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Abstract. Recommender Systems have become a fundamental part of various 
applications supporting users when searching for items they could be interested in, 
at a given moment. However, the majority of Recommender Systems generate 
isolate item recommendations based mainly on user-item interactions, without 
taking into account other important information about the recommendation 
moment, able to deliver users a more complete experience. In this paper, a hybrid 
Case-based Reasoning model generating recommendations of sets of music items, 
based on the underlying structures found in previous playlists, is proposed. 
Furthermore, the described system takes into account the similarity of the basic 
contextual information of the current and the past recommendation moments.  The 
initial evaluation shows that the proposed approach may deliver recommendations 
of equal and higher accuracy than some of the widely used techniques.  

Keywords. Hybrid Recommender System, Set of items recommendation, Case-
Based Reasoning, Graph-based Similarity, Context, Playlist Recommendations, 
Music Recommender Systems. 

1. Introduction 

The majority of current recommender systems treat the recommendation problem at 
two dimensions, namely users and items, capture their interactions through ratings and 
based on those predict the most relevant items for a specific user. They usually focus 
on single item recommendations and tend to ignore other information related to the 
recommendation moment, like time, location, and joint item selections that in some 
application domains may highly affect the recommendation results. 

The aim of the implemented system is the automatic generation and 
recommendation of music playlists, more specific, the recommendation of sets of music 
items being able to complete a started playlist. Therefore our emphasis is on the item 
co-occurring patterns and the playlist generation moment rather than on the users that 
performed those, as users attitudes may vary depending on their actual needs. In 
addition, apart from the characteristics of each item, the recommended set must have 
some characteristics as a whole, like variety and coherence, meaning that the same 
song should not be repeated and the changes between items should be smooth [2][11].  
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In this work, we propose an extended model of our previous MusCBR 
recommender [7] that first evaluates the contextual similarities of the recommendation 
moments in order to capture possible special characteristics, and then searches for the 
most adequate playlists. In the next section we present a short overview of music and 
playlist recommendation techniques and the term of context, while in the third section 
the description of our framework can be found. Following the comparison of our model 
with commonly used techniques and some of our future objectives are presented. 

2. Related Work 

2.1. Music RSs 

Music recommender systems have their basis both in fields of recommender systems 
(RSs) and Music Information Retrieval (MIR) therefore have to deal with the common 
limitations of both areas [9]. Traditional MIR techniques use content-based (CB) audio 
related techniques that apart from the general limitations of content-based systems, like 
overspecialization and limited diversity, require a deeper knowledge of the application 
domain [4][14]. On the other hand, Collaborative Filtering (CF) techniques focus on 
user ratings to predict the rating a user would assign to a previously unknown song, 
based on the behavior of similar users, thus heavily suffer from cold-start and long tail 
effect limitations [12].  

More than recommending single songs, increased focus has been placed lately on 
the construction and recommendation of music playlists, sets of music items designed 
to be consumed as a sequence, to enable users in organizing their music libraries and 
having a more complete experience [13]. However, as there are no solid methods 
combining user’s perception of music with sound characteristics, it is difficult to 
specify the exact characteristics that the items of a playlist should have in order to 
compose a satisfactory result for the listener [11]. The authors in [13] categorize 
playlist generation algorithms mainly into constraint satisfaction methods that generate 
playlists based on some user entered criteria, similarity heuristics that given a seed 
music item and using some similarity function aim to identify the most similar ones, 
and machine learning approaches that use a set of playlists to train a model and based 
on it to recommend playlists. Markov models and association rules, or sequential 
patterns, are also being used to capture song co-occurrences. CF approaches treating 
playlists as users or CB approaches using musical features can be used. Among the 
major limitations of these methods are their computational cost and their performance 
dependency on the used data. Due to the long tail effect in the music domain, 
popularity-based techniques may also be of high accuracy [3]. 

2.2. Context 

Incorporating contextual parameters into the recommendation problem has been found 
to improve recommendation accuracy, and possible users’ access to more long tail 
items [5]. Initially context was defined as any information referring to the user’s 
location, the people and the resources around him/her and the changes in those. In 
music recommendations contextual information can be classified mainly into primary 
(environmental-related) like location, time and weather, and secondary (user-related) 
like activity and emotional parameters [8].  



A context-aware recommendation process refers to the estimation of user 
contextual characteristics, and based on those, on the generation of the most relevant 
recommendations, and it generally takes three forms. Contextual pre-filtering selects, 
according to a specific context, the data that will be further used for the 
recommendations. In contextual post-filtering an initial recommendation set is 
generated using the traditional recommendation approaches and is then adjusted based 
on the actual context. Finally, in contextual modelling contextual information is used to 
transform items into a different dimension [1]. In order to improve the predictive 
ability and also support long tail recommendations, Domingues et al. in [6] present an 
interesting contextual modeling approach that exploits multidimensional data with two 
dimensional recommenders. The additional dimensions are modeled as “virtual items” 
that along with the regular items are used for building the recommendation model. On 
the other hand, Cremonesi et al. [5] propose the use of association rules to identify the 
most significant correlations among item and contextual characteristics in order to filter 
the set of predictions generated by a traditional recommendation method. 

