A mathematical formulation of the
loop pipelining problem

Jordi Cortadella, Rosa M. Badia and Fermin Sanchez
Department of Computer Architecture— Universitat Politecnicade Catal unya
08071 Barcelona, Spain
e-mail: {jordic,rosab,fermin} @ac.upc.es

Abstract

This paper presents amathematical model for theloop
pipelining problem that considers several parameters
for optimization and supports any combination of re-
source and timing constraints.

The unrolling degree of the loop is one of the vari-
ables explored by themodel. By using Farey’s series,
an optimal exploration of the unrolling degree is per-
formed and optimal solutions not considered by other
methods are obtai ned. o

Finding an optimal schedule that minimizes re-
source and register requirements is solved by using
an Integer linear programming (ILP) model. A novel
paradigm called branch and prune is proposed to ef-
ficiently converge towards the optimal schedule and
prune the search tree for integer solutions, thus drasti-
cally reducing the running time.

This is the first formulation that combines the un-
rolling degree of the loop with timing and resource

congtraints in a mathematical model that guarantees
optimal solutions.

1 Introduction

Loops monopolize most execution time in programs.
In many applicationsafew loops, if not only one, de-
termine the throughput achievable by the implemen-
tation of a behaviora description. For example, DSP
filters often consist of an infinite loop that repeatedly
executes for every sample of theinput stream.

In architectura synthesis, the problem of optimiz-
ing loop execution under timing and area constraintsis
crucid to obtain high quality architectures. The tech-
niques that address this problem attempt to overlap
the execution of different loop iterationsto reduce the
cyclecount (initiationinterval or 1) per iteration. Dif-
ferent methods have been proposed with such a goal:
loop folding [1], functional pipelining [2], loop wind-
ing [3] and rotation scheduling [4] among others. The

area of fixed-rate DSP has also drawn the attention of
other authorsto proposetechniquestor loop pipelining

with timing constraints[5, 6].

Loops are usually represented by means of a data
dependence graph (DG). Figure 1 shows an example.
Vertices represent operations. Unlabeled edges rep-
resent intra-loop dependences (ILDs), eg. B; (reads

X[¢]) depends on A; (produces X [i]). Labeled edges

for:=0to/ — 1do °
A X[[;'] = R[] + S[4];

Figure 1: Loop and data dependence graph

iteration, the execution of A;, B; and C; must be se-
guentia dueto ILDs. An overlapped execution (loop
pipelining) takes 7 + 2 cyclesto compl ete, as shownin
Figure 2. The problem of loop pipeliningis basicaly
reduced to find a schedule (a folded loop body) that
executes at the maximum rate alowed by the depen-
dences. In the schedule, instructions from different
iterations (folds) are executed (A;4; denotes that the
execution of A; belongsto fold f).

In general, unrolling the loop is crucia to obtain
optimal solutions. If two adders are available for the
schedule in Figure 2(b), the loop requires two cycles
(Il = 2) to be executed, as shown in Figure 3(a). How-
ever, if theloop is unrolled twice (Figure 3(b)), every
iteration executes in 1.5 cycles on average (11 = 3/2).

Another important aspect to be considered is the
span (number of foldsrequired to obtain the schedul €).
As further commented in Section 4.5, smaler spans
result in shorter variablelifetimes, reducing in genera
the schedul €' sregister pressure.

The loop optimization problem addressed in this
paper comprises a large variety of formulations with
different timing and resource constraints. The two
extreme cases are next described:

¢ Resource-constrained loop pipéining (RCLP).
Givenaset of resourceconstraints, to find aschedule
that minimizes the execution time.

o Time-constrained loop pipelining (TcLP). Given
an upper bound on the execution time, the objective

isto find a schedule that minimi z& the cost of the
resources required to execute the [oop.

