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Universality in ultradilute liquid Bose-Bose mixtures
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We have studied dilute Bose-Bose mixtures of atoms with attractive interspecies and repulsive intraspecies
interactions using quantum Monte Carlo methods at T = 0. Using a number of models for interactions, we
determine the range of validity of the universal equation of state of the symmetric liquid mixture as a function
of two parameters: the s-wave scattering length and the effective range of the interaction potential. It is shown
that the Lee-Huang-Yang correction is sufficient only for extremely dilute liquids with the additional restriction
that the range of the potential is small enough. Based on the quantum Monte Carlo equation of state we develop
a density functional which goes beyond the Lee-Huang-Yang term and use it together with the local density
approximation to determine density profiles of realistic self-bound drops.
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I. INTRODUCTION

Dilute Bose and Fermi gases have proved to be a versatile
tool for exploration of different phases of condensed-matter
systems. For more than two decades, most of the experiments
were done in the low-density gas phase, in the universal
regime fixed solely by the gas parameter ρa3, with a being the
s-wave scattering length and ρ the density. The range of uni-
versality of the homogeneous Bose gas was established using
different model potentials and solving the N-body problem in
an exact way with quantum Monte Carlo methods [1]. One
of the most important advances in the field of ultracold atoms
in the past years is the recent creation of ultradilute quantum
droplets. Such self-bound quantum systems were first exper-
imentally observed for dipolar atoms [2–4] being caused by
a close cancellation of the dipolar and short-range energies.
Petrov [5] pointed out that liquid drops can be created in an
even simpler setup composed by a two-component mixture of
bosons with short-ranged attractive interspecies and repulsive
intraspecies interactions. However, the perturbative technique
employed by Petrov is valid only very close to the mean-field
(MF) instability limit, that is, for extremely dilute liquids. The
collapse predicted on the MF level is avoided by stabilization
due to the quantum fluctuations described by the Lee-Huang-
Yang (LHY) correction to the energy. It was shown that a
similar stabilization mechanism can be used in two- and one-
dimensional geometries where the resulting liquid phase has
enhanced stability [6]. Very recently, two experimental groups
managed to obtain self-bound liquid drops [7,8] which, upon
releasing the trap, did not expand. The drops required a certain
critical number of atoms to be bound. Importantly, measure-
ments of the critical number and size of the smallest droplets
could not be fully accounted for by the MF + LHY term [7].

Recently, some of us have studied liquid Bose-Bose
droplets by using the diffusion Monte Carlo (DMC) method,
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thus solving exactly the full many-body problem for a given
Hamiltonian at zero temperature [9]. Our results have con-
firmed the transition from a gas, with positive energy, to
a self-bound droplet with negative energy. Furthermore, we
have determined the critical number of atoms needed to form
a liquid droplet as a function of the intraspecies scattering
length. Using two different models for the attractive inter-
action, we did not get quantitatively the same results for the
range of scattering lengths studied, which points to the lack of
universality in terms of ρa3. It is thus of fundamental interest
to find whether there is a range of densities and scattering
lengths where such universality exists. This is in fact expected
when the system is very close to the MF collapse. In the
case of homogeneous Bose gases, departures from univer-
sality start to appear around ρa3 � 10−3 [1]. In that case,
adding the LHY correction allowed for a good approximation
of the equation of state up to higher densities. Recently, a
variational hypernetted-chain Euler-Lagrange calculation [10]
of unbalanced mixtures showed that the drops can only be
stable in a very narrow range, near an optimal ratio of partial
densities and near the energy minimum. Moreover, Ref. [10]
found dependence on the effective range even at low densities.

In this article, we use the DMC method to address the
question of the universality in the equation of state of dilute
Bose-Bose mixtures. The second question we pose here is
whether there exists a regime where instead of using only
one parameter (s-wave scattering length) inclusion of an addi-
tional parameter (effective range [11]) extends the validity of
the universal description. To answer these questions directly
for finite-size droplets would require enormous computational
resources, as at least thousands of atoms are needed to achieve
a self-bound state close to the mean-field limit [7]. In order to
eliminate the finite-size effects caused by the surface tension
and simplify the analysis, we study here bulk properties
corresponding to the interior of large saturated droplets. From
the obtained equation of state we construct a new density
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functional and use it to predict the profiles of the drops,
discussing the effects of the potential range.

