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Abstract
The main object of study of this thesis is the development of scalable and robust

solvers based on domain decomposition (DD) methods for the linear systems arising
from the finite element (FE) discretization of transient and electromagnetic problems.

The thesis commences with a theoretical review of the curl-conforming edge (or
Nédélec) FEs of the first kind and a comprehensive description of a general implemen-
tation strategy for h− and p− adaptive elements of arbitrary order on tetrahedral and
hexahedral non-conforming meshes. Then, a novel balancing domain decomposition
by constraints (BDDC) preconditioner that is robust for multi-material and/or hetero-
geneous problems posed in curl-conforming spaces is presented. The new method, in
contrast to existent approaches, is based on the definition of the ingredients of the pre-
conditioner according to the physical coefficients of the problem and does not require
spectral information. The result is a robust and highly scalable preconditioner that
preserves the simplicity of the original BDDC method.

When dealing with transient problems, the time direction offers itself an opportunity
for further parallelization. Aiming to design scalable space-time solvers, first, parallel-
in-time parallel methods for linear and non-linear ordinary differential equations (ODEs)
are proposed, based on (non-linear) Schur complement efficient solvers of a multilevel
partition of the time interval. Then, these ideas are combined with DD concepts in order
to design a two-level preconditioner as an extension to space-time of the BDDC method.
The key ingredients for these new methods are defined such that they preserve the time
causality, i.e., information only travels from the past to the future. The proposed schemes
are weakly scalable in time and space-time, i.e., one can efficiently exploit increasing
computational resources to solve more time steps in (approximately) the same time-to-
solution.

All the developments presented herein are motivated by the driving application of
the thesis, the 3D simulation of the low-frequency electromagnetic response of High
Temperature Superconductors (HTS). Throughout the document, an exhaustive set of
numerical experiments, which includes the simulation of a realistic 3D HTS problem, is
performed in order to validate the suitability and assess the parallel performance of the
High Performance Computing (HPC) implementation of the proposed algorithms.
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Resum
L’objecte principal d’estudi d’aquesta tesi és el desenvolupament de solucionadors

escalables i robustos basats en mètodes de descomposició de dominis (DD) per a sistemes
lineals que sorgeixen en la discretització mitjançant elements finits (FE) de problemes
transitoris i electromagnètics.

La tesi comença amb una revisió teòrica dels FE d’eix (o de Nédélec) de la primera
família i una descripció exhaustiva d’una estratègia d’implementació general per a el-
ements h− i p−adaptatius d’ordre arbitrari en malles de tetraedres i hexaedres no-
conformes. Llavors, es presenta un nou precondicionador de descomposició de dominis
balancejats per restricció (BDDC) que és robust per a problemes amb múltiples mate-
rials i/o heterogenis definits en espais curl-conformes. El nou mètode, en contrast amb
els enfocaments existents, està basat en la definició dels ingredients del precondicionador
segons els coeficients físics del problema i no requereix informació espectral. El resultat
és un precondicionador robust i escalable que preserva la simplicitat del mètode original
BDDC.

Quan tractem amb problemes transitoris, la direcció temporal ofereix ella mateixa
l’oportunitat de seguir explotant paral·lelisme. Amb l’objectiu de dissenyar precondi-
cionadors en espai-temps, primer, proposem solucionadors paral·lels en temps per equa-
cions diferencials lineals i no-lineals, basats en un solucionador eficient del complement
de Schur d’una partició multinivell de l’interval de temps. Seguidament, aquestes idees
es combinen amb conceptes de DD amb l’objectiu de dissenyar precondicionadors com a
extensió a espai-temps dels mètodes de BDDC. Els ingredients clau d’aquests nous mè-
todes es defineixen de tal manera que preserven la causalitat del temps, on la informació
només viatja de temps passats a temps futurs. Els esquemes proposats són dèbilment
escalables en temps i en espai-temps, és a dir, es poden explotar eficientment recur-
sos computacionals creixents per resoldre més passos de temps en (aproximadament) el
mateix temps transcorregut de càlcul.

Tots els desenvolupaments presentats aquí són motivats pel problema d’aplicació de
la tesi, la simulació de la resposta electromagnètica de baixa freqüència dels supercon-
ductors d’alta temperatura (HTS) en 3D. Al llarg del document, es realitza un conjunt
exhaustiu d’experiments numèrics, els quals inclouen la simulació d’un problema de HTS
realista en 3D, per validar la idoneïtat i el rendiment paral·lel de la implementació per
a computació d’alt rendiment dels algorismes proposats.
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Chapter 1

Introduction

Computational tools provide the capability to simulate the behaviour of complex systems
and natural phenomena. They allow us to explore fields that are either inaccessible to
empirical discovery or where experimentation in design and optimization is prohibitively
expensive. Indeed, computation is nowadays considered to be the third pillar of the
scientific method, alongside with theory and experiments. This field of research and
applications, which is known as Computational Science and Engineering (CSE), is often
defined as the discipline found at (but not restricted to) the intersection among applied
mathematics, computer science and specialized knowledge in engineering or science.

CSE relies on the fact that we can define mathematical models that describe the be-
haviour of a system in terms of partial differential equations (PDEs), for which analytical
solutions are not available in the vast majority of cases. Fortunately, discretization tech-
niques allow to approximate the solution of these equations. Actually, computational
models are ultimately discrete approximations of continuous phenomena. There are sev-
eral approaches to discretize the problem in order to obtain a solution described by a
finite number of values. In this thesis, the finite element (FE) method, which has a strong
mathematical foundation behind, is selected. The main idea behind FE method (FEM)
is to look for the approximation of the solution in a finite dimensional vector space,
which is built on top of a tessellation of the computational domain. These vector spaces
are usually spanned by sets of (scalar or vector-valued) polynomial functions, which are
denoted as the bases of shape functions. Then, the approximation of the solution is
fully determined by a linear combination of the basis of shape functions with a set of
coefficients, which are the unknowns of the problem. The FE method requires to define
a tessellation of the computational domain into elements, the finite dimensional space
and its spanning set of basis functions. The concept of FE is precisely the restriction of
those ingredients to one element from the tessellation.

The best known and widespread FE method uses the Lagrangian FE, where un-
knowns represent discrete values of the approximation at some points (nodes) of the
computational domain. Sometimes this element is viewed as the standard FE method,
but in fact there is a whole family of different elements that allow us to properly ex-
ploit the mathematical particularities of different problems. While Lagrangian elements
are the common choice in structural mechanics, the Raviart-Thomas FE is the preferred
choice for some porous media flow and elasticity equations. In this sort of FEs, unknowns
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represent fluxes across the faces of the grid covering the computational domain. In turn,
edge (or Nédélec) elements are a natural choice in the simulation of electromagnetic prob-
lems due to their sound mathematical structure, and will have a key role in the present
thesis. They allow to model vector fields with continuous tangential components and
discontinuous normal components for the approximation of the solution. In fact, they
receive its name because for first order approximations each degree of freedom (DOF) is
associated to each edge of the mesh covering the computational domain, and DOFs can
be understood as circulations along edges. Thus, FE methods are based on piecewise
polynomial approximations of the solution of the problem. As mentioned, the method
employs a tessellation of the domain into elements, which can be of variable size (h), and
the definition of the polynomial functions, which can be of variable polynomial degree
(p). The accuracy of the method, i.e., the error of the approximation with regard to
the solution of the problem, is dependent on both h and p. It is well known that suit-
able combinations of h-refinements, i.e., dividing some of the elements into smaller ones,
and p-refinements, i.e., increasing the polynomial degree of some of the elements, allow
either to optimize the number of unknowns for a required goal precision or to increase
the accuracy of the method for a fixed number of unknowns. The FE discretization
of the (system of) PDEs that governs a given problem results in a system of algebraic
equations, i.e. Ax = b, whose solution is the vector of unknowns (i.e., DOFs) that fully
describes the approximation to the solution.

The need of High Performance Computing (HPC) appears when a particular appli-
cation exceeds the memory capacity of standard computers or time-to-solution exceeds
reasonable computing times. The main idea behind HPC is to use aggregated computing
power from several different units, thus requiring the concept of algorithm parallelization.
Unless an HPC tool is employed, no meaningful results can be obtained for realistic FEM
models for the most CPU demanding applications, e.g., climate modelling, geophysics,
plasma physics, turbulent flows, combustion or biomedical applications. In addition,
more classical computational applications such as structural and fluid mechanics are al-
ways under constant evolution in order to face increasingly complex problems and can
also leverage higher levels of parallelism.

At the beginning of next decade supercomputers are expected to reach a peak per-
formance of one exaflop/s (1018 floating point operations per second), which implies a
100 times improvement with respect to current supercomputers. But since recent years,
the clock speed has stagnated and the increase of performance is not based on faster
processors, but on a much higher number of processors. This increasing growth in com-
putational power should go hand in hand with parallel algorithms that exploit further
levels of concurrency.

The solution of the global system arising from the FE discretization of the PDEs gov-
erning the problem is the main bottleneck of the simulation pipeline. The use of direct
solvers, which usually rely on an efficient factorization of the matrix A, is prohibitively
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expensive at a sufficiently fine scale due to their high computational and memory de-
mands. Hard to parallelize by its nature, its complexity and scalability issues make the
approach impractical for large scale simulations. On the other hand, iterative solvers
do not rely on the expensive factorization of the matrix A but on evaluations of simple
matrix-vector products Ax, which can be naturally implemented in distributed-memory
environments with few communications among processors. In the simulation pipeline of
parallel FE codes on memory-distributed platforms, every processor can receive a part
of the mesh, which covers the entire computational domain. Then, every processor is
in charge of discretizing the FE problem for its local counterpart, which is an embar-
rassingly parallel task (i.e., can be fully performed in parallel). Hence, the (non)linear
system arising from the FE discretization of the corresponding PDE can be efficiently
assembled among processors, where every one holds its local contribution to the global
system. The solution of this global problem can be obtained with iterative solvers, where
efficient preconditioning techniques are crucial in order to obtain good convergence rates.

