis 
for proposing a system of inspections of details, which 
tend to be damaged by fatigue [2],[3],[4], sensitivity 
analysis [5][6], probabilistic analysis of the S-N field 
[7],[8] and crack propagation rate [9] etc. The input data 
are usually material properties [10],[11],[12],[13],[14] and 
information about boundary conditions-calibration curves 
[15].  

 Geometry functions for laboratory specimens are 
mentioned in the following references from relatively easy 
geometries up to complex geometries in handbooks by 
Tada et. al [16], Bakker [17] and Murakami [18]. These 
handbooks use a normative description of the crack growth 
by using geometry functions based on a relative crack 
length ratio α = a/W, where a is the crack length and W is 
the specimen’s width. To take into account various span 
(S) to width (W) ratio, literature offers calculation of 
geometry function for various ratios of S/W ratio. 

 A boundary-value-collocation procedure was applied 
to determine values of stress intensity factor (SIF) for 
single-edge cracks in three-point bending specimen for 
ratio a/W up to 0.5 and S/W equal to 4 and 8 by Gross and 
Srawley 1965 [19]. 

 Values of stress intensity factor for pure bending 
applied in various distance (ratio H/W=1.5 to 0.4) was 
calculated by using weight function, such results are 
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presented by Fett 1998 [20]. 

 In analysis by Seitl et al. 2017 [15], numerical solution 
for relatively short cracks (a/W varies from 0.05 to 0.3) is 
presented.  

 In this presented paper, the geometry functions for the 
short edge cracks are proposed for several load regimes 
and real ratio of width/span of steel bridges. In this 
analysis, numerical solution for relatively short edge 
cracks (a/W from 0.01 to 0.5) is presented. This study 
proves the significance of description of the geometry 
functions for the possible range of various bending fatigue 
loads. Appropriate polynomial functions independent on 
the distance are suggested for TPB and FPB load in case 
of used ratios S/W (width/span). 

2. Theoretical background 

In order to describe the crack propagation, the linear elastic 
fracture mechanics based on the Williams’ expansion for 
stationary crack [21] or later for bending stress distribution 
for stationary crack [22] is typically applied. Paris' law 
(also known as the Paris-Erdogan law) relates the stress 
intensity factor range to sub-critical crack growth under 
the fatigue stress regime [23] and [24]. As such, it is the 
most popular fatigue crack growth model [25] used in 
materials science and fatigue fracture mechanics. The 
basic formula reads: 

  𝐶 ∆𝐾 ,  (1) 

where a is the crack length, N is the number of loading 
cycles and da/dN is the crack propagation rate, which 
denotes the crack growth for a load cycle. On the right 
hand side of the equation (1) C, m are the material’s 
constants (dependent on environment, stress ratio,  etc.), 
and K is the range of the stress intensity factor in front of 
the crack tip during the fatigue cycle and it is defined as 
follow: 

  ∆𝐾 ∆𝜎√𝜋𝑎𝑓 𝑎 𝑊⁄ ,  (2) 

where  is the constant stress range (the value of  
corresponding to each way of loading is shown in Fig. 1.), 
a is the crack length and f(a/W) is the geometry function, 
which represents various boundary conditions. 

Tab. 1: Overview of calculation of stress range from applied load type. 

Load type Pure bending 3PB 4PB 

Stress range  

 

6𝑀
𝑊 𝐵

 
3𝑃𝑆

2𝑊 𝐵
 

2𝑃𝑆
𝑊 𝐵

 

  

3. Boundary conditions of applied 
load 

The investigated behavior of structural element was loaded 
with three types of bending loads i.e. pure bending (M), 
three-point bending (TPB) [26] and four-point bending 
(FPB). The load states are shown in Fig. 1. 

 According to [1] a span of a single supported steel 
beams can vary from 30 to 40 m and continuously 
supported beams can have span up to 50 m in some 
extreme cases even 150 m. Based on these values of span 
an empirical estimation of the beam’s width (height) can 
be done. Estimation of width can be done as 1/10 to 1/12 
of bridge’s span for single supported beams and for 
continuously supported beams as 1/14 to 1/18 or 1/20 to 
1/40 for highway and for railway bridges, respectively. 

 
Fig. 1:  Sketch of pure bending (a), four-point bending (b) and three-point 
bending (c). 

 Based on these empirical recommendations for beam’s 
width a ratio of span to width (S/W) is used. Following 
ratios were selected for the numerical calculation S/W = 10 
and 16 to cover, what was considered to be in a practical 
range. 

4. Numerical calculation 

In following sections an overview of numerical model and 
numerical results is presented. A finite element software 
ANSYS [27] for the numerical calculation was used. 

