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Abstract: Recycled concrete aggregate (RA) from pavement demolition was used to make concrete.
Ten concrete mixtures with different replacement percentages of RA (coarse and fine) were made.
The corrosion rate of steel and the electrical resistivity of concrete were determined on reinforced
concrete specimens subjected to wetting-drying cycles (3.5% solution of NaCl). Corrosion rate was
determined using the electrochemical technique of linear polarization resistance, while the electrical
resistivity was measured by electrochemical impedance spectroscopy. The results show that the use
of RA introduces more interfaces in concrete, which accelerates the steel corrosion process because
the porosity increases and the electrical resistivity decreases. However, steel corrosion and the
electrical resistivity in concrete are not significantly influenced by replacing a maximum 30% of
coarse aggregate or 20% of fine aggregate with RA.

Keywords: recycled concrete aggregates; electrochemical techniques; electrical resistivity;
corrosion; porosity

1. Introduction

Aggregates constitute approximately 70% of the volume of a concrete mixture; that is why large
amounts of crushed rock, gravel, and sand are being extracted, processed, and transported around the
world, generating environmental and economic costs. The use of recycled concrete aggregate (RA)
for the production of concrete began at the end of World War II. Debris obtained by the demolition of
concrete pavements, roads, and building foundations and structures were satisfactorily reused around
the world [1]. It is estimated that more than 10,000 tons of public, private, and industrial construction
and demolition waste are generated daily in Mexico [2]. The interest in investigating and using RA to
produce new concrete is because concrete is a material that is demanded at the population growth rate
and because the use of RA is an alternative to natural aggregates and has potential for exploitation for
the great amounts of construction and demolition debris that are generated worldwide annually.

On the other hand, due to the necessity to ensure the durability of reinforced concrete
structures—mainly against steel corrosion as it is one of the most frequent diseases—a tendency
of incorporating more advanced concepts of durability is observed on the basis of the regulation
design. There are many proposals based on the modeling of the attack mechanism for service life
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prediction [3,4]. However, despite the evident importance of taking real properties into account when
estimating the durability to prevent significant mistakes in the results, only some of them are based
on concrete “performance” and they are called indicators of durability [5,6]. One of the durability
indicators is the electrical resistivity of concrete (ρ), inverse of conductivity, and it is a volumetric
measurement of the electrolytic resistance (Re) of the material, which through Ohm’s law is expressed
as the ratio of voltage to applied current (Re = V/I). It was initially developed in geophysics [7],
extensively researched in concrete with different types of cement [8], and is a property that reflects the
ability of the porous medium of transporting electrical charge in a finite or semi-infinite volume. The
corrosion process of the reinforcement steel is schematized in Figure 1 [9], where the surface of the
corroded steel works as a combination electrode that is composed of anodes and cathodes electrically
connected through the same steel, upon which a couple of anodic and cathodic reactions occur.
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Figure 1. Schematic illustration of corrosion of reinforcement steel in concrete as an electrochemical
process.

The pore solution of concrete works as an aqueous medium, that is, an electrolyte through which
ions transport electric charge. Thus, ρ emerges as a key parameter in the corrosion process because
it reflects the ability of the ions dissolved in the aqueous phase contained in the concrete pores to
transport electric charge.

Some research on recycled aggregate concrete (RAC) show that the use of RA increases the
porosity of the new concrete [10–12], which it is linked to ρ because it represents the paths for ionic
conductivity [13–15]. It is evident, and some investigations have confirmed [16,17], that ρ is inversely
proportional to the corrosion current density of the reinforcement steel (icorr) making it a fundamental
parameter in the electrochemical corrosion process of steel embedded in concrete. In order to determine
the influence that the use of RA (coarse and fine) on the electrical resistivity of concrete and in the
corrosion current density of reinforcement steel, these durability parameters were evaluated using
electrochemical techniques varying the percentage of recycled fine aggregates (RFA) and recycled
coarse aggregates (RCA) contained in the concrete.