II. METHODS

We rely on the DMC method, which was successfully used
in the past for determining the ground-state properties of inter-
acting many-body systems. The DMC method stochastically
solves the imaginary-time Schrödinger equation, giving for
bosonic systems exact results within the statistical noise [12].
The Hamiltonian of our system is given by

H = −
2∑

α=1

h̄2

2mα

Nα∑
i=1

∇2
iα + 1

2

2∑
α,β=1

Nα,Nβ∑
iα, jβ=1

V (α,β )
(
riα jβ

)
, (1)

where V (α,β )(r) is the interatomic interaction between species
α and β. The intraspecies interactions with positive s-wave
scattering length are modeled either by a hard-core potential
of diameter aii or by a 10-6 potential [13] that does not support
a two-body bound state, V (r) = V0[( r0

r )10 − ( r0
r )6].

The latter model has an analytic scattering length given in
Ref. [13]. The interspecies interactions with negative scatter-
ing length, a12 < 0, are modeled by a square-well potential of
range R and depth −V0 or by a 10-6 potential with no bound
states.

We resort to a second-order DMC method and use a
guiding wave function to reduce the variance, as described in
Ref. [12]. We construct the trial wave function as a product of
Jastrow factors [14]:

�(R) =
N1∏

1=i< j

f (1,1)(ri j )
N2∏

1=i< j

f (2,2)(ri j )
N1,N2∏
i, j=1

f (1,2)(ri j ). (2)

The particular form of the two-particle correlation function
depends on the model of the interaction potential. For the
hard-core potential we use

f α,α (r) =

⎧⎪⎨
⎪⎩

1 − aα,α/r, r < R̃,

B exp
(−C

r + D
r2

)
, R̃ < r < L/2,

1, r > L/2,

(3)

The parameter R̃ can be optimized, but energies do not change
drastically when R̃ ≈ L/2; so we set R̃ = 0.9L/2. Other pa-
rameters are obtained by continuity conditions for the function
and its first derivative. For the square-well potential we use

f α,β (r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sin(kr)/r, r < R,

A(1 − ãα,β/r), R < r < R̃,

B exp
(−C

r + D
r2

)
, R̃ < r < L/2,

1, r > L/2,

(4)

where ãα,β is a variational parameter. We set R̃ = 0.9L/2,
while other parameters are obtained by continuity conditions.
Finally, for the 10-6 potential we use

f α,β (r) =

⎧⎪⎨
⎪⎩

h(r, ãα,β ), r < R0,

B exp
(−C

r + D
r2

)
, R0 < r < L/2,

1, r > L/2,

(5)

where h(r, ãα,β ) is the two-body scattering solution given in
Ref. [13]. This function has a variational parameter ãα,β , and

we set R0 = 0.9L/2. Zero derivative is imposed at the half size
of the simulation box L for all three Jastrow factors.

We consider a mixture with equal masses of particles m1 =
m2 = m. Such a situation is typical in experiments where
different hyperfine states of the same atomic species are used
to create two components [7]. Furthermore, in order to reduce
the number of degrees of freedom we choose to study the
symmetric mixture with a11 = a22 resulting in N1 = N2. The
calculations are performed in a box with periodic boundary
conditions.

To approach the thermodynamic limit, we investigate
finite-size effects by increasing the number of particles up to
the point where energy converges. DMC results are presented
for the largest particle number used. In Fig. 1, we show the
convergence for three different a12/a11 values. It is possible
to obtain the finite-size correction analytically only very close
to the mean-field instability limit. In that case, the leading
correction to the mean-field (Hartree) contribution comes
from the intracomponent number of pairs N1(N1 − 1)/2,

�EMF(N )

N
= −π

6

h̄2

ma2
11

2π

N
ρa3

11, (6)

where N = 2N1. This correction is negative, linear with the
density, and decreases as N−1 with the number of particles.
This correction is also shown in Fig. 1.

We also optimize the time-step and population bias to
reduce their influence below the statistical noise.

III. RESULTS

First, we report results obtained using the hard-core model
for the repulsive interactions and a square-well (SW) potential
for the attractive ones. In Fig. 2, we show our results for
different values of the interspecies scattering length a12 and
different ranges of the attractive well R, and we compare
them to the MF + LHY prediction [5]. The equation of
state in Ref. [5] for m2 = m1 = m, a22 = a11, and N2 = N1 is
given by

E

N
= h̄2π (a11 + a12)

m
ρ + 32

√
2π

15

h̄2a5/2
11

m
f

(
a2

12

a2
11

)
ρ3/2, (7)

with f (x) = (1 + √
x)5/2 + (1 − √

x)5/2.
Notice that the function f (x) becomes complex for

a12 < −a11 and the presence of the imaginary component
reduces the applicability of the perturbative theory. If instead
the argument is approximated by x = a2