4.1. Material properties 

The crack propagation in steel structures is under small 
scale yielding condition, therefore the elastic properties of 
material were used as inputs for the finite element (FE) 
analysis [27]: e.g. Young’s modulus and Poisson’s ratio,  
E = 210 GPa and ν = 0.3, respectively.  
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4.2. Numerical model 

The numerical model was created as a two-dimensional 
(2D) model with plane strain conditions. FE models were 
meshed with the element type PLANE183  and command 
KSCON was used in order to take into account the crack 
tip singularity (See Fig. 2), refined in the vicinity of the 
crack and the stress intensity factors were calculated from 
displacements of nodes at the crack tip by means of the 
implemented procedure KCALC according following 
equation: 

  𝐾 √2𝜋
| |

√
,  (3) 

where v is the nodal displacement, G is the shear modulus, 
 is the Kolosov’s constant for plane strain or plane stress 
boundary conditions and r is the coordinate in the polar 
coordinate system.  

 
Fig. 2: Detail of the notch tip with shift of first node from crack tip to 
distance of ¼ length of element and used boundary conditions, detail is 
rotated 90°. 

 Numerical models were created as a half symmetric 
with sufficient boundary conditions. For three-point and 
four-point bending loads, models were loaded with force 
P = 100 N and the boundary condition as a support ux = 0. 
The numerical model is shown in Fig. 3. 

 
Fig. 3: Selected example of mesh and boundary conditions used for 4PB 

with ratio S/W = 8. 

 Pure bending load was modelled as a half symmetric 

model with boundary conditions set to provide pure 
bending. The model was loaded with stress on the cross-
section, which produces bending moment. The model was 
restricted from vertical movement at the neutral axis e.g. 
at W/2 of the specimen (See Fig. 4) uy = 0 mm. Such a 
boundary conditions provides numerical stability and 
demanded deformation of the specimen 

 
Fig. 4: Numerical model for pure bending load with ratio S/W = 8. 

5. Results and discussion  

5.1. Results from FEM 

The comparison of the obtained numerical results and 
several independent values extracted from the literature 
[16] and [17] for pure and three-point bending for S/W=4 
is shown in Tab. 2. The data from presented study agrees 
well and proposed numerical model could be used in 
further analysis. 

Tab. 2: Comparison of the presented geometry function with data from 
the literature. 

 Pure bending Three-point bending 

a/W Tada 
[16] 

Bakker 
[17] Present 

Tada 
[16] 

Bakker 

[17] 
Present 

0.1 1.043 1.047 1.053 1.007 0.980 0.981 

0.3 1.122 1.124 1.123 1.045 1.039 1.038 

0.5 1.495 1.498 1.495 1.416 1.406 1.404 

 

 In the following part of obtained results, the 
dimensionless geometry functions with coefficient of 
determination R2 are introduced. The range for relative 
crack length for each case was a/W <0.01 ÷ 0.5>. Three 
cases are selected: a) pure bending, b) TPB and c) FPB. 

 

a) Pure bending moment (M): 

𝑓 𝑎/𝑊 1.1143 0.8975 𝑎/𝑊 2.752 𝑎/𝑊 1.1323 𝑎/𝑊  with R2 = 0.9992. (4) 

b) Three-point bending (TPB): 

𝑓 𝑎/𝑊 / 1.0301 1.3702 𝑎/𝑊 3.674 𝑎/𝑊 0.4064 𝑎/𝑊  with R2 = 0.9999. (5) 

𝑓 𝑎/𝑊 / 1.0613 1.0638 𝑎/𝑊 2.9774 𝑎/𝑊 1.0418 𝑎/𝑊  with R 2= 0.9992. (6) 

𝑓 𝑎/𝑊 / 1.0887 0.9968 𝑎/𝑊 2.9282 𝑎/𝑊 1.0146 𝑎/𝑊  with R2 = 0.9991. (7) 

𝑓 𝑎/𝑊 / 1.0933 0.9647 𝑎/𝑊 2.8372 𝑎/𝑊 1.1064 𝑎/𝑊  with R2 = 0.9992. (8) 

𝑓 𝑎/𝑊 / 1.0994 0.9164 𝑎/𝑊 2.7161 𝑎/𝑊 1.2161 𝑎/𝑊  with R2 = 0.9992. (9) 

𝑓 𝑎/𝑊 / 1.1093 0.9182 𝑎/𝑊 2.7229 𝑎/𝑊 1.1186 𝑎/𝑊  with R2=0.9992. (10) 
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𝑓 𝑎/𝑊 / 1.1104 0.89 𝑎/𝑊 2.6983 𝑎/𝑊 1.2027 𝑎/𝑊  with R2 = 0.9992. (11) 

c) Four-point bending (FPB): 