There is a wide range of problems between RcLP
and TcLp , eg. finding a time-constrained schedule
with constraints on a subset of resources.

represent loop-carried dependences (LCDs), e.9. Bi41 ’ég Ay Ao Prologue
(reads Y'[i + 1]) depends on B; (produces Y[i + 1]). Co Bi A go ﬁ; T Schedule
Labels on edges indicate the number of iterationstra- €1 gz %B St _

versed by the dependence. Thus, ILDs can also be el C,_, | Epilogue

represented as O-label ed edges.
If no overlap between successive iterations is al- @ (b)
lowed to execute the loop, the total execution timeis

3.7 ¢ycles (assuming 1-cycle operations). Withineach Figure2: (a) Overlapped loop execution. (b) Schedule

Ao Ag
By Aq B, A
Ci Bl C; By | (i=i+2)
Aiyo Aiyp Ciqa
Cr—2 Bra Br_1
Cro1 Cr_1
€) (b)

Figure3: Schedulewithresourceconstraints: (a) with-
out unrolling (b) by unrolling twice the loop.

This paper presents UNRET (unrolling and retim-
ing), a forma approach to solve RcLp. TCLP is ad-
dressed in[7]. Sincethe delay decision (minimization)
problem of loop pipeliningwith resource constraintsis
NP-hard [8], severa heuristics have been proposed to
solve it in moderate computation time. Several au-
thors have used linear programming to obtain optimal
or quasi-optimal solutionsfor the problems of schedul -
ing and allocation in architectural synthesis [9, 10].
The closest approaches related to the work presented
here have been proposedin[11, 12].

The main contributions of UNRET in reI ation to ex-
isting forma methods are next present

e UNRET performs an exhaustive analysis of the un-
rolling degrees of the loop that can derive optimal

solutions for the available resources. Unlike other
methods that perform loop unrolling [13, 10], this

paper presents a new approach that guarantees an
optimal unrolling degree.

e Similarly to [11, 12], the number of folds for the
scheduleisautomatically obtained by solvingan ILP
model for loop pipelining. The number of registers
required to execute the loop is reduced by reducing
the maximum number of live variables at any cycle.

¢ A new approach, called Branch-and-Prune, is pro-
posed to solved the ILP moddl. The heuristics de-
vised to explore the space of solutions alow us
a rapid convergence to the optima solution. ILP

model s with more than 1000 variables and 700 con-
straints have been solved in a reasonable running
time.

The paper is organized as follows. Section 2
presents some preliminary definitions. Section 3 pro-
poses a loop unrolling strategy to find time-optimal
schedules for the RcLP problem. The ILP modd to
find an optimal scheduleispresentedin Section 4. The
branch and prune strategy to efficiently solve the ILP
model is described in section 5. Experimental results
and conclusions are presented in Sections 6 and 7.

2 Basic definitions

For the sake of simplicity, we will first assume that
all operations can be executed in any of the functional
units (FUs) of the architecture in one cycle. Exten-
sionsto multiple-cycle, pipelined functiona unitsand
several types of resources can be foundin [14].

2.1 Representation of aloop

A loop is represented by alabeled dependence graph,
DG(V, E). Vertices and edges represent operations
and data dependences respectively. Labels of the DG
are defined by two mappings, A (fold) and § (depen-
dence distance), in the following way:

B; l Ait1 B
1
Ay Aiy2 Bina
B -
@ (b)

Figure 4: (a) Schedule of a loop with one ILD. (b)
Schedule of the same [oop with an equivalent labeling
function and one LCD.

¢ \(u), defined on vertices, denotes the fold to which
u belongsintheschedule (A(u) > 0). A(u) = ¢ will
be denoted by u; inthe DG.

e 4(u,v), denotes the dependence distance (number
of iterations traversed by the dependence) between
operations « and v. An ILD between v and v is

represented by u; A v; or smply u; — v;. Sim-
ilarly, an LCD between « and v with distance d is

d
represented as u; — v;.

