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Abstract. This paper illustrates the use of MIDAS
GTS NX to investigate the tunnel’s simulation in or-
der to highlight the effect of static and dynamic load
on the behaviour of tunnel to compare this response ex-
pressed in terms of displacement and stresses acting on
the tunnel and ground. Main tunnel is located in the
ground having uniform property throughout its extent,
connecting gallery is located perpendicular to the main
tunnel, the shotcrete and rock bolts for each tunnel will
be installed.
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1. Introduction

According to recent studies and observed failures of un-
derground structures many researchers had been ad-
dressed the design and construction of tunnel lining
against static/dynamic loads and earthquake vibration
to get the best design use different methods include
empirical methods, analytical methods and numerical
methods. The 3D numerical models using finite ele-
ment method software MIDAS GTS NX investigation
will be carried out in order to highlight the effect of
the tunnel lining response under static and dynamic.

The 3D numerical analysis prepared to simulate the
static and dynamic behavior of a tunnel and connecting
gallery, were undertaken to investigate the tunnel seis-
mic response and to compare this response expressed in

terms of displacement and stresses acting on the tunnel
and rock mass.

The materials and properties of tunnels and rock
mass were taken from the MIDAS GTS tutorials with-
out the experimental testing like tensile strength as
a case study, the Design Response Spectrum of UBC
(1997) is mentioned in this manual also.Due to the
application of the static load the stress-strain state
around the tunnel periphery is changed, otherwise the
result show that the applied dynamic stress is not negli-
gible for underground structure, but it is less dangerous
in comparison with the others.

The main application of the numerical methods in
the field of the tunnel engineering is to analysis of the
stress, strain and deformations [4].Response spectrum
analysis expresses the natural period, natural angu-
lar frequency or natural frequency at the maximum
physical quantity response as a function when a dy-
namic load is applied to the structure [1]. Shallow
tunnels through fractured zones exposed to increased
pressure, resulting in damage to the lining and defor-
mation. Tunnels crossing fault zones are exposed to
increased stresses during earthquake loading, leading
to complicated cracking and large differential displace-
ments [12].

The dynamic responses of a buried tunnel in general,
and its seismic responses, in particular, are of much
interest [2].Although underground structures such as
tunnels are more resistant to earthquakes than surface
structures [5].Finite element methods allow the compu-
tation of ground displacement at every point within the
ground. The geometry, initial conditions, excavation
stages and ground behavior can be properly modeled
using the numerical approach [3].
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Stress and displacement balance of forces around the
tunnel are adversely affected and due to redistribu-
tion of these forces that create undue concentration
in some areas, instability occurs in the tunnel. Their
research also concludes that increasing the stiffness of
the support system can increase the effect of the seis-
mic loads [8].

The pressure on the lining of an underground space
or a tunnel increases with time. This is due to the
time-dependent mechanical behavior of the surround-
ing rocks or soil [6].The maximum change of internal
forces during an earthquake occurs in shear force, then
bending moment. Moreover, the normal force of tunnel
lining is less affected by seismic actions [13].

It is very likely that not only the shotcrete is af-
fected by deterioration. Also the contact between the
ground and the shotcrete shell and the contact between
the shotcrete shell and the inner liner can be affected.
Further, the properties of the ground around the open-
ing may change due to weathering [7].While the gen-
eral public is often skeptical about the performance
of underground structures, tunnel designers know that
underground structures are among the safest shelters
during earthquakes, based primarily on damage data
reported in the past [9], [10] and [11].

2. Conditions of Surrounding
Ground

Adam McIntyre [?] clears up in short the condition of
surrounding ground due to seismic condition listed as:

• Seismic waves propagate faster in hard/dense ma-
terials.

– Less energy will be released at places where
the ground is harder than the tunnel struc-
ture,

– tunnels in harder ground will tend to deform
with the ground and suffer less damage,

– conversely, tunnel structures in weaker
soil/rock will absorb larger amounts of seis-
mic energy and suffer greater damage.

• Disturbance to the plastic zone between the tun-
nel wall and reinforcement/lining structure could
cause excessive vibration due to passing seismic
waves.

– Disturbance caused by cave-in/collapse dur-
ing tunneling, squeezing ground, inclined
stresses, etc.

Fig. 1: Tunnel profile showing the geometry of the model [1]

Fig. 2: Modified Response Spectrum using UBC (1997); Damp-
ing Ration = 0.05; Seismic Coefficient: Ca= 0.06 Cv=
0.06; Normalized Acceleration [1]

3. Difination of Ground and
Structural Materials

This paper studies the 3D model with gravity direc-
tion in Z direction. Design response spectrum of UBC
(1997) is used as seismic response spectrum. The di-
mension of the model are (x = 64, y = 60, z = 80) m.
After tunnel model is performed in the MIDAS GTS
NX (geometry, input data, mesh, etc.) the model is
run to analyze the tunnel stability and deformation
under static and dynamic conditions by calculated the
value of each mesh node based on 3D finite element
method to simulate the effect of earthquake on tunnel
and ground. Tab. 1 and Tab. 2 shows the ground ma-
terials, shotcrete and rock bolt, the material property
of shotcrete and rock bolt and the section property of
shotcrete and rock bolt respectively.
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Name Hard Rock
Material model Mohr- Coulomb

Modulus of Elasticity (E) [kPa] 5,000,000
Poisson’s Ratio (ν) [-] 0.2

Unit Weight (γ) [kN/m3] 25
Unit Weight Saturated (γ) [kN/m3] 25

Cohesion (c) [kPa] 300
Friction Angle (ϕ) [◦] 40
Tensile Strength [kPa] 2,942

Coefficient of Lateral Pressure (Ko) [-] 0.25

Tab. 1: Rock MassMaterials

Name Shotcrete Rock Bolt
Geometrical type Plane Line
Element Type Shell (2D element) Line (1D element)