Research Significance

During the last 20 to 30 years different approaches have been taken in practice and research by
various researchers. Among them it is observed, for example:

- Replacement of RA by natural aggregates (NA) considering the effect of the difference in
density or distribution of particle sizes. In this sense, some researchers have tried to obtain
“identical” granulometric profiles, for example, which makes it possible to avoid this variable
being imputable in the change of the properties studied. However, this technological requirement
in industrial practice on a large scale is obviously unacceptable because of the costs involved
in dividing the aggregates into fractions of sizes and then recomposing the ideal profile again.
Regarding changes in density, there are experimental procedures that allow separating the old
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mortar fraction from the old natural aggregate, thus allowing the RA to have densities equivalent
to those of an NA (but with an equally complicated industrial practice).

- In other new alternatives, some researchers have chosen to use the RA replacing the NA without
making specific considerations, and in this sense, its objective has been to establish the increase in
cement consumption that is required to “balance” both mixtures. This scientific trend simplifies
the industrialized commercial application of recycled concretes, since everything is limited to
making increments of cement in the mixtures. However, this type of application has researchers
who present important reflections: is it appropriate to use RA in a concrete that is called recycled
(and therefore sustainable) when its solution is to use more cement (one of the construction
materials) with maximum environmental impact?

Therefore, in the present work, a research proposal was made that is feasible at the local level
(practical and real solution) and that is why it was chosen to carry out the experimental work with
different dosages.

2. Materials and Methods

2.1. Materials and Mixtures

The cement used was Portland composite cement (PCC) with 30 MPa of resistance (PCC 30R).
Physicochemical requirements are stipulated in the Mexican regulation NMX-C-414 and are equivalent
to ordinary Portland cement Type III established in ASTM C150; PCC 30R was chosen because it is
commonly used and widely applied in the concrete industry in Mexico. Natural coarse aggregates
(NCA) came from a local river, considering a maximum particle size of 25.4 mm, and the natural
fine aggregates (NFA) were siliceous river sand. RA came from the crushing of demolished concrete
pavements in the city with the characteristics shown in Table 1.

Table 1. Physical properties of old concrete.

Absorption (%) 6.91

Density g/cm3 2.36

Porosity % 17.87

Compressive strength (MPa) 28.15

The RA consisted of natural aggregate plus adhered mortar, in turn containing cement paste and
the original sand. The detailed characterization of the aggregates used and the production process was
reported in a previous publication [18].

Physical properties of the aggregates are shown in Table 2, where it can be observed that the RCA
and the RFA present an absorption of 5 and 6 times greater than that of the NCA and NFA, respectively.
It can also be observed that the density of the recycled aggregates decreases, which is due to the porous
mortar adhered to them.

Table 2. Physical characteristics of the aggregates.

* Density (g/cm3) * Absorption % ** Fineness Modulus ** Maximum Size (mm)

NCA 2.56 1.19 - 25.4

NFA 2.59 1.88 2.53 4.76

RCA 2.38 6.27 - 25.4

RFA 2.28 11.86 3.38 4.76

* Standard procedure in ASTM C127 (coarse aggregates) and ASTM C128 (fine aggregates). ** Standard procedure
in ASTM C33. NCA: natural coarse aggregates; NFA: natural fine aggregates; RCA: recycled coarse aggregates;
RFA: recycled fine aggregates.
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The values of the void ratio, porosity, and therefore hydraulic conductivity, in the case of RA are
higher than a natural aggregate [19].

The particle size distribution of the recycled and natural aggregates are shown in Figures 2 and 3.
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Figure 2. Particle size distribution of coarse aggregates.
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Figure 3. Particle size distribution of fine aggregates.

Ten mixtures were designed with a w/c ratio of 0.5 and with the proportions shown in Table 3.
Mixture 1 (NAT) and mixture 10 (RA-100) are reference mixtures, the first one is of conventional
concrete (it does not contain RA) while the second one does not contain natural (or conventional)
aggregates, that is, it is made with 100% RCA and RFA. In mixtures 2 to 5, NCA was replaced by the
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RCA in percentages of 20, 30, 60, and 100 (RCA-20, RCA-30, RCA-60, and RCA-100); in mixtures 6 to 9,
NFA was replaced by RFA in percentages of 20, 30, 60, and 100 (RFA-20, RFA-30, RFA-60, and RFA-100).