In order to assess the parallel performance of these preconditioning techniques (and
solvers in general), scalability is the key measurement tool. Scalability is the ability of an
algorithm to efficiently exploit increasingly available computational resources. Depend-
ing on the interests of a given application, two basic definitions to measure the parallel
efficiency of the implementation are distinguished. Strong scalability is the ability to
reduce time-to-solution when increasing available computational resources for a fixed
problem size. Strong scalability is of high interest in moderate core counts. However,
in general, it is hard to achieve good strong scaling efficiency for large core counts due
to the complexity of the parallelization of the algorithms. On the other hand, weak
scalability is the ability to exploit increasing computational resources (i.e., solving larger
problems ) without increasing the metrics of the preconditioned system (e.g., number of
iterations until convergence, time-to-solution), keeping constant the load per processor.
It is typically the case for simulations requiring to solve large problems that do not fit in
memory in a single node. Roughly speaking, with a weakly scalable implementation, in-
creasing X times the number of parallel tasks one is able to solve X times larger problem
in approximately the same amount of time. This fact is the key to exploit parallelism in
future exascale architectures.

Weakly scalable solvers require complex mathematical approaches, like multigrid
(MG) [141] or multilevel domain decomposition (DD) methods [138]. These methods
can be formulated as solvers, but they are more conveniently used as preconditioners for
iterative solvers such as Krylov subspace methods.

The original motivation behind the MG preconditioning approach is to accelerate
the convergence of a basic iterative method, i.e., to optimize the number of arithmetic
operations. They take the advantages of smoothers, i.e., cheap iterative methods that are
capable of damping out oscillatory (high frequency) error components in few iterations
(e.g., weighted Jacobi, Gauss-Seidel), and combine it with coarse grid problems to correct
the limitations of the smoother, i.e., to handle the smooth (low frequency) error modes.
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Projection and restriction operators allow to transfer the solution across the different
levels of the grid hierarchy. The idea is to restrict the problem, with moderate coarsening
ratios, as many times as needed in order to apply a direct solver at the coarsest level,
and apply smoothers at the remaining levels.

On the other hand, DD is motivated as a technique for parallel computing from its
inception. It is based on a divide and conquer approach, where the (global) problem
is divided into sub-problems in order to have less load per processor, i.e., to divide the
arithmetic load among processors. Thus, DD preconditioners involve small (local to each
processor) problems. Usually, these local problems are such that the application of direct
methods is available to obtain fast and accurate local solutions. Besides, one could con-
sider using MG in local problems combined with the DD algorithm to exploit the optimal
complexity of the first and the parallelism of the latter. Nevertheless, one-level (i.e., only
local) preconditioners preclude weak scalability since the information (i.e., transmission
conditions) is only transferred between nearest neighbours. This fact implies that the
number of iterations that a preconditioned Krylov method will need to converge in-
creases with the number of parts. To overcome this situation, a coarse problem, which
couples all the subdomains, can be used to propagate information globally in each itera-
tion. Therefore, in large scale applications, the ultimate objective of DD preconditioners
is to obtain favourable bounds in the condition number of the preconditioned system,
having the properties of optimality, (i.e., independent of the global problem size) and
algorithmic weak scalability (i.e., can only increase with the local problem size).

The balancing domain decomposition by constraints (BDDC) preconditioner, intro-
duced by C. Dohrmann in 2003 [57], is one of the most advanced non-overlapping DD
methods (a.k.a. iterative substructuring methods), where the subdomains only intersect
on their interfaces. It can be understood as an evolution of the earlier Balancing domain
decomposition (BDD) method [95], which requires a characterization of the kernel of the
local operators in order to build the coarse problem and make local (Neumann) prob-
lems solvable. All the weaknesses of the BDD preconditioner are conveniently addressed
by the BDDC preconditioner, that has three outstanding properties that makes it an
excellent candidate for extreme scale computing, namely: 1) local and coarse problems
can be solved in parallel. In practical implementations, that means that the computing
times for the coarse problem related tasks can be masked by local (Neumann) problems
computing times as long as they are not exceeded. 2) it allows for an aggressive coars-
ening. The resulting coarse problem only involves few unknowns per subdomain. 3) it
allows for multilevel extension. The size of the coarse problem scales with the number
of processors and may become the bottleneck of the solver. Fortunately, a multilevel
implementation of the algorithm is quite natural, where computations among different
levels can also be performed in parallel.

Many complex problems are governed by time-dependent PDEs, e.g, among others,
wave propagation, climate modelling, heat transfer, fluid flows or additive manufactur-
ing processes. When dealing with transient problems, the natural choice is to exploit
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time sequentiality since information always travels from earlier times to future times.
Indeed, the sequential-in-time approach is used in the vast majority of CSE simulations.
Although parallel-in-time solvers date back to approximately 50 years ago, it is not until
recent times that time parallel integration methods have received an increasing interest.
This fact is certainly motivated by the tremendous amount of computational resources
that are and will be available. Spatial parallelism may saturate at some point (i.e., no
more accuracy is traduced into more meaningful results) and the time direction offers
itself an opportunity for further parallelization. In short, parallel-in-time methods aim
to provide the solution in one shot aggregating multiple time steps (i.e., time windows)
or even for the whole time interval, rather than the usual step-by-step solution process.
Although many efforts have been done in the application of DD methods to space-time
formulations, space-time parallel BDDC methods is still an unexplored path that the
present thesis will open.

The scientific software project FEMPAR

The development and implementation of cutting-edge advanced numerical discretizations
and solvers for the simulation of problems governed by PDEs is the main motivation of
the open source, scientific software project FEMPAR [20].

The FEMPAR project, which stands for Finite Element Multiphysics PARallel solvers,
was launched in 2011 as an in-house code by Santiago Badia, Alberto F. Martín, and
Javier Principe, in the frame of the Starting Grant of Santiago Badia. It has been since
then actively developed by the members of the Large Scale Scientific Computing (LSSC)
group at the International Center for Numerical Methods in Engineering (CIMNE) and
the Technical University of Catalonia (UPC), where the present thesis has been given
birth. This section aims to provide a general presentation of FEMPAR. Nevertheless, the
reader will discover throughout the thesis the particular software features involving the
developed algorithms regarding the content of each chapter.

FEMPAR is a general purpose, parallel scientific software for the FE simulation of
complex multiphysics problems governed by PDEs written in Fortran200X following
object-oriented principles. It supports several computing and programming environ-
ments, such as, e.g., multi-threading via OpenMP for moderate scale problems and hy-
brid MPI/OpenMP for HPC clusters and massively parallel supercomputers. For each
programming environment, it offers a set of flexible data structures and algorithms for
each step in the simulation pipeline, which can be customized and/or combined in multi-
ple ways in order to satisfy the particular application problem needs; see [19] for a deep
coverage of the software architecture of FEMPAR. It is distributed as open source software
under the terms of the GNU GPLv3 license. Among other features, FEMPAR provides
a set of state-of-the-art adaptive mesh refinement techniques and numerical discretiza-
tions, including FE methods, discontinuous Galerkin methods, XFEM, and spline-based
functional spaces. The library was originally designed to efficiently exploit distributed-
memory supercomputers and easily handle multiphysics problems. In this sense, it also
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provides a set of highly scalable numerical linear algebra solvers based on multilevel DD
for the systems of equations that arise from PDE discretizations.

1.1 Motivation

The driving application of this work is the electromagnetic modelling of High Temper-
ature Superconductors (HTS) at low frequencies. The work was initially motivated by
the experiment Simulation of HTS, enclosed in the 7th Framework Programme (FP7)
project FORTISSIMO. The objective of the experiment, which was funded by the Eu-
ropean Commission, was the development of business relevant simulations of industrial
processes. The experiment engaged CIMNE with other experts in different fields around
superconductivity, namely: the Institut de Ciència de Materials de Barcelona (ICMAB-
CSIC), as a superconductivity theoretical and experimental expert, the company Oxo-
lutia as the end-user of the simulation software, and the Centro de Supercomputación
de Galiza (CESGA) as the HPC service provider.

A HTS is a material that reaches the superconductor state at temperatures above the
technological threshold defined by the liquid nitrogen boiling temperature of 77 K. These
temperatures are far above the range of critical temperatures needed by conventional
superconductors to reach the superconductor state (from around 20 K to less than 1 K),
which must be cooled with liquid helium instead.

Its resistance-free characteristics at high temperatures make it an ideal choice for a
wide range of applications in the industry of applied superconductivity, namely:

a) Electro-technical equipment for the efficient generation, transport and use of en-
ergy in the grid, for a safer grid and more efficient energetic system with increased
quality, including: HTS AC/DC cables, fault current limiters, superconducting
magnetic energy storage systems, passive levitating fly wheels, transformers, syn-
chronous condensers, generators and motors.

b) Medical diagnose, mainly related to the generation of uniform high magnetic fields
for magnetic resonance imaging (MRI), and magnetic biosensors for in-situ diag-
nose based on the reconstruction of the electrical currents from its magnetic field.

c) Scientific instrumentation, also as equipment for attaining higher magnetic fields
compared to the existing low-temperature superconductors (LTS) in a cost-effective
way, as helium as cryogen could be replaced by nitrogen, which is far more abundant
(thus cheaper). The efficient generation of high magnetic fields used for confining
magnetically the hot plasma in future nuclear fusion reactors (like ITER or DEMO)
is an example.