12/a2
11 = 1 so that the

function f (x) remains real, as it was done in Ref. [5], Eq. (7)
reduces to the following form,

E

N
= h̄2π (a11 + a12)

m
ρ + 256

√
π

15

h̄2a5/2
11

m
ρ3/2, (8)

shown with a dashed line in Fig. 2. We plot as well the
energy resulting from taking the real part of f (x) (7), without
invoking the approximation x = 1. Only very close to the
a12 = −a11 limit corresponding to zero equilibrium density,
both predictions are nearly the same while they clearly differ
for finite densities. We report the exact DMC energies in
Fig. 2. The perturbative MF + LHY results are recovered
for small range R of the square well and ρa3

11 ≈ 10−6 [see
Fig. 2(a)]. However, when R is increased by a large amount
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FIG. 1. The energy per particle as a function of the density for
a12 = −1.01a11, −1.05a11, and −1.2a11. Different total number of
particles N is used to illustrate the finite-size effect. Results are
obtained with the hard-core model of diameter a11 for the repulsive
intraspecies interaction and a square-well potential with diameter
ρR3 = 10−5 for interspecies attraction. Solid lines are finite-size
corrections coming from the mean-field energy Eq. (6) and the
dashed line is the MF + LHY result.

(to R = 100a11) the universality breaks at ρR3 � 10−1. The
energies for experimentally relevant densities, ρa3

11 ≈ 10−5

[7,8], are reported in Fig. 2(b). In this case and for larger
densities [Fig. 2(c)], we observe that the energy depends on
the potential range. Furthermore, the two ways of writing the
perturbative equation of state, given by Eqs. (7) and (8), differ
among themselves but are not equal to the obtained DMC
equation of state. The latter appears to be independent of R up
to approximately ρR3 = 10−3. Indeed, the difference between
the energy per particle E/N calculated at ρR3 = 10−3 and
ρR3 = 10−5 is at most 3 error bars, or 6% at the highest
density and at most 4% in the minimum.
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FIG. 2. DMC equation of state of the liquid mixture for different
values of a12 and different ranges R, in comparison with MF + LHY
theory.

It can be noted that within perturbative theory the energy
is a single curve written in units of the equilibrium energy
E0 and density ρ0. That is, the equation of state (8) can be
conveniently represented as a (E/E0, ρ/ρ0) curve,

E

|E0| = −3

(
ρ

ρ0

)
+ 2

(
ρ

ρ0

)3/2

, (9)

with, for the symmetric mixture, ρ0 = 25π (a11 + a12)2/

(16384a5
11) and E0/N = −25π2 h̄2|a11 + a12|3/(49152ma5

11).
The DMC equations of state for different scattering lengths

are shown in Fig. 3. The results are obtained for a sufficiently
small potential range, ρR3 = 10−5, ensuring the universality
in terms of the s-wave scattering length. As already ob-
served in Fig. 2, when |a12| ≈ a11, the MF + LHY predic-
tion is recovered. By increasing |a12|/a11, we find repulsive
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FIG. 3. Equations of state for different a12/a11 normalized to the
density and the energy at the MF + LHY equilibrium point (ρ0, E0).
Dashed lines show fits to the data in the form of E/N = αx + βxγ ,
with x = ρa3

11. The range of the square well is ρR3 = 10−5.

contributions to the energy beyond the LHY terms. At the
same time, the equilibrium densities become lower compared
to the ones predicted by Eq. (9), which was obtained by
calculating the f (x) function at x = 1. If instead one uses
Eq. (7) derived by taking the real part of f (x), weaker binding
is predicted as compared to DMC results. Thus, as we can see
in Fig. 2, for small ranges ρR3 = 10−5, the DMC many-body
prediction is between Eqs. (7) and (9), but closer to Eq. (9).
The DMC values of the equilibrium energies and densities
are reported in Table I. They are also compared to predictions
from perturbative theory given by Eq. (9). With the increase of
|a12|/a11 the equilibrium and spinodal densities start to depart
significantly from the MF + LHY values. It is worth noticing
again that the MF + LHY equation of state becomes complex,
and thus unphysical, unless the approximation f (a2

12/a2
11 = 1)

is used. Our results show that even very small (in absolute
value) negative pressures can cause spinodal instability. For
typical experimental parameters a11 = 50a0 [7,8] the uniform
liquid breaks into droplets when the applied negative pressure
is very small, from 1.81 pPa for a12 = −1.05a11 to 31.3 nPa
for a12 = −1.5a11.