Table 3. Proportion of the test mixtures. PCC: Portland composite cement.
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2.3. Lineal Polarization Resistance (LPR)

To determine icorr, an LPR test was carried out with a swept potential of −20 to 20 mV at a
10 mV/min speed. Polarization resistance (Rp) was determined using the potential-current curve
obtained from the LPR test, taking as the Rp value the gradient of the linear part of the curve, as shown
in Figure 5.

Appl. Sci. 2019, 9 FOR PEER REVIEW  6 

 
Figure 4. Experimental arrangement for the electrochemical tests. AE: auxiliary electrode; WE: 

working electrode; RE: reference electrode. 

2.3. Lineal Polarization Resistance (LPR) 

To determine icorr, an LPR test was carried out with a swept potential of −20 to 20 mV at a 10 
mV/min speed. Polarization resistance (Rp) was determined using the potential-current curve 
obtained from the LPR test, taking as the Rp value the gradient of the linear part of the curve, as 
shown in Figure 5.  

-0 .00003 -0.00002 -0.00001 0.00000 0.00001 0.00002

-0 .32

-0 .31

-0 .30

-0 .29

-0 .28

R p  (Ω )=  ΔE  / Δ I 

Δ I-20  m V

E corr

E 
(V

)

I (A )

+20  m V

ΔE

 
Figure 5. Typical curve of a lineal polarization resistance (LPR) test. 

Once Rp was obtained, icorr was determined using Equation (2) developed by Stern and Geary 
[20], where B is a Tafel constant that can vary from 0.026 to 0.052 V. For this work, B = 0.026 V was 
considered. 

icorr=B/Rp (2) 

2.4. Electrochemical Impedance Spectroscopy (EIS) 

In order to determine ρ, EIS studies were carried out with the testing parameters of 20 mV 
amplitude to maintain the system linearity in a frequency rate of 100,000 to 0.1 Hz. Electrolytic 

Figure 5. Typical curve of a lineal polarization resistance (LPR) test.

Once Rp was obtained, icorr was determined using Equation (2) developed by Stern and Geary [20],
where B is a Tafel constant that can vary from 0.026 to 0.052 V. For this work, B = 0.026 V was considered.

icorr = B/Rp (2)

2.4. Electrochemical Impedance Spectroscopy (EIS)

In order to determine ρ, EIS studies were carried out with the testing parameters of 20 mV
amplitude to maintain the system linearity in a frequency rate of 100,000 to 0.1 Hz. Electrolytic
resistance (Re) was obtained from the change of slope at high frequencies in a Nyquist diagram, as
shown in Figure 6. In previous research the use of EIS is well documented to determine ρ [21,22].
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Once Re was obtained, ρ was determined using Equation (3).

Re = ρCc; ρ = Re/Cc, (3)

where Cc is a cell constant which depends on the geometry and conditions of the conducting body [23].
For this work, Cc = 1 was considered.

3. Results and Discussion

3.1. Compressive Strength

Compressive strength of the different studied mixtures is shown in Figure 7.
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It can be observed in Figure 7 that as the RCA substitution percentage increases, compressive
strength decreases, which is attributed to several factors: to the weaker bonding between the RA
and the old mortar adhered to them, to a larger amount of interfacial transition zones (ITZ), to
higher absorption and porosity of the RA, and to the old adhered mortar, which gives concrete a
porous constitution. It can also be observed that for mixtures with a substitution of RCA up to
60%, strength losses are lower to 10%, so from a mechanical point of view they are feasible to use in
structural concretes of normal strength. For mixture RCA-100, a 40% decrease in compressive strength
is reported, reaching values of about 22 MPa, which is considered as concrete of moderate strength.
Regarding RFA, losses of compressive strength ranging from 15% (for RFA-20) to over 50% (RFA-100)
are reported. Similar trends have been found in other investigations [10,24–27].