In all the aforementioned applications, a quantitative knowledge of the magnetic
field, current density, temperature, heat generation, and mechanical stresses is essential
for the virtual prototyping of HTS devices. The knowledge of fields and currents in
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every point within the superconductor is mandatory if one aims to accurately predict
its behaviour. In order to have reliable yet fast solutions, several attempts have been
made in the HTS modelling field by neglecting the time dependence and simplifying the
current distributions (Bean and Kim models). In this work a more complete approach
is followed, which includes a highly non-linear constitutive equation for HTS based on
the Maxwell’s set of equations for low frequency and averaging properties on the HTS
volume. Although in 2D, simple problems can be solved in hours up to some weeks, the
complexity and the time required for obtaining a 3D solution reduces the procedure to
very specific symmetries. Consequently, the obtained results are not enough reliable for
a good and efficient solution. In addition, local phenomena has a strong effect on the
overall structure, thus the problem cannot be simplified in many realistic applications,
where the knowledge of fields and currents in every point inside the superconductor is
mandatory if one aims to accurately predict its behaviour.

The electromagnetic response of superconductors is an extremely challenging prob-
lem from a numerical point of view, since requires complex approaches for each one of the
steps of a simulation process. The hard non-linearity, hysteretic behaviour and spatial
and time scales of the HTS problem require a robust, fast and powerful computing tool
for obtaining meaningful solutions for a productive design cycle. Existing commercial
software tools are usually based on lowest order elements and explicit time domain in-
tegration (i.e., solutions are obtained in a purely sequential fashion) and do not provide
tailored, scalable solvers for large scale applications of the problem at hand. The com-
putational performance is therefore affected, making these tools virtually useless if our
objective is to solve realistic 3D engineering problems in reasonable times. Therefore,
the development of numerical models and HPC tools is essential to push forward the
limits in the design and optimization of HTS devices.

The HTS problem serves as a driving application for the developments presented
in this thesis. Localized phenomena, multi-scale and highly nonlinear behaviour, high
contrast in material properties, large scale simulations for realistic 3D problems and
heavy time stepping are problem characteristics that pose great challenge for almost
every ingredient of a numerical FE framework. In order to meet the goal of enabling
feasible computation times in the solution of the HTS problem, it is essential to consider
parallel, scalable algorithms for each building block of a FE simulation process.

In Sect. 1.2, the followed approaches in order to build an efficient, fully-parallel FE
framework for the solution of the HTS problem will be described, alongside with the
precise objectives and expected contributions of the present thesis.

1.2 Thesis objectives

Keeping in mind the motivation of the thesis, we proceed to unwrap some specific goals
that the present thesis aims to achieve. New contributions in numerical approaches
are often developed as a step further of previously existing approaches, which must be
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justly referenced. In like manner, ambitious large FE software projects are developed
and evolve under a collaborative effort. In this sense, it would have been impossible to
set the present objectives without the previous work developed by the LSSC group at
CIMNE in the scientific software project FEMPAR. Throughout this section, the author
aims to provide a frame for each objective to clarify the expected contributions in each
one of the thesis goals.

• Arbitrary order edge FEs. In general, Lagrangian elements can be used
for homogeneous electromagnetic problems, but these methods are not robust for
heterogeneous problems, specially involving high contrast of coefficients between
different materials like the ones targeted in this thesis, where the edge elements are
the preferred choice. Edge elements are theoretically sound and widely used in the
simulation of electromagnetic problems. However, its implementation, specially for
high orders, is not trivial. In the present thesis, the first objective is to revisit the
theoretical background of edge FEs and provide a clear understanding of them.
Next, to implement arbitrary-order tetrahedral/hexahedral edge FE schemes (of
the first kind) in the scientific software project FEMPAR, which contains an abstrac-
tion for the generation of FEs based on polynomial spaces, see [19, Sect. 3]. This
first step will establish the basic framework for the solution of problems posed in
curl-conforming spaces.

• h-adaptive edge FE framework. HTS problems exhibit localized phenomena
and multi-scale features. In such simulations, one aims to achieve a high degree of
accuracy in areas of the domain of particular interest while saving computational
efforts in other areas. This is precisely what can be achieved with mesh adaptive
methods. To this end, an objective of the thesis is to provide a comprehensive
description and produce a novel implementation of curl-conforming spaces on non-
conforming, hierarchically refined meshes with arbitrary order edge FEs. In this
work, the adaptive mesh refinement (AMR) is based on octree-based meshes, which
are efficiently handled by the p4est library [47] on distributed-memory processors.
The implementation is grounded on the current interface of FEMPAR with the p4est
library.

• Highly scalable BDDC solvers for problems in H(curl). The first step
towards a robust solver based on DD methods for the HTS problem is to implement
the extension of the BDDC preconditioner for problems posed in H(curl). FEMPAR
contains an abstract implementation of the BDDC preconditioner [18], which can
be customized for the problem needs. In particular, the user has the freedom
to define different operators, the continuity among processors and the averaging
operator. However, it is well known that iterative substructuring methods are not
scalable with the standard basis of shape functions for edge FEs, due to the strong
correlation between the energy of subdomain faces and edges, therefore a change of
variables, which introduces many complexities, must be considered. The objective
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will be to implement and test on HPC platforms a highly scalable implementation
of the BDDC solver for problems in H(curl).

• Robust BDDC solvers for heterogeneous problems in H(curl). Many real-
istic simulations in electromagnetics involve multi-material problems, e.g. the HTS
problem, which is composed by dielectric and conducting materials. In turn, the
definition of the physical coefficients (for the PDE governing the problem) describ-
ing the behaviour of the materials may involve high jumps and/or variations. This
fact poses great challenge for iterative solvers, specially when the jumps of coeffi-
cients are not aligned with the partition of the domain into subdomains. Modern
robust BDDC methods propose coarse space enrichment techniques and optimized
averaging operators that involve expensive eigenvalue and auxiliary local problems.
The objective is to construct novel highly scalable BDDC preconditioners for prob-
lems posed in curl-conforming spaces that are robust with regard to the jump and
heterogeneity of coefficients and keep the simplicity of the standard BDDC method.
The approach follows the ideas of the physics-based (PB)-BDDC preconditioner
for problems in grad-conforming spaces [16]. In this sense, we aim to design robust,
scalable parallel BDDC preconditioners for the solution of large scale heterogeneous
electromagnetic problems and test their implementation in HPC platforms.

• Build a complete FE parallel framework for the simulation of realistic
3D HTS problems. The achievement of the previous objectives will allow to
compose a fully-parallel simulation framework for the solution of realistic 3D HTS
problems. The widespread in the HTS modelling community H-formulation is
selected. The program, which will constitute a new application of FEMPAR, will
require the definition of all the basic building blocks in the simulation pipeline
leveraging the previously developed tools for problems in H(curl). Nevertheless,
the hard non-linearity of the laws describing the behaviour of HTS devices will
require a complex linearization approach, where the application of the developed
BDDC methods as preconditioners for linear systems can be effective. In this sense,
the goal of the implementation is to significantly reduce time-to-solution for the
proposed HTS problems. Alongside with providing efficient simulation codes, the
thesis aims to validate the implementation of the proposed numerical tools against
experimental data for HTS tapes, kindly provided by the group of X. Granados
from ICMAB in the frame of collaboration under the experiment FORTISSIMO.

• Design parallel-in-time nonlinear ordinary differential equation (ODE)
solvers.

The acquired knowledge in DD preconditioners will be used to explore parallelism
not only in spatial variables but also in the time direction. Nevertheless, the time
direction is special, since there is a causality principle that is naturally sequential:
the solution later in time is affected by the solution of the preceding time. In
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a first stage, driven by DD ideas, the objective is to explore the application of
concepts to nonlinear ODEs, where the complexity of the developments is clearly
reduced by the fact of dealing with one-dimensional problems. However, it will
allow to identify key ingredients that will be required for the following goals, e.g.
the incidence of the time causality principle in the design of algorithms. Due to
the nature of the objectives set in this direction, this preliminary exploration will
be performed with a personal code built from scratch.

• Develop a time-extension of the BDDC preconditioner.

Finally, we aim to provide a novel, scalable space-time preconditioner based on
BDDC methods. When dealing with transient problems, at every time step one has
to solve a spatial problem before proceeding to the next step, and thus parallelism
can be exploited for the space variables. This is the common scenario in simulations
in CSE. However, many realistic applications, (e.g. HTS, additive manufacturing,
turbulent flows ) involve a heavy time stepping, where exploiting parallelism would
be highly beneficial in order to achieve further levels of concurrency. In opposi-
tion to the sequential approach, we aim to provide the solution for the transient
problem in one shot. The objective is two-fold: First, to design a space-time (ST)
method based on space-time BDDC concepts by combining parallel-in-time ideas
with the space-only BDDC preconditioner. Secondly, to obtain a highly scalable
implementation of the proposed preconditioner.

1.3 Structure of the document

The present thesis involves several contributions with a common objective: the design
of highly scalable BDDC preconditioners for HPC applications. The development of the
thesis led to different scientific articles, which are either published or submitted in in-
ternational journals. Indeed, the referenced works constitute the backbone of the thesis
such that the final goal of providing scalable space-time solvers for complex electromag-
netic problems is addressed in a step-by-step procedure. Although all the chapters here
enclosed are aligned with the common goal, two major lines of research can be clearly
identified throughout the document. A first part, devoted to the design of robust, efficient
and scalable parallel solvers for linear systems arising from realistic 3D electromagnetic
applications, spans three chapters. Next, a new step is taken in the direction of parallel-
in-time solvers, spanning two more chapters. The collection of all the ideas involved in
both directions constitutes the body of the present thesis. This fact motivates the one-
to-one correspondence between articles and chapters of the thesis. Indeed, the structure
of the articles has been preserved and all of them are self-contained. That means that all
chapters can be understood as independent research contributions and each one contains
its specific notation. In like manner, some definitions can be repeated in several parts of
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the document.