Initially,aloopisrepresented by aDG withonly one
fold,i.e. Yu € V: A(u) = 0. After finding aschedule,
each operation is labeled with a fold representing the
relative execution skew (in iterations) with regard to
the other operations of theloop.

Equivalent labeling functions can be obtained by

simple transformations. Dependence A; 11 LB (or

in general A;14 KR B;) is equivalent to A; — B;.
This transformation can be used to pipeline the loop,
as shown in Figure 4. Note that only ILDs constrain
the scheduling process, and therefore DG from Figure
4(b) is more paralle than the one shown in Figure
4(a). ILDs can be transformed into LCDs by changing
the fold assignment and shorter schedules for theloop
body can be found. This transformation is anal ogous
to the retiming technique proposed to minimize the
clock period in synchronous systems[15].

Definition 1 : Equivalent labeling functions: Let
(A, é)and (), &) betwo labding functionsfor DG =
(V, E). They areequivalent if V (u,v) € E:

A(w) = AMu) + 8(u,v) = N (v) — N (u) + 8 (u,v) (1)

2.2 Initiation Interval

As proposed by other authors[16], UNRET first calcu-
latesalower bound onthell of theloop: the minimum
initiation interval (MII). Two lower bounds on Ml
must be taken into account:

o theminimuminitiationinterval imposed by resource
constraints (ResMI1). If each iteration of the loop
requiresusing an FU during C' cycles, and the archi-
tecture has N FUs of such atype, then Il > [£].

Therefore, the FU with the maximum such ratio de-
termines alower bound on I1.

e the minimum initiation interval imposed by the
recurrences® of the loop (RecMII). Let us consider
a recurrence R. A feasible schedule must fulfill
Il > [£L], where ET is the sum of the execution

1A recurrence R is a set of edgesthat form acycle.

K I = MII
. y
& @)@ G
I
@ 456 8) K
C) (b)

Figure5: (a) DG example (b) (Il ,K) pairsfor 4 FUs.

times of the operationsin R and D isthe sum of the
distances of its dependences [16]. The recurrence

with the maximum such ratio determines another
lower bound on I1.

Let us define 6 as the sum of the distance of the
dependences in a recurrence R. In the example of
Figure 5(a), there are three recurrences with the same

value for RecMIl. Let ustake“Aqg — Bg — Ep 3
Ao”, with 6 = 3 and |R| = 3. This indicates that
Az must be executed at least 3 cycles after Ao, thus
resulting in RecMIl z = 1. The other two recurrences
are isomorphic to thisone.

3 Loop unralling for RCLP

Thelength of ascheduleisaninteger number of cycles,
whereas the Ml of aloop may be a rational number.
Let Il be theinitiation interval of a schedule com-
prising K instances of the loop body (11 = ”%) The
goa of UNRET isto find a schedule that minimizes|I.
Thisis done by exploring pairs (I x, /) inincreasing
order of 11, starting from MII. In order to bound the
search space for (Il ,K), amaximum valuefor ll g is
defined: the maximum length of the schedule (11 max).

Figure 5(a) depicts the DG of a 5-instruction loop.
If 4 resources are used for execution, then RecMIl =
1 and MIl = ResMIl = 2. The diagram in Figure
5(b) represents the pairs (11 x, /) that can be explored
to find a feasible schedule for the loop. These pairs
correspond to the pointswithinteger valuesfor Il x and
K enclosed inthetrianglelimited by thelines X' = 0,
g = Hma and L2 = MII. Distinct points with the
same Il lie on the same line. Among all points lying
on the same line, those with smaller valuesfor |15 (or
K) are preferred (they produce shorter schedules).

In the example, the first point to be explored is
C' = (5,4), meaning that 4 iterations must be exe-
cuted in 5 cycles (I11=M11=1.25). However, no feasible
schedule with such characteristics exists. In[16], |15
is incremented by 1 when no schedule is found and,
thus, thepoint B = (6, 4) isnext explored. Thisresults
in a suboptimal solution. A time-optimal solution (for
I1max = 8) isfound if the point A = (4, 3) isexplored
after C' = (5,4). But, isthere any efficient strategy to
explored| pointsinincreasing order of 11 ?