𝑓 𝑎/𝑊 / 1.2418 1.4507 𝑎/𝑊 3.7652 𝑎/𝑊 0.5241 𝑎/𝑊  with R2 = 0.9989. (12) 

𝑓 𝑎/𝑊 / 1.1449 0.954 𝑎/𝑊 2.7378 𝑎/𝑊 1.1984 𝑎/𝑊  with R2 = 0.9992. (13) 

𝑓 𝑎/𝑊 / 1.1146 0.8958 𝑎/𝑊 2.7367 𝑎/𝑊 1.152 𝑎/𝑊  with R2 = 0.9992. (14) 

𝑓 𝑎/𝑊 / 1.1126 0.8755 𝑎/𝑊 2.6625 𝑎/𝑊 1.236 𝑎/𝑊  with R2 = 0.9992. (15) 

𝑓 𝑎/𝑊 / 1.113 0.8801 𝑎/𝑊 2.6791 𝑎/𝑊 1.2181 𝑎/𝑊  with R2 = 0.9992. (16) 

𝑓 𝑎/𝑊 / 1.1126 0.8746 𝑎/𝑊 2.659 𝑎/𝑊 1.24 𝑎/𝑊  with R2 = 0.9992. (17) 

𝑓 𝑎/𝑊 / 1.1127 0.8748 𝑎/𝑊 2.6584 𝑎/𝑊 1.2412 𝑎/𝑊  with R2 = 0.9991. (18) 

 

 Fig. 5 compares the obtained geometry functions from 
FE analysis for various load types pure and three- and four-
point bending and Fig. 6 compares pure and four-point for 
edge crack propagation. Various types of bending loads, 
mostly the ratio S/W shows, that with increasing value a 
curve is shifting towards to the pure bending load.  

 
Fig. 5: Comparison of geometry functions for three-point bending 
loading configuration for various S/W ratios. 

 
Fig. 6: Comparison of geometry functions for four-point bending loading 
configuration for various S/W ratios. 

 Figs. 7-8 show plots of geometry functions against S/W 
for constant ratio a/W values of 0.1, 0.3, 0.4 and 0.5. In 
each case, the corresponding values of geometry function 
for pure bending are shown as a horizontal dashed line for 
comparison. The value for pure bending were taken from 

Handbook (the same values in e.g. [16], [17], [18]) of 
course, are independent of S/W. 

 From Fig. 7 it is clear, that the value of geometry 
functions for three-point bend loading is always lower that 
for pure bending, but that difference decreases with 
increasing S/W. For example, in case a/W = 0.1, the ratio 
of the geometry functions for pure and TPB loading is 
0.982, 1.016 and 1.042 when S/W = 4, 8, 40, respectively.  

 
Fig. 7: Overview influence of the span length (S/W ratio) on the geometry 
functions for three-point bending loading configuration for selected a/W 
ratio. 

 
Fig. 8: Overview influence of the span length (S/W ratio) on the geometry 
functions for four-point bending loading configuration for selected a/W 
ratio. 

 It is obvious, from Fig. 8, that the value of geometry 
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functions for four-point bending loading is always higher 
that for pure bending, but that difference decreases with 
increasing S/W ratio. For example, in case a/W = 0.1, the 
ratio of the calibration values for pure bending is 1.049 and 
for FPB loading is 1.074, 1.050 and 1.049 when S/W = 4, 
8 and 40, respectively. 

 These facts should be considered for the prediction and 
evaluation of the structural residual fatigue life in 
standardly used method like in [4], [6], [8]. 

6. Conclusion 

In this contribution, the results obtained by the numerical 
study (using KCALC command) are expressed in general 
form in terms of the dimensionless function of stress 
intensity factor. In case of pure bending, geometry 
functions are only a function of the relative crack length 
a/W, in study interval <0.01÷ 0.5>. In the cases of three- 
and four- point bend loading, the values are different from 
the corresponding values for pure bending, the difference 
is higher, when the ratio of support-span to specimen depth 
S/W. Thus, a different K f(a/W) geometry functions are 
needed for each different value of S/W. Influence of 
various bending types on the geometry functions is 
presented. The proposed geometry functions were studied 
for short edge cracks and for the various span to width 
ratios. The proposed values of the geometry functions 
show good agreement with literature [16] and [17]. This 
effect should be considered in further fatigue design of 
steel structures. 

 As it is apparent from the values listed in Tab. 2, the 
analytical results does not differ fundamentally only with 
small error from the numerical calculations presented in 
this work. The same conclusion was also reached by the 
team of authors in work [15]. 
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