The first chapter provides a brief introduction to the field of research and describes the
main motivations that have driven the current work. Next, it sets the specific objectives
of the thesis.

In Chapter 2, the curl-conforming FE framework is presented. Firstly, an general in-
troduction to the background of the edge FE is provided in Sect. 2.1. Sect. 2.3 is devoted
to an exhaustive theoretical presentation of the curl-conforming tetrahedral/hexahedral
edge FEs of arbitrary order, providing several examples of the involved polynomial spaces
in Sect. 2.3.2 and thoroughly describing the construction of resulting shape functions in
Sect. 2.3.4. In Sect. 2.5 a novel strategy to deal with h-adaptive implementations of
edge FE discretizations on non-conforming meshes is described. Then, in Sect. 2.6, the
implementation in FEMPAR of the edge FEs is validated through the comparison of the-
oretical and numerical convergence rates of the method for a wide range of different
discretizations. To finalize the chapter, some conclusions are drawn in Sect. 2.7. This
work corresponds to the paper submitted for consideration of publication

[111] M.O., S.Badia and A.F. Martín. On a general implementation of h and p-adaptive
curl-conforming finite elements. submitted. 2018. Available at ArXiv:1810.10314.

In Chapter 3, scalable BDDC solvers for heterogeneous problems in electromagnetics
with curl-conforming FE discretizations are developed. First, a state-of-the art expo-
sition of BDDC approaches for curl-conforming spaces is presented in Sect. 3.1. The
formulation is defined in Sect. 3.2, where key ingredients for the BDDC method are
presented. Sect. 3.3 is devoted to the presentation of the extension of the BDDC pre-
conditioner for complex heterogeneous 3D problems in curl-conforming spaces. Next, in
Sect. 3.4, a comprehensive description of all implementation issues behind the method
is provided. A detailed study of the weak scalability properties of the implementation is
carried out in Sect. 3.5, where the method is tested with both general heterogeneous and
the HTS problems. To finalize the chapter, some conclusions are provided in Sect. 3.6.
This work corresponds to the paper in preparation

[17] S.Badia, A.F. Martín and M.O. Scalable solvers for complex electromagnetic prob-
lems. In preparation. 2018.

In Chapter 4, a complete parallel FE framework to simulate the low-frequency elec-
tromagnetic response of superconducting devices is presented. Firstly, the selected for-
mulation is derived from Maxwell’s equations in Sect. 4.2. Then, the FE approximation
to the problem is described in Sect. 4.3, including the time integration method. In
Sect. 4.3.3, an AMR technique is described, putting emphasis on the generation of a
conforming global FE space. In Sect. 4.4 the composition of a tailored transient, non-
linear solver based on Newton Raphson and BDDC methods for curl-conforming spaces is
defined. The method relies on the developed BDDC method for heterogeneous problems.



12 Chapter 1. Introduction

In Sect. 4.5 a detailed set of numerical experiments is presented. In order to show the
availability of the approximation to model the phenomena, a validation exercise against
experimental data is included. In order to study the parallel performance of the imple-
mentation, the reproduction of a selected 3D benchmark is performed. Finally, Sect. 4.6
is devoted to provide some conclusions. This work corresponds to the published paper

[112] M.O., S.Badia and A.F. Martín. Simulation of High Temperature Superconductors
and experimental validation. Computer Physics Communications, in press, 2018.

In Chapter 5 a parallel-in-time solver for (non)linear ODEs based on multilevel DD
concepts is proposed. In this thesis, this work opens the path to parallel-in-time methods,
where the motivation is to exploit higher levels of parallelism not only in space but also
in time to reduce time-to-solution. In Sect. 5.3 a time-parallel direct solver for linear
ODEs is exposed, whereas in Sect. 5.4 an extension of the method to nonlinear ODEs is
presented. Two different strategies for exploiting parallelism in nonlinear problems are
proposed, namely: a Newton method over the global nonlinear ODE in Sect. 5.4.1 and
a global nonlinear problem in terms of local nonlinear problems in Sect. 5.4.2. Finally,
some conclusions regarding time-parallel methods for ODEs are drawn in Sect. 5.6. This
work corresponds to the published paper

[25] S.Badia and M.O. Nonlinear parallel-in-time Schur complement solvers for ordinary
differential equations. Journal of Computational and Applied Mathematics, 344
(2018), 794-806.

In Chapter 6 a time-extension of the BDDC preconditioner is presented and tested.
In Sect. 6.2 the problem and some notation are introduced. In Sect. 6.3 the classical
(only) space-parallel BDDC preconditioners are stated. Then, in Sect. 6.4 the ST-BDDC
extension of the method is developed. The weak scalability properties of the implemen-
tation are examined in Sect. 6.5. Finally, we draw some conclusions out of the obtained
results in Sect. 6.6. This work corresponds to the published paper

[24] S.Badia and M.O. Space-Time Balancing Domain Decomposition. SIAM Journal
on Scientific Computing, 39,2 (2017), C194-C213.

Finally, in Chapter 7, some conclusions are drawn and the thesis contributions are
synthesized with regard to the proposed objectives. Alongside with the conclusions,
some current limitations of the developed methods are identified, which lead to some
open lines of research and future work aligned with the research paths explored within
the present thesis.

1.4 Conference and workshop presentations

The thesis also led to the following presentations in international conferences, which
cover all the developments contained in the present thesis.
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2018 BDDC methods for the simulation of High Temperature Superconductors. World
Congress in Computational Mechanics XIII, New York, USA.

2017 A highly scalable finite element framework for complex multiphysics. High perfor-
mance Computing and Open platforms for energy technology modelling. Napoli,
Italy.

2017 Nonlinear parallel-in-time multilevel Schur complement solvers for ordinary differ-
ential equations. Parallel-in-time methods VI, Lugano, Switzerland.

2017 On scalable space-time balancing domain decomposition solvers. Domain Decom-
position XXIII, Svalbard, Norway.

2016 On scalable space-time balancing domain decomposition solvers. Parallel-in-time
methods workshop. University Paul Sabatier, Toulouse, France.





Chapter 2

Curl-conforming Finite Elements

In this chapter, we aim to provide a comprehensive description of a novel and gen-
eral implementation of edge finite elements (FEs) of arbitrary order on tetrahedral and
hexahedral non-conforming meshes. Edge (or Nédélec) finite elements are theoretically
sound and widely used by the computational electromagnetics community. However, its
implementation, specially for high order methods, is not trivial, since it involves many
technicalities that are not properly described in the literature. To fill this gap, we pro-
vide in this chapter a comprehensive description of a general implementation of edge
elements of the first kind within the scientific software project FEMPAR. We cover into
detail how to implement arbitrary order (i.e., p-adaptive) elements on hexahedral and
tetrahedral meshes. First, we set the three classical ingredients of the finite element
definition by Ciarlet, both in the reference and the physical space: cell topologies, poly-
nomial spaces and moments. With these ingredients, shape functions are automatically
implemented by defining a judiciously chosen polynomial pre-basis that spans the local
finite element space combined with a change of basis to automatically obtain a canon-
ical basis with respect to the moments at hand. Next, we discuss global finite element
spaces putting emphasis on the construction of global shape functions through oriented
meshes, appropriate geometrical mappings, and equivalence classes of moments, in order
to preserve the inter-element continuity of tangential components of the magnetic field.
Finally, we extend the proposed methodology to generate global curl-conforming spaces
on non-conforming hierarchically refined (i.e., h-adaptive) meshes with arbitrary order
finite elements. Numerical results include experimental convergence rates to test the
proposed implementation, which will define the curl-conforming framework employed in
the forthcoming chapters of the thesis.

2.1 Introduction

Edge elements were originally proposed in the seminal work by Nédélec [104]. They
are a natural choice in electromagnetic FE simulations due to their sound mathematical
structure [101]. In short, edge FE spaces represent curl-conforming fields with continu-
ous tangential components and discontinuous normal components. It is recognized to be
their greatest advantage against Lagrangian FEs [102]. There are different approaches
to design discretizations of the Maxwell equations that rely on Lagrangian FEs and can
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theoretically converge to singular solutions (see, e.g., [14]). However, these methods are
not robust for complex electromagnetic problems. In our experience (see Chapter 4),
the usage of edge elements is of imperative importance in the modelling of fields near
singularities by allowing normal components to jump across interfaces between two dif-
ferent media with highly contrasting properties. The curl operator has null space, the
gradient of any scalar field. To remove its kernel, one needs to include a zero-order
term, a transient problem or a divergence-free constraint over the magnetic field times
resistivity1 (also known as Coulomb gauge) [92].

Edge elements are widespread in the computational electromagnetics community,
mainly for the lowest order case. In fact, they receive the name of edge elements because
for first order approximations each degree of freedom (DOF) is associated with an edge
of the mesh, and DOFs can be understood as circulations along edges. However, its
implementation, specially for high order, is not a trivial task and involves many techni-
calities. On the other hand, there are few works addressing the implementation details
of arbitrary-order edge FE schemes.

The construction of local bases for edge elements has been addressed by few authors.
A basis for high order methods, expressed in terms of the (barycentric) affine coordinates
of the simplex (i.e., tetrahedra) is described in [77, 37], including also implementation
details in [36]. The definition of affine-related coordinates is used to define expressions
for the bases in hexahedra, prisms and pyramids in [69]. On the other hand, basis
functions can be obtained as the dual basis with respect to suitable edge degrees of
freedom functionals acting on the FE, described for prisms and simplices in [11, 75].