3.1 Farey'sseries

For a fixed integer D > 0, the sequence of dl re-
duced fractions with nonnegative denominator < D,
arranged in increasing order of magnitude, is defined
by the Farey's series of order D (¥p).

Let Z— be the /th lement of the series. F'p can be
generated by using the following equationg[17]:
. ro _ 0.27 1
e Thefirst twoelementsarey—g =1 y—i =5

e The generic term Z— can be calculated as:

\fﬁ 2-|—DJ {yi—z-I—DJ
T, = | ——— | ®i—1— x;—2 Y= |—| ¥ 1 Y

Yi—1 Yi—1
For amore detailed explanation of how Farey’s se-
riesare explored see [18].

3.2 Loop unrolling

Every pair (Il g, K) obtained from Farey’s series de-
notes a different unrolling degree for theloop (/#7) and
a target initiation interval (I1x). Unrolling a DG K
times generates another DG in which each vertex v
isinstantiated K times (v2, v, ..., v5~1). Besides,
data dependence distances must be changed accord-

. . d

ing to the unrolling degree. A dependence v — v

in the original DG is represented by K dependences
g

ul LLJ plitd) mod K in the unrolled DG. A complete

description can befoundin [18].

3.3 UNRET algorithm for RCLP
The strategy followed by UNRET isthe following:

1. Calculate MII.

2. Find the first unrolling degree (KX) and expected
i|r|1itiat|\i/|(|){1 interval (I1x) that minimizes 11 such that
> .

3. Unroall theloop K times.

4. Find a schedule with length Il x (ILP approach ex-
plained in Section 4).

5. If noschedulewith |l x cyclesisfound, generatenew
valuesfor A and Il x that minimizell (1l isexplored
in increasing order by using Farey’s series) and go
to step 3.

4 Loop pipeining: An ILP ap-
proach

The problem of loop pipelining can be reduced to two
interrelated subproblems that can be simultaneously
solved by using an ILP model: folding the DG (find-
ing the functions A and é) and finding a schedule for
the folded DG subject to the data dependences and
resource constraints.

41 Preiminaries

Initially, a DG obtained by unrolling the original DG
K times will be given. An objective Il (11x) will fix
the number of cycles of the schedule. Heresfter, and
for the sake of brevity, we will use Il instead of 1l k.
C = {0,..., 1l — 1} will denote the set of cycles of

the schedule, _
All variables used in the model are nonnega

tive integers. The least nonnegative residue system
(0,1,..., %k — 1) will beused when modulo & (mod k)
operations are performed on constants.

4.2 Loop folding constraints

The following variables are defined for the labeling
functions:

Au; YVueV
8u v, V(u,v) € E

(fundamental variables)
(auxiliary variables)
Folding theloop means finding an equivalent |abel -

ing functionfor the DG. According to equation (1), the
auxiliary variables o, ,, are defined as follows:

buw = Au—Au+A(v)=A(u)+6(u, v),

whereA(u),
of the DG (usually A(u) =

Y(u,v) € E(2)

A(v) and é(u, v) denotetheinitial labeling
Alv) = 0).

4.3 Schedulingand datadependencecon-

graints

Thefollowing variablesare defined Vu € V, i € C:
_ J 1 if ustartsexecuting at cyclei

Su,i _{ 0 otherwise 9y

The following constraint guaranteesthat an instruction
isscheduled at only one cycle of the schedule:

Z Su,i = 1;

ieC

YueV 3

For simplicity, the auxiliary variable ¢,, will be used to
denote the cycle a which u is scheduled. Hence,

Cu:Zi'Su,i, YueV 4
ieC
Data dependences are honored by the constraint:
eo > ey +T(u)—1l-b,,, Y(uv)eE (5

where T'(u) isthe execution time of w.