In [26], concretes made with 25% and 100% of RFA present reductions of 15% and 30% in
compressive strength. On the other hand, Evangelista and de Brito [28] conclude that the compressive
strength is not affected by the utilization of RFA up to 30%, although the splitting tensile strength and
static modulus decrease as the recycled aggregate content increases.
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3.2. Total Porosity

Porosity results for the ten mixtures under study are presented in Figure 8. In the case of mixtures
with RCA, it can be seen that for percentages of substitution of 20, 30, and 60, porosity does not
vary significantly (2%, 4%, and 11%, respectively) with respect to the reference mixture (NAT) values.
Porosity of the RCA-100 mixture is 125% higher than the NAT mixture. Regarding the mixtures with
RFA, it can be observed that in RFA-20 the porosity increases 41%, while for RFA-30, RFA-60, and
RFA-100, the porosity increases 65%, 91%, and 98%, respectively, with respect to NAT. The other
reference mixture (RA-100) has a 138% higher porosity.
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Figure 8. Total porosity of the studied mixtures.

This result indicates that RAC is usually more porous and has greater ability to absorb water, and
this is attributed to the high absorption and the porous nature of the old mortar adhered to the RCA
and RFA.

As shown in Table 2, in comparison with natural aggregates, RA are more porous and old cement
paste is attached on their surface. Thus, the microstructure of ITZ in RAC is different from that in
conventional concrete [29], and the total porosity and the average porosity diameter of the concrete
increases as the RA content increases [10,30].

In some investigations [10,24], similar values and trends of porosity were found as a function
of RCA amount in concrete. In other works [27,31,32], it was found that in concrete with RFA, the
amount of water absorbed (implicit porosity) increases.

3.3. Electrical Resistivity of Concrete

The ρ as a function of the exposure time shown in Figures 9 and 10 confirms that the use of a
certain amount of RA produces increases in the formation of capillary porosity (continuous conductive
routes) and consequently lower electrical resistivity. This suggests that there is greater susceptibility to
corrosion of steel embedded in concrete with higher electrical conductivity.

In Figure 9, at the end of the exposure period, it can be observed that the concrete with 20% RFA
(RFA-20) shows ρ similar to the reference concrete (NAT) of around 20,000 Ω-cm, which according to
the criterion established in another publication [33], it would mean a low/insignificant corrosion rate
of the reinforcing steel. The system RFA-30 ranges between 5000 and 10,000 Ω-cm and for the other
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systems (RFA-60 and RFA-100) ρ oscillates between 6000 and 3000 Ω-cm; these values of ρ indicate
that the reinforcing steel would have a high and/or very high corrosion rate.
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In Figure 10 it can be seen that at the end of the exposure period, mixtures RCA-20, RCA-30, and
RCA-60 have ρ very similar to the reference mixture (NAT) of around 20,000 Ω-cm, which suggests
that the reinforcing steel would be experiencing corrosion at a low/insignificant speed. The RCA-100
mixture has ρ oscillating around 10,000 Ω-cm, which would mean a moderate reinforcement corrosion
rate. The RA-100 mixture is the lowest ρ with values ranging between 5000 and 6000 Ω-cm, which
means that the reinforcing steel would have a high or very high corrosion rate.

In general, for percentages of RCA over 60% and RFA over 20% there is a significant decrease of ρ,
which means less durability of the system as ρ is closely linked to the concrete continuous porosity.
The observed decrease of ρ is attributed to the concrete effective porosity (continuous pores where
ionic conductivity takes place) is increased due to the porous nature of the RCA and presumable
appearance of new ITZ.
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In Figures 9 and 10, the observed drop of ρ around week 20 is attributed to the fact that in this
week the first significant microcracks of the concrete were generated by the expansion of the oxides in
the vicinity of the reinforcing steel. The most pronounced fall can be seen in the NAT, RFA-20, RCA-20,
and RCA-30 systems, as they are the most resistive. This is corroborated by the notorious increments
of icorr for the same systems and in the same week 20, as shown in Figures 11 and 12.
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In [34] it was found that concrete with 50% RCA has durability properties (electrical resistivity,
sorptivity, chloride-ion penetration) similar to conventional concrete. In [35] it was found that concrete
with up to 30% RFA does not detract from its durability measured with different indicators, such as
carbonation depth and sorptivity. These results, although they are different durability indicators, are
consistent with those found in the present work.
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3.4. Corrosion Current Density of Reinforcement Steel

The icorr results are presented in Figures 11 and 12, allowing comparison of the corrosion resistance
of the steel–concrete systems under study. It can be seen from Figure 11 that the system with 20%
RFA (RFA-20) and the reference system (NAT) exhibit a similar electrochemical behavior keeping at
a moderate corrosion level (icorr values between 0.5 and 1.0 µA/cm2) until the end of the exposure
time and a low corrosion level (icorr values between 0.5 and 1.0 µA/cm2) in the first weeks of exposure.
In the systems with 30%, 60%, and 100% of RFA there is a significant increase of icorr from week 7, 11,
and 12, respectively, (they changed from a low corrosion level to moderate).