Better documented is the construction of global curl-conforming spaces [126, 124],
which relies on the Piola mapping to achieve the global continuity of the tangent com-
ponents by using moments defined in the reference cell. In the case of unstructured
hexahedral meshes, where non-affine geometrical mappings must be used in general, op-
timal convergence of standard edge elements in theH(curl) norm cannot be achieved [66].
Complex geometries can still be considered using, e.g., unfitted FE techniques [26] on
octree background meshes to avoid non-affine mappings.

Special care has to be taken in the definition of edge DOFs to enforce the right
continuity across cells. To prevent the so-called sign conflict, different alternatives have
been proposed. A simple sign flip [12] can assure consistency, i.e., all local DOFs
shared by two or more tetrahedra represent the same global DOF, for first order 3D
FEs only. For higher order methods, a remedy can be based on the construction of all
possible shape functions combined with a permutation that depends on local edge/face
orientations [69, 76]. Our preferred solution, for simplicity and ease of implementation, is
to orient tetrahedral meshes, requiring that local nodes numbering within every element
are always sorted based on their global indices [124]. On the other hand, although there

1Edge FEs provide solutions that are pointwise divergence-free in the element interiors. However,
the normal component of the field can freely jump across inter-element faces. The zero inter-element
jump constraint has to be enforced by a Lagrange multiplier [14] to eliminate the kernel.
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are hexahedral meshes that cannot be oriented in 3D [5], we restrict ourselves to forest-
of-octrees meshes [47] such that that the initial coarse mesh can be oriented, e.g., a
uniform, structured mesh.

Few open source FE software projects include the implementation of edge FEs of
arbitrary order. FEniCS supports arbitrary order FEs [7], but is restricted to tetrahedra
and has its own domain specific language for weak forms to automatically generate the
corresponding FE code, which may prevent hp-adaptivity. On the other hand, the deal.ii
library also provides arbitrary order edge FEs [30, 29], even on h-adaptive meshes, but
it is restricted to hexahedral meshes. Recently, a C++ plug-in that defines high order
edge FE ingredients [36] has been developed for the FreeFEM++ library [83], but it is
restricted to up to third order and tetrahedral meshes. The most complete approaches
found in the literature are the implementations in MFEM [2], which provide arbitrary
order tetrahedral FEs and h-adaptivity on hexahedral meshes, and the hp-adaptive ap-
proaches in hp2D/hp3D [55, 56] and Netgen/NGSolve [127, 3], which additionally employ
arbitrary order edge prism and pyramid elements in 3D.

The usage of non-nodal based (compatible or structure-preserving) FEs, especially in
multi-physics applications in combination with incompressible fluid and solid mechanics
[128, 113, 144], is still scarce. It is motivated by the fact that most codes in computational
mechanics are designed from inception for being used with nodal FEs, and the extension
to other types of FEs seems to be a highly demanding task. It does not help the poor,
fractioned and spread information on key implementation issues.

As mentioned before, the motivation of this chapter is to provide a comprehensive
description of a novel and general implementation of edge FEs of arbitrary order on
tetrahedral and hexahedral2 non-conforming meshes, confronted with typical hard-coded
implementations of the shape functions that preclude high order methods. With this
aim, we will address three critical points that are specially complex in the construction
of arbitrary order edge FEs: 1) an automatic manner of generating the associated poly-
nomial spaces; 2) a general solution for the so-called sign conflict; and 3) a construction
of the discrete H(curl)-conforming FE spaces atop non-conforming meshes. With regard
to 1), we generate arbitrary order edge FE shape functions in a simple but extensible
manner. First, we propose a pre-basis of vector-valued polynomial functions spanning
arbitrary order local edge FE spaces for both tetrahedral and hexahedral topologies;
see [35] for a related approach on tetrahedra. Next, we compute a change of basis from
the pre-basis to the canonical basis with respect to the edge FE DOFs, i.e., the basis of
shape functions. To address 2) and properly determine the inter-element continuity, we
rely on oriented meshes. Finally, in order to address 3), we combine a standard adaptive
mesh refinement (AMR) nodal-based implementation of constraints on non-conforming
geometrical objects (a.k.a. as hanging) with the relation between a Lagrangian pre-basis

2Although this thesis is restricted to hexahedra and tetrahedra, one can also find definitions for prism
and pyramid edge elements [34] with optimal rates of convergence of the numerical solution towards the
exact solution in the H(curl,Ω) norm.
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and the edge basis, to avoid the evaluation of edge moments on the refined cells. Besides,
the same machinery can also be applied to other polynomial based FEs, like Raviart-
Thomas FEs, Brezzi-Douglas-Marini FEs [44], second kind edge FEs [105], or recent
divergence-free FEs [106].

The proposed approach is the result of the experience gained by the authors after
the implementation in the scientific software FEMPAR (see Chapter 1 for an introduction).
In any case, we present an automatic, comprehensive strategy rather than focusing on
a particular software implementation. Consequently, thorough definitions and examples
will be provided, but the exact software implementation will not be shown. The reader
is directed to [19] for code details, where an exhaustive introduction to the software
abstractions of FEMPAR is presented.

The chapter is organized as follows. In Sect. 2.2, we introduce some notation and
a general problem with the curl-curl formulation. In Sect. 2.3, we will cover the defini-
tion and construction of the edge FE of arbitrary order, focusing on an straightforward
manner of generating the involved polynomial spaces. Sect. 2.4 is devoted to the con-
struction of global curl-conforming FE spaces. In Sect. 2.5, a strategy to deal with
h-adaptive spaces with the edge element will be described. Finally, in Sect. 2.6, we will
show some convergence results, which will serve to validate the implementation of the
edge elements.

2.2 Problem statement

2.2.1 Notation

In this section, we introduce the model problem to be solved and some mathematical
notation. Bold characters will be used to describe vector functions or tensors, while
regular ones will determine scalar functions or values. No difference is intended by using
upper-case or lower-case letters for functions.

Let Ω ⊂ Rd be a bounded domain with d = 2, 3 the space dimension. In 3D, the
rotation operator of a vector field v is defined as:

∇× v =

∂2v3 − ∂3v2

∂3v1 − ∂1v3

∂1v2 − ∂2v1

 . (2.1)

We use the standard multi-index notation for derivatives, with α := (α1, . . . , αd)
T ∈ Zd+

and |α|1 =
∑d

i=1 |αi|. Let us define the spaces

Hr(Ω) := {v ∈ L2(Ω) | ∂αv ∈ L2(Ω) for all |α|1 ≤ r}, (2.2)

Hr(curl,Ω) := {v ∈ Hr(Ω)d | ∇× v ∈ Hr(Ω)d}. (2.3)
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The space H0(curl,Ω) is represented with H(curl,Ω). We also consider the subspaces

H1
0 (Ω) := {v ∈ H1(Ω) | v = 0 in ∂Ω}, (2.4)

H0(curl,Ω) := {v ∈ H(curl,Ω) | n× v = 0 in ∂Ω}, (2.5)

where n denotes the outward unit normal to the boundary of the domain Ω. The space
H(curl,Ω) in Eq. (2.3) is equipped with the norm

‖u‖H(curl,Ω) :=
(
‖u‖2L2(Ω)d + ‖∇× u‖2L2(Ω)d

) 1
2
.

In 2D, a scalar version of the curl operator can be defined as curl(v)
.
= ∂1v2 − ∂2v1. We

can similarly define Hr(curl,Ω) and its related subspaces. In the following, we consider
the notation for the 3D case.

2.2.2 Formulation

The model problem consists in finding a vector field u (magnetic field) solution of

∇× α∇× u+ βu = f in Ω, (2.6)

where f is a given source term. Problem parameters α, β can range from scalar, positive
values for isotropic materials to positive definite tensors for anisotropic materials. Be-
sides, (2.6) needs to be supplied with appropriate boundary conditions. The boundary
of the domain ∂Ω is divided into its Dirichlet boundary part, i.e., ∂ΩD, and its Neu-
mann boundary part, i.e., ∂ΩN , such that ∂ΩD ∪ ∂ΩN = ∂Ω and ∂ΩD ∩ΩN = ∅. Then,
boundary conditions for the problem at hand read

u× n = gD on ∂ΩD, (2.7)

n× (α∇× u) = gN on ∂ΩN , (2.8)

where n is a unit normal to the boundary. Dirichlet (essential) boundary conditions
prescribe the tangent component of the field u on the boundary of the domain. On the
other hand, Neumann (natural) boundary conditions arise in the integration by parts of
the curl-curl term∫

Ω
(∇× α∇× u) · v =

∫
Ω

(α∇× u) · (∇× v)−
∫

ΩN

(α∇× u) · (n× v). (2.9)

Consider now two different non-overlapping regions on the domain Ω corresponding to
two different media (usual case in electromagnetic simulations), namely Ω1 and Ω2, such
that Ω1 ∪ Ω2 = Ω, and let us define the interface as Γ := Ω1 ∩ Ω2. Let us denote by
n1,n2 the unit normal pointing outwards of Ω1 and Ω2 on Γ, resp. The transmission
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conditions (in absence of other sources) for Eq. (2.6) are stated as follows:

n× (α1∇× u1 − α2∇× u2) = 0 on Γ,

where n can, e.g., be n1 = −n2. For the sake of simplicity in the presentation (not in
the implementation), let us consider ∂ΩD = ∂Ω, so that the Neumann boundary term
Eq. (2.9) can be removed from the weak form, and homogeneous Dirichlet boundary
conditions. Hence, the variational form of the double curl formulation Eq. (2.6) reads:
find u ∈ H0(curl,Ω) such that

(α∇× u,∇× v) + (βu,v) = (f ,v), ∀v ∈ H0(curl,Ω). (2.10)

2.3 Edge FEs

Let Th be a quasi-uniform partition of Ω into a set of hexahedra (quadrilaterals in 2D)
or tetrahedra (triangles in 2D) geometrical cells K. For every K ∈ Th, we denote by hK
its diameter and set the characteristic mesh size as h = maxK∈Th hK . Let us denote by
v ∈ N , e ∈ E and f ∈ F the components and global sets of vertices, edges and faces of
Th, with cardinality nN , nE and nF , resp. Using Ciarlet’s definition, a FE is represented
by the triplet {K,V,Σ}, where V is the space of functions on K and Σ is a set of linear
functionals on V. The elements of Σ are called DOFs (moments) of the FE. We will
denote the number of functionals on the cell as nΣ, and Σ

.
= {σa}nΣ

a=1. Σ is a basis for V ′,
which is dual to the so-called basis of shape functions {φa}nΣ

a=1 for V, i.e., σa(φb) = δab,
∀a, b ∈ {1, . . . , nΣ}.