4.4 Resourceconstraints

The following constrai nts guarantee that no more than
I functional units are used at each cycle:

DS

u€a(t) j=i—L(u)+1

Su,(Gmodiy < Fy, Yt € M,i € C(6)

where A(t) isthe number of available F;. Aninstruc-
tionu usesan FU duringthecyclesc,, .. .c, + L(u)—1
(mod Il). In casethelatency of the operationislonger
than 11, the execution of several instances of the same
operation may overlap and, therefore, more than one
FU may be required.

45 Register requirements

The maximum number of variables whose lifetimes
overlap at any cycle, MAXLIVE, isthe minimum num-

ber of registers required for a schedule [19]. For an
edge u — v, the variable lifetime spreads from the
completion of « (cycle ¢, + T'(u)) to the cycle in
which the FUs executing v does not required the input
data anymore (cycle ¢, + L(v) — 1). The following

auxiliary variables are defined to specify whether an
operation reads or writes a result before a given cycle:

c—1

RB, . = Z Su,(i— L(u)+1)modll
7=0
c—1

WB,,. = Z Su,(i—T(u)+1)modl
7=0

The auxiliary varigble r, , . defines the number of
registers required to store aresult in cycle ¢ produced
by operation « and consumed by operation v:

T -1
Tuw,e = (Su,v - (\‘ (ul)l J +WBu,(T(u)—l)mOd||) +
L -1
q (UI)I J + RBv,(L(v)—l)modll) +
WB.,c — RBy ¢ ™

The expressions in brackets determine a correction
on ¢, , produced by the execution time of « and the
latency of v (L(v)), i.e. no register is required to
store the value while u executes, whereas aregister is
required during thefirst L(v) cycles of v’s execution.

A variablecan betheinput of morethan oneinstruc-
tion. However, there is no need to alocate different
registers for the same variable. The number of regis-
ters required is the maximum from all edges with the
same source. Therefore,

Tuwe <Tue YuEV,ceEC (8)

It can be easily proved that if operation v isthe last
useof u'sresultthen, , . = r . forany cyclec [12]:

Z ru,e < ML,

uev

VeeC (9)

4.6 Objectivefunction

Assume we have a cost vector A = (A, ..., Ay) for
the FUs of the architecture and a cost A, for each
register?. We formulated the objective function as:

min Area= Y A, Fi+ A, - ML (10)
teM

Fy and ML can be variables or constants, according
to theinitial constraints. If all of them are constants,

afeasible solution will be found. Here we have con-
sidered ML as the number of registers required by the

schedule. Although this might not be true, it isareal-
istic assumption for many practical cases [19].

4.7 Complexity of the model

Table 1 describes the fundamental variables and con-
straints of the moddl. £ denote the number of
nodes and edges of the DG respectively, whereas m is

the number of different FU types of the architecture.
Some of the variables, eg. F} and ML, may become

constantsif the number of resources of the architecture
is defined in advance.

2Piecewise linear cost functions for registers can also be incor-
porated, as proposed in [20].

variable number congdrant number
u 14 3 v
o Vol ésﬁ E
F m 6 m - |l
T e el & Vol
ML 1 9 I
total V2T+F D) FmF1 total VIT+ 1) F EF
H(m + 1)

Table 1: Variables and constraints of the ILP modéel
5 Branch and Prune

The most popular method to solve ILP models is the
combination of branch-and-bound techniques with a
linear-programming solver such assimplex [21]. Hav-
ing integer variablesin the model increases complex-
ity from polynomial to exponentia. The runningtime
for ILP is highly influenced by the exploration of the

branch-and-boundtree. For anILP solver insensibleto
the problem, thetree of solutionsis“blindly” explored

and finding validinteger solutionsmay require solving
an excessive number of LP problems.