TABLE I. Energies (equilibrium and spinodal) and densities for
different scattering lengths a12/a11 for small ranges ρR3 = 10−5.
Here the subscript “eq” stands for the minimum from the fit to DMC
energy shown in Fig. 3, the subscript “0” stands for the minimum of
the perturbative equation of state given by Eq. (9), and the spinodal
point is denoted by the subscript “sp” from the fit on DMC data and
the subscript “sp,0” in the case of Eq. (9).
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105ρeq
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11

ρeq

ρ0

105ρsp

a−3
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ρsp

ρsp,0

106 h̄2Eeq
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11N

Eeq

E0

−1.05 1.12 0.934 0.715 0.932 −1.15 0.919
−1.10 4.28 0.894 2.73 0.888 −8.82 0.879
−1.20 14.5 0.754 9.19 0.749 −56.0 0.697
−1.30 28.0 0.649 17.7 0.641 −163 0.601
−1.40 44.9 0.585 28.3 0.576 −334 0.520
−1.50 62.4 0.521 39.3 0.512 −554 0.441
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FIG. 4. Dependence of the equation of state on the effective range.

As can be seen from Fig. 2, the equation of state loses uni-
versality in terms of the scattering length when ρR3 �10−3.
This poses the relevant question of whether by fixing one more
parameter, besides the s-wave scattering length, it is possible
to obtain a universal description.

To address this question, we perform DMC calculations
using the 10-6 model with equivalent values of the s-wave
scattering lengths and the effective range reff of the attractive
interaction. For the repulsive interactions, we fix the range
of the 10-6 model potential to r0 = 2a11. In Fig. 4, we show
results for the scattering length a12 = −1.2a11 and three
values of the effective range reff . The solid line is for Eq. (8)
and the dashed one is for the real part of Eq. (7). The range
of the SW potential is R/a11 = 0.531, 2.17, and 9.18 when
reff/a11 = 0.626, 3.74, and 37.3, respectively. We find that,
specifying only the scattering length, one cannot generally
obtain universal results unless the range is sufficiently small,
ρR3 � 10−1. The interaction potential for a given scattering
length predicts different energies and equilibrium densities
when different effective ranges are used. Generally, increasing
the range lowers the energy and shifts the equilibrium density
to larger values. However, if we specify both the scattering
length and the effective range, then we observe that the
difference between the results of two models is always smaller
than the difference between the results for the same type of
model but with different ranges. In Fig. 4, the two models with
reff/a11 = 0.626 give, within error bars, the same energies in
the whole density range. Increasing the range, at higher den-
sities we observe that the two potentials start to give different
predictions and that the difference between them grows with
the increase in density. Interestingly, even when the effective
range is quite large, reff/a11 = 37.3, the relative difference
between the models remains lower than 10%, as long as
ρR3 < 0.2. Increasing the density even further, we would
need more parameters beyond a12 and reff to describe the
interaction.

The observed dependence on the effective range for
ρeqR3 > 10−3 is in overall agreement with recent calcula-
tions of unbalanced mixtures [10] based on the variational
hypernetted chain method. It is interesting to notice that the
MF + LHY equations of state, following Eq. (9), are actually
closer to our full many-body calculations using rather large
values of the effective range. On the other hand, the results
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using only the real part of Eq. (7) are above the DMC energies
for even the smallest range.

Presuming that the equation of state of the liquid mixture
is universal in terms of the scattering length and the effective
range for ρR3 � 10−1, we use the SW results to deduce the
following form for the equation of state,

E

N
= |E0|

N

[
−3

(
ρ

ρ0

)
+ β

(
ρ

ρ0

)γ ]
, (10)

where β and γ are functions of a12/a11 and reff/a11:

β = β01
a12

a11
+

(
β10 + β11

a12

a11

)
R(a12, reff )

a11
, (11)

γ = γ00 + γ01
a12

a11
+

(
γ10 + γ11

a12

a11

)
R(a12, reff )

a11
. (12)

R is the square-well diameter associated with the given a12 and
reff > 0. It can be calculated numerically for given a12 and
reff , and we provide a numerical code in Ref. [15]. There are
7 free parameters in the model: β01, β10, β11, γ00, γ01, γ10, and
γ11. They are obtained by fitting 18 equations of state with
different R and a12. In particular, the chosen a12/a11 values
were −1.01, −1.05, −1.08, −1.1, and −1.2. The obtained
values of the parameters are given in Table II.