3. Method Description 

In this work, we propose an extension of our previous model [7] that first evaluates 
contextual information in order to better capture the characteristics of playlists 
generated at a specific moment.  

 
Figure 1. Recommendation process overview. 

As the scope is to generate recommendation of joint music items that would fit 
well into a started playlist, we model entire playlists as cases. After a contextual pre-
filtering the system follows the general CBR cycle, thus in order to generate 
recommendations for a new list we first find the most similar past lists in order to build 
the new solution according to their structures [10]. Finally, in order to generate the 
recommendation list, our algorithm sorts the items found in the most similar lists based 
on the aggregated similarity of the cases in which they appeared. 



3.1. Contextual Filtering 

In the implemented system, first the contextual information about the playlists is 
evaluated through a contextual pre-filtering process in order to first identify a set of 
candidate cases able to address more complicated queries in terms of user experience, 
as well as to fasten their retrieval. Among the contextual parameters available about 
playlists, are the user who constructed them and the time moment at which this 
happened. After analyzing song distributions in playlists per month and per hour, 
(based on the hypothesis that music preferences are associated with the weather that 
changes during the year, and the hour of the day that affects the activities performed), 
we have found that, indeed, the hour of the day seems to influence the style of the 
generated playlists. Therefore, the initial contextual clustering is done based on the 
time that playlists were constructed. When a new playlist is introduced, its context is 
evaluated and the candidate cases are retrieved from the most similar contextual cluster. 

3.2. Candidate Cases  

After the contextual pre-filtering we search among the candidate cases for the most 
similar to the new case. Given a database of z distinct songs (items), 𝐼𝐼 = {𝑖𝑖1, … , 𝑖𝑖𝑧𝑧} and 
a set of previously reproduced playlists 𝐿𝐿 = {𝑙𝑙1, … , 𝑙𝑙𝑘𝑘}  where each playlist 𝑙𝑙. ∈ 𝐿𝐿  is 
described as the set of songs from the set I of which it consists, like 𝑙𝑙. = �𝑖𝑖1, 𝑖𝑖2, … , 𝑖𝑖𝑗𝑗�. 
The purpose of the system is, given a new initiated list  𝑙𝑙𝑖𝑖𝑖𝑖 = {𝑖𝑖𝑖𝑖1, … , 𝑖𝑖𝑖𝑖𝑖𝑖} to find and 
recommend the set of n music items  𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟 = {𝑖𝑖𝑖𝑖𝑖𝑖 , … , 𝑖𝑖𝑖𝑖(𝑙𝑙+𝑛𝑛−1)}  to complete this list. 
Therefore, we look for the lists, whose global similarity, fulfills the following equation,  

𝑙𝑙′ ∈ 𝐿𝐿: ∀𝑙𝑙 ∈ 𝐿𝐿, 𝑙𝑙′ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑆𝑆𝑆𝑆𝑆𝑆(𝑙𝑙, 𝑙𝑙𝑖𝑖𝑖𝑖) (1) 
The global similarity among two playlists is computed as the aggregated pairwise 

similarity of the songs (being referred to as local similarity) in them. Given two 
playlists, a new 𝑙𝑙𝑁𝑁 = {𝑖𝑖𝑁𝑁1, … , 𝑖𝑖𝑁𝑁𝑁𝑁}  and a retrieved 𝑙𝑙𝑅𝑅 = {𝑖𝑖𝑅𝑅1, … , 𝑖𝑖𝑅𝑅𝑅𝑅}  with their i-th 
item being 𝑖𝑖𝑁𝑁𝑁𝑁  and 𝑖𝑖𝑅𝑅𝑅𝑅  correspondingly, that have local similarity 𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖𝑁𝑁𝑁𝑁 , 𝑖𝑖𝑅𝑅𝑅𝑅)  and 
where 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑖𝑖𝑁𝑁𝑁𝑁 , 𝑖𝑖𝑅𝑅𝑅𝑅) is the maximum local similarity among 𝑖𝑖𝑁𝑁𝑁𝑁 and all the songs 
in the retrieved list, the global similarity 𝑆𝑆𝑆𝑆𝑆𝑆(𝑙𝑙𝑁𝑁 , 𝑙𝑙𝑅𝑅), of these lists is calculated as, 

𝑆𝑆𝑆𝑆𝑆𝑆(𝑙𝑙𝑁𝑁 , 𝑙𝑙𝑅𝑅) = ∑ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑖𝑖𝑁𝑁𝑁𝑁 , 𝑖𝑖𝑅𝑅𝑅𝑅)𝑙𝑙
𝑖𝑖=1 /𝑛𝑛𝑁𝑁 (2) 

3.3. Item Descriptions 

Every song can be treated as the node of a graph connected with edges to a set of 
metadata expressing its characteristics (category, tempo, lyrics language, artist etc.), 
thus it can be represented as 𝑖𝑖 = {𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑛𝑛} , 𝑡𝑡𝑖𝑖 ∈ 𝑇𝑇 . Depending on the level of 
abstraction that we would like to use, the quantity of item characteristics used in the 
item description may vary and we may refer as music items to songs, artists, or song 
styles. Songs are connected through the tags they have in common and the playlists of 
which they form part. As our scope is to capture the specifications of the songs selected 
together more than the exact songs, instead of looking for the songs that maximize (1) 
we focus on labeled styles or artists as this information is more abstract but specific 
enough to capture the tendencies in playlists.  