We haveimplemented branch and prune, an ad-hoc
solver for loop pipelining that takes advantage of the
information known a priori about the problem. The
solver uses a branch-and-bound paradigm to explore
the space of integer solutions that allows us a rapid
pruning when enough information has been captured
to evaluate the objective function. The order in which
integer variables are explored isal so crucial to reduce
the running time.

Loop pipelining is decomposed in two different
problems. Retiming (finding the loop fold A for each
operation) and scheduling (assigning operationsto cy-
cles). After solving retiming, loop pipdining is re-
duced to the scheduling of a basic block in which not
all dependences must be taken into account. Accord-
ing to thisidea, variablescorrespondingtoretimingare
explored beforevariabl es corresponding to scheduling.

5.1 Retiming

Recurrences are the most stringent constraints for re-
timing, since the sum of their edges isa constant [14].

The order of the variables is selected as follows:
first explore the nodes belonging to the most stringent

recurrences. Insideeach recurrence, first explorethose
nodes that al so bel ong to other recurrences.

For nodes not belonging to any recurrence, the ex-
ploration order is defined according to a neighboring

criteria to nodes in recurrenc&. In these cases the
number of branchesto be explored may be unbounded,

since no recurrence limitsthevalue of A. For thisrea
son, an early calculation of alower bound for register

requirementsis done at each node of thetree.

5.2 Scheduling

After having defined the folds of the operations, a
scheduling problem is posed for each of the leaves
of the search tree. At this moment, some depen-
dences of the DG can be eiminated from the model
(if T(u) — Il - 6, , < 0) and the critical path of the
retimed DG can be calculated. In case thecritical path
islonger than 11, no feasi ble schedul e can befound and
the exploration is pruned.

The exploration order of the scheduling variables
(su,;) is dso cruciad. We have chosen one of the
well-known algorithms for scheduling (force-directed
scheduling (FDS) [22]) to assist the solver in defining
an efficient strategy to generate the search tree. FDS

performs a stepwise assignment of operations to cy-
cles according to criteria that attempt to balance the
utilization of resources over all cycles of the schedule.

This strategy |eads the solver to a near-optimal so-
[ution very soon, thus alowing an efficient pruning of
the tree for the other branches. Similarly to branch-
and-bound, the LP solver isinvoked at each branch of
the tree to prune those solutions with a cost greater
than the best integer solution found.

6 Experimental results

The techniquespresented inthe previous sections have
been implemented by using the package Ip_solve [23].
In this section, severa resultsare reported to show the
main features of the method. The types of resources
used in the schedules are adders (1 cycle) and multi-
pliers(2 cycles).

6.1 Optimal unrolling degree

Table 2 presents the results obtained by exploring two
different unrolling degrees for the exampl e depictedin
Figure5. MAXLIVEisa sominimizedfor theoptimal 11
found by themodel. ThecolumnsV and £ indicatethe
number of nodes and edges of the DG &fter unrolling
the loop. #Vars and #Const indicate the number of

variables and constraints of the ILP model. SPAN is
calculated as Ay, — Amin + 1. theschedule). Milis

1.25for all three cases.
Thefirst row presentstheresultfor point C' = 5, 4in

Figure 5), whichisan infeasible problem. The second
row presents the result for point A = (4, 3). Thiscase
obtains optimal resultsin MAXLIVE and Il in front of
the schedule found for the third point (B = (6,4)),
which is the one explored by other techniques that
perform sub-optimal loop unrolling.

T Rz E wars FConst CPU SN MAXLIVE
125 a7 15 21 167 121 225 - Non em Hle
1.33 3/ 10 14 82 72 199 4

192

Tabl e2: Resultsfor the example of Fl gure 5(a)

6.2 ILP mode for RCLP

A significant part of the computational cost for solving
the ILP modéd is spent in guaranteeing that the final
solution is optima. For this reason, we aso report
the best solution obtained after 1 minute of CPU3,
MAXLIVE isrepresented as M L

The results presented in Tables 3 and 4 show that
benchmarks with a large number of operations can be
solved with moderate computational cost. The method
can also be used for heuristic search by limiting the
maximum CPU time and providing the best solution
found at that moment (e.g. one minute). The results
demonstrate that the optimal solution can be often ob-
tained by only using a small fraction of the total com-
putational cost, although a proof of optimality cannot
be given in this case. Optimal solutions have been

found for models with more than 1000 variables and
700 constraints.