With these values, β(a12 = −a11, R = 0) = 1.956 ±
0.003 and γ (a12 = −a11, R = 0) = 1.51 ± 0.02, which is

TABLE II. Parameters of the equation of state.

β01 β10 β11 γ00 γ01 γ10 γ11

−1.956(3) 0.231(5) 0.236(5) 1.83(2) 0.32(2) 0.030(3) 0.030(3)

very close to the MF + LHY values: β = 2 and γ = 1.5.
We then verify that this form predicts well the equation of
state up to a12 = −1.3a11 provided that R is not too large
(ρR3 < 10−1).

The equation of state (10) can be used as an energy
functional [16] to calculate density profiles of liquid mixture
drops within the local-density approximation (LDA). Starting
from the DMC equation of state and using LDA we obtain
density profiles of drops for different scattering lengths and
effective ranges and compare them with MF+LHY predic-
tions in Fig. 5. To do so we write the energy functional as

E = h̄2

2m
N |∇φ|2 + 25π2h̄2|a11 + a12|3

49152ma5
11

×
[
−3

N2|φ|4
ρ0

+ β
(N |φ|2)γ+1

ρ
γ

0

]
,

where N is the number of particles and φ is normalized as∫
d3r|φ|2 = 1. Then, we find the stationary solution of the
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FIG. 5. Density profiles of drops with different scattering lengths and ranges compared to MF + LHY predictions. Dashed and dotted
lines correspond to LDA calculations using the energy functional (Eq. 10) for ρpR3 = 10−5 (dashed line) and ρpR3 = 10−1 (dotted line), where
ρp = 25π (a11 + a12)2/(16384a5

11) is the equilibrium density from the MF + LHY theory. Solid lines correspond to MF + LHY calculations
using the approximation f (a2

12/a2
11 = 1). For each a12 and R, we show profiles for three different values of particle numbers, written below the

legend, distinguished by color and growing from purple to red. Profiles with the smallest particle numbers (purple color) are stable (E < 0)
and close to the critical number Nc = 22.55 × 96

√
6/(5π 2|1 + a12/a11|5/2) [5].
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constant ρ

eq
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eq
MF+LHY. LDA results are obtained starting from the

DMC equation of state.

equation of motion

ih̄
∂φ

∂t
= − h̄2∇2φ

2m
+ 25π2 h̄2|a11 + a12|3

49152ma5
11

×
[
−6

N |φ|2
ρ0

+ β(1 + γ )

(
N |φ|2

ρ0

)γ ]
φ

by propagating it in imaginary time. The results for the
equilibrium density as a function of the interspecies scattering
length and the square-well range are presented in Fig. 6 and
compared to the MF + LHY predictions. For a negligible
range R, the equilibrium density drops below the MF + LHY
prediction as |a12|/a11 is increased. The effect of the fi-
nite range is to increase the equilibrium density. That is by
increasing R, the LDA prediction crosses the perturbative
result of MF + LHY and goes above. Overall, by increasing
the range and decreasing |a12|/a11 (i.e., going in the up-
right direction in Fig. 6) we observe an increase of ρ

eq
LDA/

ρ
eq
MF+LHY.

IV. SUMMARY AND CONCLUSION

We have carried out high-precision DMC calculations
of the ground-state equation of state of ultradilute two-
component Bose liquids. We have found that the use of only
the first beyond-MF correction, the LHY term, is accurate
only for extremely small densities and only when the range
of the interaction is not very large. In our study, we have
used for the range R the diameter of the square-well potential,
which has the same scattering length and effective range as the
chosen model. If |a12/a11 + 1| � 0.05 and ρR3 < 10−3, one
parameter, the s-wave scattering length, is enough to describe
the system, but there is an appreciable difference with respect
to MF + LHY. Increasing the range, one enters a regime
where interaction potentials with the same scattering length
and effective range give equivalent results within 10%, which
means that up to ρR3 = 0.1 we have at hand a universal
equation of state which is a function of two parameters. For
even larger values of ρR3 additional parameters would need
to be specified. The results of scattering calculations of alkali-
metal atoms, such as given in Refs. [17,18], indicate that most
likely the effective ranges are quite far from the zero-range
limit. In that case, to obtain the correct results one needs a full
many-body approach like DMC. Here, we provide an energy
functional based on the best fit to DMC data and use it to
calculate the density profiles of realistic drops with the LDA.
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