The corrosion risk limits shown in Figures 11 and 12 were established in a previous report [33].
Figure 12 shows that systems with 20%, 30%, and 60% of RCA have an electrochemical behavior

very similar to the reference system (NAT), maintaining at all times a level of corrosion between low
and moderate (icorr lower than 1.0 µA/cm2). Since the beginning of exposure time, the system RCA-100
shows higher values of the other systems, including in week 21 and 25 where it reached the high
corrosion level, maintaining its icorr above the other RCA systems until the end of the evaluation period.
In the system with 100% RA (RA-100), icorr increased significantly in week 13, reaching high values of
corrosion (greater than 1.0 µA/cm2); as of week 17, icorr maintained a very steep upward trend.

In general, it can be noted in Figures 9–12 that ρ elucidates in a more clear way the effect of
the RA in ionic conductivity of species in concrete because it is not susceptible to dissolved oxygen
concentration, nor the surface state, type, and shape of the reinforcement steel oxides; which does not
happen with icorr and therefore the variability of results in the first weeks and between the passive
state systems.

The results show that the more RA a concrete mixture contains, the higher the steel corrosion rate
is. The presence of RA increases the porosity of concrete and increases the number of types of interfaces
in the concrete, both of which make it easier for harmful materials such as chloride to penetrate the
concrete. Thus, the higher the RA replacement percentage in RAC is, the higher the steel corrosion rate
is. Also, the introduction of a low amount of RA (around 30% RCA or 20% RFA) does not increase the
rate of steel corrosion significantly. In other publications [36,37] similar results were found.

In [36] icorr was measured under similar conditions (under humectation-drying cycles) and values
and trends similar to those obtained in the present work were found. It can also be seen in this study
that due to the resistive nature of the concrete, the sensitivity of the LPR technique and other variables,
the standard deviation of the measurements is large (around 0.1 µA/cm2). In the present work, slightly
higher icorr values were obtained because during the drying period the specimens were exposed to
40 ◦C in an oven generating more extreme conditions (in [36], during the drying periods, the specimens
were exposed to the air in the laboratory).

4. Conclusions

The following conclusions can be drawn from the results of this study considering the
proposed dosages.

1. The use of 30% or lower amounts of RCA does not significantly influence on total porosity
and compressive strength. After 30% of RCA in the mixture, the total porosity increases and
compressive strength decreases significantly.

2. Corrosion of steel bars initiates more quickly in RAC than in conventional concrete. The more RA
the RAC contains, the earlier corrosion in the steel begins.

3. The corrosion of steel in conventional concrete and RAC accelerates with time. The more RA the
RAC contains, the more rapidly the steel corrodes.

4. The use of RA introduces more interfaces in concrete, which accelerates the steel corrosion process
because the porosity increases and the electrical resistivity decreases.

5. Steel corrosion and the electrical resistivity in concrete are not significantly influenced by replacing
a maximum 30% of coarse aggregate with RCA.
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6. Steel corrosion and the electrical resistivity in concrete are not significantly influenced by replacing
a maximum 20% of fine aggregate with RFA.

7. Within the limitations and scatter of the present experiments, the degradation of durability
parameters occurs with all RA specimens but is significantly greater where the RCA replacement
is >30% and where the RFA is >20%.

Future Research

To correctly understand the corrosion results, capillary suction and mercury intrusion porosimetry
measurements should be done, because they will influence strongly the corrosion rates in reinforced
concrete. The cell constant used to calculate electrical resistivity must be determined as a function of
the geometry and conditions of the conducting body and experimental arrangement.
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