Resources m | #ars | #Const | CPU | ML | SN | (ML

5 2 118 9 7 16 5
210 149 10
394 % -
1 436 4 4
762 1252

Table 3 Results for the 16-point FIR filter (V
3dandF = 22)

3We only report the value of MAXLIVE after 1 min, which isthe
critical variable in the optimization of the objectivefunction.

Resources l was FConst. CPU ML SN
Xp X (sece) (60 SetS)
16 125 684 201
16 125 684 204
16 125 684 188 0 0
17 93 721 433
16 125 684 203
16 125 684 223 0 0
17 193 721 72
19 329 795 1924

Table 4: Results for the 5th-order dliptic wave fil-
ter (x, and x stand for pipelined and non-pipelined
multipliers). V = 34and £ = 58

6.3 Solutionsfor large examples

Although the branch-and-prune strategy has proved to
be efficient for models with 10 variables/congtraints,
the exponential nature of the method becomes critical
in some cases. Rather than discarding this method, we
claim that it can till be used to obtain near-optimal
solutionsby limiting the CPU time of the search.
Tables 5 and 6 present results on the Cytron’sand
FDCT loops obtained by limiting the CPU time to 10

minutes. Given the status of the search at thetimethe
solution was delivered, we suspect that the results are

optimal (although we could not proveit).

MIT [T KMz | [E [#as [#os [S»N [ML |

[1]

[3 1586 [566 | 3I7 T 51 1787 1015 3 1z
4 [425 [[425 | 417 | 68 84 2382 1342 4 18
5 [34 [34 | o517 | 8 [105 | 2977 | 1669 | 5 [1

Table 5: Resultsfor the Cytron example

Resources MIT | | KT g | wNas | #Const | SN | ML |
4 4 4 11 4 | 4 | 174 382] 279 | 3 | 12
e A
Tabl 6: Results for the FDCT 1st and 2nd cases:

=42 F =53. Thirdcaset V = 126, £ = 159

7 Conclusions

In this paper we have presented a mathematical model
that can be solved by using ILP. However, efficient
techniques to wisely explore the space of integer solu-
tions are required to avoid a blind navigation through

the branch-and-bound tree.
We have presented anew strategy called branch and

prunethat takes advantage of theinformationknown a
priori about the problem to seek near-optimal solutions
as fast as possible. Decomposing loop pipdininginto
two sub-problems(retiming and scheduling) and using
force-directed scheduling to assist the search have been
essential heuristics to guarantee optimal solutions in
moderate CPU times. _

We have also demonstrated that exploring the un-
rolling degreeisnecessary to find optimal solutionsfor
loop pipelining. A mathematical formulation based on
Farey’s series has been proposed for such agoal.

References

[1] T-F Lee, A.C-H. Wu, Y.-L. Lin, and D.D. Gajski. A
transformation-based method for loop folding. |EEE
Trans. Computer-Aided Design, 13(4):439-450, April
1994.

[2] C.-T. Hwang, Y.-C. Hsu, and Y.-L. Lin. Scheduling for
functional pipelining and loop winding. In Proc. of the
28th Design Automation Conf., pages 764—769, June
1991.

[3] E.F. Girczyc. Loop winding: A dataflow approach to
functional pipelining. In Proc. Int. Symp. Circuits and
Systems, pages 382-385, May 1987.

[4] L.-F. Chao, A. LaPaugh, and E.H.-M. Sha. Rotation
scheduling: aloop pipelining algorithm. In Proc. of the
30th Design Automation Conf., pages 566-572, June
1993.