At this point, we must distinguish between the reference FE, built on a reference
cell, and the FE in the physical space. Our implementation of the space of functions and
moments is based on a unique reference FE {K̂, V̂, Σ̂}. Then, in the physical space, the
FE triplet on a cell K relies on its reference FE, a geometrical mapping ΦK such that
K = Φ(K̂) and a linear bijective function mapping Ψ̂K : V̂ → V̂. It is well known that
quadrilateral FEs may result in a loss of accuracy on general meshes, e.g., when elements
are given as images of hexahedra under invertible bilinear maps, in comparison with the
accuracy achieved with squares or cubes [13]. In this text, hexahedra in the physical
space are obtained with affine transformations from the reference square or cube, thus
optimal convergence properties are guaranteed. Nevertheless, this fact does not restrict
the simulations to simple geometries, since unfitted approaches [26] may be employed to
model complex geometries with structured background meshes. Let us denote by JK the
Jacobian of the geometrical mapping, i.e., JK

.
= ∂ΦK

∂x . The functional space is defined
as V .

= {Ψ̂K(v̂) ◦ Φ−1
K : v̂ ∈ V̂}; we will also use the mapping ΨK : V̂ → V defined

as ΨK(v̂)
.
= Ψ̂K(v̂) ◦ Φ−1

K . Finally, the set of DOFs on the physical FE is defined as
Σ

.
= {σ̂ ◦ Ψ−1

K : σ̂ ∈ Σ̂} from the set of the reference FE linear functionals. In the
following subsections, we go into detail into these concepts and provide some practical
examples.
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2.3.1 Reference cell

A polytope is mathematically defined as the convex hull of a finite set of points (vertices).
The concept of polytope may be of practical importance, because it allows one to develop
codes that can be applied to any topology of arbitrary dimension that fits into the
framework, see [19] for a thorough exposition. For the sake of ease, we restrict ourselves
to two possible polytopes: d-cubes and d-simplices (with d = 2, 3), defined as the convex
hull of a set of nv = 2d and nv = d + 1 geometrically distinct points, respectively. An
ordered set of vertices {v1, . . . ,vnv} not only defines the topology of the cell K̂ but an
orientation. Edges and faces are polytopes of lower dimension, and an ordered set of
their vertices also defines their orientation. For the sake of illustration, the local indexing
at the cell level is depicted in Figs. 2.1a and 2.2a for a 3-cube and a 3-simplex, resp. The
2D cases follow by simply considering the restriction of the 3D cell to one of its faces.

2.3.2 Polynomial spaces

Local FE spaces are usually spanned by polynomial functions. Let us start by defining
basic polynomial spaces that will be needed in the forthcoming definitions. We define
here all polynomial spaces in an arbitrary polytope K, but they will only be used for
the reference cell in the next sections. The space of polynomials of degree less than or
equal to k > 0 in all the variables {xi}di=1 is denoted by Qk(K). Analogously, we can
define the space of polynomials of degree less than or equal to {ki}di=1 for the variable
{xi}di=1, denoted by Qk(K), with k = [k1, . . . , kd]. Clearly, the dimension of this space,
denoted by dim(Qk(K)), is

∏d
i=1(ki+1). Let us also define the corresponding truncated

polynomial space Pk(K) as the span of the monomials with degree less than or equal
to k. To determine the dimension of the truncated space, we note that the number of
components can be expressed with the triangular or tetrahedral number T dn , d = {2, 3},
such that

dim(Pk(K)) = T dk+1, T dn =

∏d
i=1(n+ i− 1)

d!
. (2.11)

Construction of polynomial spaces

Given an order k, it is trivial to form the set of monomials qk = {xi}ki=0, that spans the
1D space Qk(K). We construct a basis spanning the multi-dimensional space Qk(K)

with a Cartesian product of the monomials for each dimension, i.e., {qk1
1 ×. . .×q

kd
d }, thus

we have Qk(K) = span{
∏d
i=1 x

αi
i s.t. αi ≤ ki}. Let us denote by |α| the summation

of the exponents for a given monomial. Then, the multi-dimensional truncated space is
defined as Pk(K) = span{

∏d
i=1 x

αi
i s.t. |α| ≤ k}.

Let us also define Lagrangian polynomials spanning Qk(K), which will be used in the
definition of moments in Sect. 2.3.3. Given an order k and a set Nk of different nodes
in R, usually equidistant in the interval [x0, xk], we can define the set of Lagrangian
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polynomials {`i}ki=0 as,

`i :=

∏
n∈Nk\i(x− xn)∏
n∈Nk\i(xi − xn)

, (2.12)

where we indistinctly represent nodes by their index i or its position xi. The set of
all polynomials {`ki }ki=0 defines the Lagrangian basis Lk. In the grad-conforming (La-
grangian) FE, the definition of moments {σa}ka=1 simply consists in the evaluation of
the functions on the given points x ∈ Nk. Clearly, polynomials in Eq. (2.12) evaluated
at points xa satisfy the duality σa(`i) = `i(xa) = δai for every a, i ∈ {0, . . . k}, i.e., they
are shape functions. For multi-dimensional spaces, we define the set of nodes as the
Cartesian product of 1D nodes. Given a d-dimensional space of order k = [k1, . . . , kd],
the set of nodes is defined as N k = N k1 × . . .×N kd .

Hexahedra

The space of functions on the cell Vk(K) for this sort of elements is defined as the space
of gradients for the scalar polynomial space Qk(K), i.e.,

Vk(K) := {Qk−1,k(K)×Qk,k−1(K)}, (2.13)

Vk(K) := {Qk−1,k,k(K)×Qk,k−1,k(K)×Qk,k,k−1(K)}, (2.14)

in 2D and 3D, resp. Let us illustrate the polynomial space with a couple of examples.

Example 2.3.1. The polynomial space for the lowest order (k = 1) edge hexahedral
element is defined as

Vk(K) = {Q0,1,1(K)×Q1,0,1(K)×Q1,1,0(K)}

which can be represented as the span of the set of vector-valued functions
1

0

0

 ,
x2

0

0

 ,
x3

0

0

 ,
x2x3

0

0

 ,
0

1

0

 ,
 0

x1

0

 ,
 0

x3

0

 ,
 0

x1x3

0

 ,
0

0

1

 ,
 0

0

x1

 ,
 0

0

x2

 ,
 0

0

x1x2


 .

Example 2.3.2. The polynomial space for the second order quadrilateral element is
defined as

Vk(K) = {Q1,2(K)×Q2,1(K)},

which can be represented by the spanning set{[
1

0

]
,

[
x1

0

]
,

[
x2

0

]
,

[
x1x2

0

]
,

[
x2

2

0

]
,

[
x1x

2
2

0

]
,

[
0

1

]
,

[
0

x1

]
,

[
0

x2
1

]
,

[
0

x2

]
,

[
0

x1x2

]
,

[
0

x2
1x2

]}
.
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Tetrahedra

The polynomial space for tetrahedral elements is slightly more involved. For the sake
of brevity, let us omit the cell (i.e., K) in the notation for the local FE spaces. Let
us start by defining the homogeneous polynomial space [P̃k]d := [Pk]d \ [Pk−1]d, where
[Pk]2 = Pk ×Pk and [Pk]3 = Pk ×Pk ×Pk. The space [P̃k]d has dimension d · dim(P̃k),
and using Eq. (2.11) we have:

dim(P̃k) = dim(Pk)− dim(Pk−1) = T dk+1 − T dk = T d−1
k+1 .

The function space of order k on a tetrahedron is then defined as

Vk(K) = [Pk−1]d ⊕ Sk, (2.15)

where Sk is the space of polynomials

Sk := {p(x) ∈ [P̃k]d such that p(x) · x = 0}.

Note that if p(x) ∈ [P̃k]d, then p ·x ∈ P̃k+1 and any polynomial in P̃k+1 may be written
in this way. The dimension of the space Sk is

dim(Sk) = d · dim(P̃k)− dim(P̃k+1), (2.16)

which leads to (k + 2)k in 3D and k in 2D, resp. Among all the possible forms of
representing the space Sk in 3D, we consider the following spanning set

Sk = span


k⋃

β=1

k+1−β⋃
α=1


−x

α−1
1 xk−α−β+2

2 xβ−1
3

xα1x
k−α−β+1
2 xβ−1

3

0

 ,
−x

k−α−β+1
1 xβ−1

2 xα3
0

xk−α−β+2
1 xβ−1

2 xα−1
3


 , (2.17a)

k⋃
α=1

 0

−x0
1x
α−1
2 xk−α+1

3

x0
1x
α
2x

k−α
3


 . (2.17b)

Proposition 2.3.1. The set of vector functions defined in Eq. (2.17) forms a basis of
the space Sk.

Proof. First, we note that the proposed basis contains {pi(x)}(k+2)k
i=1 vector functions.