Modulus of Elasticity (E) [kPa] 15,000,000 200,000,000
Poisson’s Ratio (ν) [-] 0.2 0.3

Weight Density (γ) [kN/m3] 24 77
Thickness [m] 0.16 -
Radius [m] - 0.025

Tab. 2: The material property of shotcrete and rock bolt of both main tunnel and connecting gallery

4. Simulation and Calibration
of the Numerical Model

The tunnel model consists of two parts: one is the main
tunnel running through the ground along Y - Axis and
the other part is the gallery which has a short exten-
sion along X - Axis and its located perpendicular to the
main tunnel. The depth of main tunnel under ground
surface is (z = 36.8 m) and located in the ground hav-
ing uniform property throughout its extent. In each
tunnel, shotcrete and rock bolts will be installed. Con-
struction stage will be defined at each stage of excava-
tion and the process of construction stage of connecting
gallery start after the end of main tunnel construction
stages. The type of lining for both the main tunnel
and gallery are shotcrete. The rock bolts method used
to support tunnels which are connected to the ground.
The rock bolts and shotcrete of the main tunnel will
be installed right after the excavation. The subsoil has
been meshed with tetrahedral solid elements and the
tunnel mesh consists of curved shell elements of uni-
form thickness 0.16 m. The rock bolts composed of
1D reinforced bar elements of uniform cross - section
area (0.001963) m2. The Eigenvalue analysis reveals
7th and 15th to be the most influential modes for the
vertical vibration of the tunnel - rock mass system.
Subsequently, a response spectrum analysis has been
performed with an input of a design response spectrum
applied in horizontal X direction as shown in Fig. 2.
The subsoil is assumed to have a damping ratio of 0.05.
Gravity is calculated automatically by multiplying the
inputted unit weight of the ground, the structure ge-

Fig. 3: Static: Distribution of total displacement (including
max. and min. value)in 2D and 3D of rock mass

ometry and the acceleration of gravity it can be easily
set by inputting a scale factor of direction. The to-
tal length of the main tunnel along y direction is 60
meters. The excavation of the tunnel is executed in
full face excavation. The construction stages have 66
stages. The considered section length of tunnel exca-
vated in a single cycle is assumed as 2 m. In 3D model
analysis, displacement constraints are applied in x di-
rection for left/right, y direction for front/back, xyz
direction for the bottom part as shown in Figs. 3 -
7. The initial stage of model corresponds to the self
- weight only and the ground boundary conditions are
activated. GTS NX automatically recognizes and sets
the boundary conditions for the model. The maximum
and minimum value of Max.principal stresses and Min.
principal stresses (σ1 and σ2) respectively are shown in
Figs. 8 - 11, for both static and dynamic result analysis
and are increased at dynamic analysis than static.
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Fig. 4: Dynamic: The Max. and Min. value of total displace-
ment in 2D and 3D of rock mass

Fig. 5: Static analysis: Displacement distribution of rock mass
in direction X, Y and Z

Fig. 6: Static analysis: Displacement distribution of rock mass
in direction X, Y and Z

Fig. 7: The total displacement in static and dynamic analysis
at TZ Translation(V)

Fig. 8: The Max. and Min. values of maximum principal
stresses of dynamic and static

Fig. 9: The Max. and Min. values of minimum principal
stresses of static and dynamic analysis

Fig. 10: The Max. and Min. value of maximum principal
stresses (vector) distribution of static and dynamic
analysis

5. Conclusion

After tunnel model is created in MIDAS GTS NX, the
model is run to analyze the tunnel stability and defor-
mation in static and dynamic conditions by calculated
the value of each mesh node based on 3D finite ele-
ment method to simulate the effect of earthquake on
tunnel and ground. From the results of model analy-
sis, it can be noticed that three dimensional analyses
which simulates the progress of works, as mentioned in
Tab. 3 and Tab. 4, and Figs. 3 - 5, above shows the
result of the maximum and minimum values. In this
study, the following conclusions are drawn: Figs. 3 - 7,
shows the displacement in static and dynamic condi-
tions. The maximum and minimum principle stresses
as shown in Figs. 8 - 11 for both static and dynamic
analysis. Fig. 12, in static analysis show the stresses

Fig. 11: The Max. and Min. value of minimum principal
stresses (vector) distribution of static and dynamic
analysis
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Static

Displacement [m] Max. Principle stresses [kPa] Min. Principle stresses [kPa]
Max. value Max. value Max. value
0.002397 236.037 - 61.8309
Min. value Min. value Min. value

0.0 - 626.886 - 4169.67

Tab. 3: The result in maximum and minimum values in static analysis

Dynamic

Displacement [m] Max. Principle stresses [kPa] Min. Principle stresses [kPa]
Max. value Max. value Max. value
0.000389 114.431 119.189
Min. value Min. value Min. value

0.0 6.74168 10.2978

Tab. 4: The result in maximum and minimum values in dynamic analysis

Fig. 12: Static analysis: Stresses distribution on shotcrete

Fig. 13: Static: Axial forces distribution in the Rock Bolts

Fig. 14: Static and dynamic: Axial forces distribution in the
shotcrete

distribution on shotcrete and the axial force distribu-
tion on shotcrete are shown in Fig. 14, for static anal-
ysis. Fig. 13, in static analysis shows the axial forces
distribution in the Rock Bolts. Due to the application
of the static load the stress - strain state ground the
tunnel periphery is changed, the primary stress state is
disrupted and the potential of instability increases, oth-
erwise the result show that the applied dynamic stress
is not negligible for underground structure.
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