[5] S.M. Heemstra de Groot, S.H. Gerez, and O.E. Her-
rmann. Range-chart-guided iterative data-flow graph
scheduling. |EEE Transactions on Circuits and
Systems-l, 39(5):351-364, May 1992.

[6] F. Sanchez and J. Cortadella. Time constrained loop
pipelining. In Proc. Int. Conf. Computer-Aided Design,
pages 592-596, November 1995.

[7] J. Cortadella, R.M. Badia, and F. Sanchez. A math-
ematical formulation of the loop pipelining problem.
Technical Report UPC-DAC-95-36, Dept. of Computer
Architecture, Univ. Politecnica de Catalunya, Novem-
ber 1995.

[8] R.Cytron. Compiler-time scheduling and optimization
for asynchronous machines. PhD thesis, University of
lllinois at Urbana-Champaign, 1984.

[9] C.-T. Hwang, J.-H. Lee, and Y.-C. Hsu. A formal ap-
proach to the scheduling problem in high level synthe-
sis. |EEE Trans. Computer-Aided Design, 10(4):464—
475, April 1991.

[10] M. Rim and R. Jain. Lower-bound performance esti-
mation for the high-level synthesisscheduling problem.
IEEE Trans. Computer-Aided Design, 13(4):451-458,
April 1994.

[11] R. Govindargjan, E.R. Altman, and G.R. Gao.
Minimizing register requirements under resource-
constrained rate-optimal software pipelining. In Proc.
of the 27th Annual International Symposium on Mi-
croarchitecture, pages 85-94, November 1994.

[12] A.E. Eichenberger, E.S. Davidson, and S.G. Abraham.
Optimum modulo schedules for minimum register re-
quirements. In Proc. of 9th ACM theInter national Sym-
posiumon Supercomputing, pages 3140, June 1995.

[13] K.K.Parhi andD.G. Messerschmitt. Static rate-optimal
scheduling of iterative data-flow programsviaoptimum
unfolding. |EEE Trans. Computers, 40(2):178-195,
February 1991.

[14] J. Cortadella, R. M. Badia, and F. Sanchez. A math-
ematical formulation of the loop pipelining problem.
Technical Report UPC-DAC-1995-36, Department of
Computer Architecture (UPC), October 1995.

[15] C.E. Leiserson and J.B. Saxe. Retiming synchronous
circuitry. Algorithmica, 6:5-35, 1991.

[16] B.R. Rau and C.D. Glaeser. Some scheduling tech-
niquesand an easily schedulablehorizontal architecture
for high performance scientific computing. In Proc.
of the 14th Annual Workshop on Microprogramming,
pages 183-198, October 1981.

[17] M.R. Schroeder. Number theory in science and com-
munication. Springer-Verlag, 1990.

[18] F. Sanchez. Loop Pipelining with Resourceand Timing
Constraints. PhD thesis, Universitat Politecnica de
Catalunya (Spain), 1995.

[19] B.R. Rau. Iterative modulo scheduling: An algorithm
for software pipelining loops. In Proc. of the 27th An-
nual International Symposium on Microarchitecture,
pages 63—74, November 1994.

[20] C.H. Gebotys and M.I. Elmasry. Global optimiza-
tion approach for architectural synthesis. |[EEE Trans.
Computer-Aided Design, 12(9):1266-1278, September
1993.

[21] C.H. Papadimitriou and K. Steiglitz. Combinatorial
optimization: algorithms and complexity. Prentice-
Hall, 1982.

[22] PG. Paulin and J.P. Knight. Force-directed scheduling
for the behavioral synthesis of ASIC's. |IEEE Trans.
Computer-Aided Design, 8(6):661-679, June 1989.

[23] M.R.C.M. Berkelaar. Ip_solve version 2.0: a public
domain ILP solver, 1995. available at ftp.es.ele.tue.nl.

https://www.researchgate.net/publication/2418061