Clearly, the total degree of the monomials found on each component for all functions is
k, thus S ⊂ P̃dk . Further, it is easy to check that pi(x) · x = 0 for any pi(x) ∈ S. The
proof is completed by showing that all the functions are linearly independent. It is trivial
to see that all the functions in the first set of functions are indeed linearly independent;
the two sets have different non-zero components. Finally, vector functions from the last
subset Eq. (2.17b) are independent of x1, whereas all functions in the previous subset in
Eq. (2.17a) do depend on x1 and are linearly independent among them.
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In two dimensions, the analytical expression of the spanning set simply reduces to

Sk = span

{
k⋃

α=1

[
−xα−1

1 xk−α+1
2

xα1x
k−α
2

]}
. (2.18)

The dimension of the space Vk(K) for tetrahedra can be obtained by adding (2.11)
and (2.16),

dim(Vk(K)) =
k
∏d
i=2(k + i)

(d− 1)!
. (2.19)

Let us give some examples of polynomial bases for tetrahedral edge elements spanning
the requested spaces.

Example 2.3.3. A set of polynomial spanning V1(K) = [P0]3 ⊕ S1 (i.e., lowest order
tetrahedral element) is

1

0

0

 ,
0

1

0

 ,
0

0

1

 ,
−x2

x1

0

 ,
−x3

0

x1

 ,
 0

−x3

x2


 .

Example 2.3.4. A polynomial base spanning V2(K) = [P1]2 ⊕ S2 (i.e., second-order
triangular element) is{[

1

0

]
,

[
x1

0

]
,

[
x2

0

]
,

[
0

1

]
,

[
0

x1

]
,

[
0

x2

]
,

[
−x2

2

x1x2

]
,

[
−x1x2

x2
1

]}
.

In both cases, vector functions that span the subspaces [Pk−1]d ⊂ Vk(K) and Sk ⊂
Vk(K) can easily be identified from the full sets of vector-valued functions in Exs. 2.3.3
and 2.3.4.

Note that local spaces Vk(K) lie between the full polynomial spaces of order k − 1

and k, i.e., [Qk−1(K)]d ⊂ Vk(K) ⊂ [Qk(K)]d, [Pk−1(K)]d ⊂ Vk(K) ⊂ [Pk(K)]d for
hexahedra and tetrahedra, resp. This kind of elements are called edge FEs of the first
kind [104]. Another edge FE, the so-called second kind, was introduced also by Nédélec
in [105]. It follows similar ideas but considers full polynomial spaces, i.e., [Qk(K)]d

or [Pk(K)]d, instead of anisotropic polynomial spaces (see Eq. (2.14)) or incomplete
polynomial spaces (see Eq. (2.15)) for hexahedra and tetrahedra, resp., which clearly
simplifies the implementation of the polynomial spaces. Edge elements of the second
kind offer better constants in the error estimates at the cost of increasing the number of
DOFs (see detailed definitions in [53, Ch. 2]).

2.3.3 Edge moments in the reference element

In order to complete the definition of edge FEs, it remains to define a set of (linearly
independent) functionals to be applied on Vk(K̂). Edge moments are integral quantities
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over geometrical sub-entities of the cell against some test functions. These moments
involve directions in 1D entities (edges) and orientations in 2D (faces) or 3D (volumes).
Thus, we need to define local orientations for the lower dimension geometrical entities
of the reference cell, see Figs. 2.1a and 2.2a. Let us distinguish between three different
subsets of moments Σ̂, namely DOFs related to edges σê, to faces σf̂ and volume σK̂
such that Σ̂ = σê ∪ σf̂ ∪ σK̂ .

Hexahedra

The set of functionals, for the reference element, that form the basis in two dimensions
reads ([101, Ch. 6]):

σê(ûh) :=

∫
ê
(ûh · τ̂ )q̂ ∀q̂ ∈ Pk−1(ê), ∀ê ∈ K̂, (2.20a)

σK̂(ûh) :=

∫
K̂
ûh · q̂ ∀q̂ ∈ Qk−1,k−2(K̂)×Qk−2,k−1(K̂). (2.20b)

We will have 4k DOFs associated to edges and 2k(k − 1) inner DOFs. Therefore, the
complete set of functionals has cardinality nΣ̂ = 2k(k + 1). In the case of k = 1, only
edge DOFs σê appear. In three dimensions the set is defined as

σê(ûh) :=

∫
ê
(ûh · τ̂ )q̂ ∀q̂ ∈ Pk−1(ê), ∀ê ∈ K̂ (2.21a)

σf̂ (ûh) :=

∫
F̂

(ûh × n̂) · q̂ ∀q̂ ∈ Qk−2,k−1(F̂)×Qk−1,k−2(F̂), ∀F̂ ∈ K̂ (2.21b)

σK̂(ûh) :=

∫
K̂
ûh · q̂ ∀q̂ ∈ Qk−1,k−2,k−2(K̂)×Qk−2,k−1,k−2(K̂)×

Qk−2,k−2,k−1(K̂),

(2.21c)

where τ̂ is the unit vector along the edge and n̂ the unit normal to the face. In this case,
we have 12k DOFs associated to edges, 6 · 2k(k − 1) DOFs associated to the 6 faces of
the cell and 3k(k − 1)2 inner DOFs. We have a total number of nΣ̂ = 3k(k + 1)2 DOFs.
Note that in the case of the lowest order elements, i.e., k = 1, only DOFs associated to
edges appear. For higher order elements, i.e., k ≥ 2, all kinds of DOFs occur in both
dimensions.

DOFs are labelled in the reference cell as follows. First, for every DOF, we can
determine the geometrical entity that owns it, e.g., an edge of the reference FE in
(2.21a). Within every geometrical entity, there is a one-to-one map between DOFs and
test functions. Thus, we can number DOFs by the numbering of the test functions in
the test space, e.g., the test functions in Pk−1(ê) for the DOFs in (2.21a). We note that
all the test spaces in the DOF definitions can be built using a nodal-based (Lagrangian)
basis, and thus, every DOF in a geometrical object can be conceptually associated to one
and only one node. The numbering of the nodes in the geometrical object is determined
by its orientation in the reference FE. The composition of a geometrical object numbering
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(a) Oriented cell geometry. (b) Lowest order DOFs. (c) Second order DOFs.
Face DOFs depicted in blue,
inner DOFs depicted in red.

Figure 2.1: 3D hexahedral reference FE.

(see Figs. 2.1–2.2) and the object-local node numbering provides the local numbering of
DOFs within the reference cell.

Tetrahedra

The set of functionals described in this section follows [101, Ch. 5]. In the 2D case, the
set of moments for the reference FE is defined as

σê(ûh) :=

∫
ê
(ûh · τ̂ )q̂ ∀q̂ ∈ Pk−1(ê), ∀ê ∈ K̂ (2.22a)

σK̂(ûh) :=

∫
K̂
ûh · q̂ ∀q̂ ∈ [Pk−2(K̂)]2. (2.22b)

Clearly, we have 3k edge DOFs and k(k − 1) inner DOFs, which lead to a total number
of nΣ̂ = k(k + 2) DOFs. In three dimensions, the set Σ̂ is defined as

σê(ûh) :=

∫
ê
(ûh · τ̂ )q̂ ∀q̂ ∈ Pk−1(ê), ∀ê ∈ K̂ (2.23a)

σf̂ (ûh) :=
1

‖F̂‖

∫
F̂
ûh · q̂ ∀q̂ ∈ [Pk−2(K̂)]3 s.t. q̂ · n̂ = 0, ∀f̂ ∈ K̂ (2.23b)

σK̂(ûh) :=

∫
K̂
ûh · q̂ ∀q̂ ∈ [Pk−3(K̂)]3, (2.23c)

where n̂ in Eq. (2.23b) is the unit normal to the face. The set of moments Eq. (2.23)
contains 6k edge DOFs, 4k(k − 1) face DOFs and k(k−1)(k−2)

2 inner DOFs. Therefore,
the tetrahedral edge element has a total number of nΣ̂ = k(k2+5k+6)

2 DOFs. The local
numbering of DOFs is analogous as for the hexahedral case.

Remark 1. The face moments in the definition Eq. (2.23b) seem to differ from the rest
of definitions in Eq. (2.23), which are not scaled with a geometrical entity measure. We
follow here [101, Ch. 5], where this expression of face moments is used to prove affine
equivalence, i.e., proving that DOFs are affine invariant under the transformation from
the reference to the physical element.
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(a) Oriented cell geometry. (b) Lowest order DOFs. (c) Second order DOFs.
Face DOFs depicted in blue.

Figure 2.2: 3D tetrahedral reference FE.

Note that in the case of the lowest order elements, i.e., k = 1, only DOFs associated
to edges occur. For second order elements, i.e., k = 2, we also find DOFs related to faces
(inner DOFs in 2D), and it is in orders higher than two where all kinds of DOFs occur.
Note that vector-valued test functions q̂ involved in (2.22b), (2.23b) and (2.23c) can be
understood as products between linearly independent vectors {τ̂ i}d1 that form a basis in
the geometrical entity of dimension d and scalar polynomials q̂ ∈ Pk−d.

2.3.4 Construction of edge shape functions

Usually, low order edge elements are implemented via hard-coded expressions of their
respective shape functions. However, such an approach is not suitable for high order
edge FEs, which involve complex analytical expressions of the shape functions. In this
section, we provide an automatic generator of arbitrary order shape functions.