Given two songs 𝑖𝑖𝑎𝑎  and 𝑖𝑖𝑏𝑏  with 𝑛𝑛(𝑎𝑎 ∩ 𝑏𝑏) number of characteristics in common, 
𝑛𝑛(𝑎𝑎\𝑏𝑏) tags associated only with 𝑖𝑖𝑎𝑎 and 𝑛𝑛(𝑏𝑏\𝑎𝑎) associated only with 𝑖𝑖𝑏𝑏 , their (local) 
similarity is calculated based on the density of their common characteristics like,   



𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖𝑎𝑎, 𝑖𝑖𝑏𝑏) =  1 − 𝑙𝑙𝑙𝑙𝑙𝑙2 �1 + 𝑛𝑛(𝑎𝑎\𝑏𝑏)+𝑛𝑛(𝑏𝑏\𝑎𝑎)
𝑛𝑛(𝑎𝑎∩𝑏𝑏)+𝑛𝑛(𝑎𝑎\𝑏𝑏)+𝑛𝑛(𝑏𝑏\𝑎𝑎)

� (3) 

4. Evaluation 

In order to evaluate the performance of the proposed framework we used a personal 
database with more than 3000 songs and playlists made of them, divided into a training 
(80%) and a testing part. Further, from the testing lists, we hide a number of items and 
evaluate the ability of the various methods to identify those items. We focused on the 
recommendations of item clusters, items having the same style, artist or both, as many 
times users select only few items from a cluster with specific characteristics simply 
because they are not aware of the rest.  

In Tables 1-3 we present the average precision values (the number of correct 
recommendations, over the total number of recommendations) achieved by CMusCBR, 
our contextual recommender, MusCBR, the hybrid recommender in [7], as well as ARs-
based (AR), Latent Dirichlet Allocation (LDA), two Popularity-based approaches, 
based on users’ favourite artists (popA) and styles (popSt), Collaborative Filtering 
(CF) and Content-based (CB). As it can be seen, the proposed methodology performs 
better than the compared methods for all the levels of abstraction tested. 
 

Table1: Average precision for the recommendation of complete music styles 

List length 4 6 8 10 12 
AR 0.055 0.063 0.052 0.052 0.035 
LDA 0.049 0.061 0.068 0.081 0.094 
PopA 0.039 0.054 0.058 0.067 0.064 
PopSt 0.043 0.048 0.053 0.064 0.064 
CB 0.042 0.050 0.055 0.061 0.056 
CF 0.045 0.058 0.068 0.08 0.079 
MusCBR 0.078 0.078 0.076 0.086 0.083 
CMusCBR 0.097 0.090 0.090 0.096 0.098 

 
Table2: Average precision for artist recommendations 

List length 4 6 8 10 12 
AR 0.052 0.087 0.108 0.115 0.096 
LDA 0.034 0.050 0.075 0.087 0.093 
PopA 0.044 0.073 0.098 0.115 0.117 
CB 0.029 0.045 0.059 0.066 0.072 
CF 0.048 0.078 0.102 0.118 0.119 
MusCBR 0.095 0.103 0.115 0.127 0.131 
CMusCBR 0.096 0.108 0.124 0.139 0.135 

 
Table3: Average precision for the recommendation of music styles 

List length 4 6 8 10 12 
AR 0.261 0.32 0.363 0.367 0.372 
LDA 0.202 0.345 0.167 0.264 0.317 
PopA 0.34 0.346 0.336 0.334 0.337 
PopSt 0.38 0.402 0.394 0.394 0.395 
CB 0.289 0.207 0.156 0.122 0.082 
CF 0.185 0.259 0.292 0.315 0.345 
MusCBR 0.386 0.39 0.397 0.396 0.395 
CMusCBR 0.392 0.403 0.4 0.401 0.401 



5. Conclusions 

In this paper, a hybrid CBR approach for music playlists generation and 
recommendations has been presented. The implemented system first evaluates the 
context of the recommendation moment, and then, it identifies and recommends sets of 
music items that are more probable to fit into a started playlist. In order to overcome 
the semantic gap of music recommender systems, the proposed system combines Case-
Based Reasoning with a graph-based model that connects songs through the tags that 
define their style and the playlists that they form part of, in order to capture their 
similarity and co-occurring patterns. The initial experimentations have shown that 
adding a contextual pre-filtering based on the playlists’ creation time leads to improved 
recommendations’ accuracy and computational performance when compared to our 
previous and various commonly used methods.  

Our intention is to extend this framework in order to provide additional support to 
long tail recommendations, as items’ novelty and diversity that are considered of high 
importance for the user experience. In addition, the possible incorporation of more 
contextual parameters is being evaluated. Finally, testing on large scale data is planned 
to take place in the near future. 
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