The definition of the moments for the edge FE (in (2.20a,2.20b), (2.21a-2.21c) or
(2.22a,2.22b), (2.23a-2.23c) for hexahedra and tetrahedra, resp.) requires the selection
of functions spanning the requested polynomial space in each case. First, we generate
a pre-basis {ϕa}nΣ

a=1 that spans the local FE space Vk(K̂). To this end, we consider the
tensor product of Lagrangian polynomial basis (see Sect. 2.3.2) for hexahedra or the
combination of a Lagrangian basis of one order less in (2.15) plus the bases of monomials
in (2.17) for tetrahedra. Our goal is to build another (canonical) basis {φa}nΣ

a=1 that spans
the same space and additionally satisfies σa(φb) = δab for a, b ∈ {1, . . . , nΣ}, i.e., the basis
of shape functions for the edge element. Thus, we are interested in obtaining a linear
combination of the functions of the pre-basis such that the duality between moments
and functions is satisfied. As a result, an edge shape function φa can be written as
φa =

∑nΣ
b=1Qabϕ

b. Let us make use of Einstein’s notation to provide the definition of
the change of basis between the two of them. We have:

φb = Qbcϕ
c, σa(φ

b) = σa(Qbcϕ
c), δab = σa(ϕ

c)Qbc, (2.24)
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(a) φe1 (b) φe2 (c) φe3 (d) φe4

Figure 2.3: Vector-field plots of the shape functions in the lowest order
2D hexahedra. The indices of edges follow the geometrical entities indices
for the reference hexahedron in Fig. 2.1a restricted to the plane z =
0. Auxiliary circles denote the geometrical entity where the moment is

defined.

(a) φ1
e1 (b) φ2

e1 (c) φ1
e2 (d) φ1

e2

(e) φ1
e3 (f) φ2

e3 (g) φ1
e4 (h) φ2

e4

(i) φ1
K (j) φ2

K (k) φ3
K (l) φ4

K

Figure 2.4: Vector-field plots of the shape functions in the second order
hexahedral edge element. The indices of edges follow the geometrical
entities indices for the reference hexahedron in Fig. 2.1a restricted to the
plane z = 0. Auxiliary circles denote the geometrical entity where the

moment is defined.

or in compact form I = CQT , thus QT = C−1. As a result, the edge shape functions are
obtained as φa = Qabϕ

b = C−1
ba ϕ

b. For the sake of illustration, we provide some examples
of full sets of edge shape functions for different orders. To make the visualization easy,
we provide only 2D examples for first and second order square (Figs. 2.3 and 2.4) and
triangular elements (Figs. 2.5 and 2.6). In these figures, we put a circle on top of the
node corresponding to the DOF dual to the shape function. The superscript indicates
the local moment numbering on the particular geometrical entity.
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(a) φe1 (b) φe2 (c) φe3

Figure 2.5: Vector-field plots of the shape functions in the lowest order
tetrahedral element. The indices of edges follow the geometrical entities
indices for the reference tetrahedron in Fig. 2.2a restricted to the plane
z = 0. Auxiliary circles denote the geometrical entity where the moment

is defined.

(a) φ1
e1 (b) φ2

e1 (c) φ1
e2 (d) φ2

e2

(e) φ1
e3 (f) φ2

e3 (g) φ1
K (h) φ2

K

Figure 2.6: Vector-field plots of the shape functions in the second order
edge element. The indices of edges follow the geometrical entities indices
for the reference tetrahedron in Fig. 2.2a restricted to the plane z =
0. Auxiliary circles denote the geometrical entity where the moment is

defined.

2.4 Global FE spaces and conformity

A FE space is H(curl)-conforming if the tangential components at the interface between
elements are continuous, i.e., they do not have to satisfy normal continuity over element
faces. The discrete global FE space where the magnetic field solution uh lies is defined
as

NDk(Ω) = {vh ∈ H(curl,Ω) such that vh|K ∈ Vk(K)∀K ∈ Th}, (2.25)

where Vk has been defined for the hexahedral and tetrahedral edge FEs in Sect. 2.3.2.

2.4.1 Moments in the physical space and the Piola map

In this section we define a set of DOFs (moments) in the physical space that allow one to
interpolate analytical functions onto the edge FE space, e.g., to enforce Dirichlet data.



30 Chapter 2. Curl-conforming Finite Elements

One can check that the continuity of those DOFs which lay at the boundary between
cells provides the desired continuity of the tangential component. On top of that, using
the so-called covariant Piola mapping ΨK(v̂)

.
= Ψ̂K(v̂) ◦Φ−1

K , where

Ψ̂K(v̂)
.
= J−TK v̂, (2.26)

it can be checked that a DOF in the reference space of a function v̂ on K̂ is equal to the
corresponding DOF in the physical space for ΨK(v̂) on K (see [101, Ch. 5] for details).
Thus, the Piola mapping, which preserves tangential traces of vector fields [124], is the
key to achieve a curl-conforming global space by using a FE space relying on a reference
FE definition.

Hexahedra

Let us now define the moments for a curl-conforming FE defined on a general hexahedron.
Given an integer k ≥ 1, the set of functionals that forms the basis in two dimensions
reads:

σe(uh) :=

∫
e
(uh · τ )q ∀q ∈ Pk−1(e), ∀e ∈ K, (2.27a)

σK(uh) :=

∫
K
uh · q, ∀q obtained by mapping q =

(
1

det(JK)

)
JK q̂,

q̂ ∈ Qk−1,k−2(K̂)×Qk−2,k−1(K̂),

(2.27b)

where τ is the unit vector along the edge. In 3D, the set of functionals reads

σe(uh) :=

∫
e
(uh · τ )q ∀q ∈ Pk−1(e), ∀e ∈ K (2.28a)

σf (uh) :=

∫
F

(uh × n) · q ∀q obtained by mapping q = J−TK (J f̂ q̂),

q̂ ∈ Qk−2,k−1(F̂)×Qk−1,k−2(F̂), ∀F ∈ K
(2.28b)

σK(uh) :=

∫
K
uh · q ∀q obtained by mapping q =

(
1

det(JK)

)
JK q̂,

q̂ ∈ Qk−1,k−2,k−2(K̂)×Qk−2,k−1,k−2(K̂)×Qk−2,k−2,k−1(K̂)

(2.28c)

where n is the unit normal to the face. The definition of the face moments in Eq. (2.28b)
requires to transfer either the 3D vector (uh×n) to the face F or the vector q̂, contained
in a reference face, to the 3D physical cell. We choose this latter option, which implies the
transformation of the vector q̂ to the reference cell through the face Jacobian J f̂ =

∂ΦK̂
∂xf̂

.

Tetrahedra

On a general tetrahedron K, we define the moments for a curl-conforming FE as follows.
Given an integer k ≥ 1, the set of functionals that forms the basis in two dimensions
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reads

σe(uh) :=

∫
e
(uh · τ )q ∀q ∈ Pk−1(e), ∀e ∈ K (2.29a)

σK(uh) :=

∫
K
uh · q ∀q obtained by mapping

q =

(
1

det(JK)

)
JK q̂, q̂ ∈ [Pk−2(K̂)]2.

(2.29b)

Clearly, we have 3k edge DOFs and k(k − 1) inner DOFs, which lead to a total number
of nΣ = k(k + 2) DOFs. In three dimensions the set Σ is defined as

σe(uh) :=

∫
e
(uh · τ )q ∀q ∈ Pk−1(e), ∀e ∈ K (2.30a)

σf (uh) :=
1

‖F‖

∫
F
uh · q ∀q = JK q̂ s.t. q̂ · n̂ = 0, (2.30b)

q̂ ∈ [Pk−2(f̂)]3 ∀f ∈ K

σK(uh) :=

∫
K
uh · q ∀q obtained by mapping

q =

(
1

det(JK)

)
JK q̂, q̂ ∈ [Pk−3(K̂)]3.

(2.30c)

2.4.2 Nédélec interpolator

The space of edge FE functions can be represented as the range of an interpolation
operator πh that is well defined for sufficiently smooth functions u ∈ H(curl,Ω) by

πh(u) :=
∑
a

ua(u)φa (2.31)

where ua(u) = σa(u) are the evaluation of the moments for the function u described
for the hexahedra and tetrahedra cases in Sect. 2.4.1 for all e ∈ E , F ∈ F and K ∈ Th.
Note that Dirichlet boundary conditions can be strongly imposed in the resulting system
(usual implementation in FE codes) by evaluating the moments corresponding to edges
and/or faces on the Dirichlet boundary given the analytical expression of the function
to be imposed.

2.4.3 Global DOFs

In order to guarantee global inter-element continuity with Piola-mapped elements, special
care has to be taken with regard to the orientation of edges and faces at the cell level.
Let us consider a global numbering for the vertices in a mesh and a local numbering at
the cell level. Given an edge/face, sorting its vertices with respect to the local (resp.
global) index of their vertices, one determines the local (resp. global) orientation of the
edge/face. A mesh in which the local and global orientation of all its edges and faces
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Figure 2.7: Oriented mesh. Global information (left) and its local,
oriented, counterpart (right) for two elements Ki and Kj . Common edges
for two adjacent tetrahedra will always agree in its direction, as well as

chosen tangent vectors τ1 and τ2 to the common face.

coincide is called an oriented mesh. For oriented meshes, common edges or faces for two
adjacent tetrahedra will always agree in its orientation, thus represent the same global
DOF. Tetrahedral meshes are oriented with a simple local renumbering [124], and we
restrict ourselves to hexahedral octree meshes that are oriented by construction.

Local DOFs are uniquely determined by the cell in which they are defined, the ge-
ometrical entity within the reference cell that owns them and the local numbering of
DOFs within the geometrical entity (see Sect. 2.3.3). The local numbering only depends
on the orientation of the geometrical entity through the ordering of its vertices.

Global DOFs are defined as an equivalence class over the union of the local DOFs
for all cells. Two local DOFs are the same global DOF if and only if they belong to the
same geometrical object and the same local numbering within the geometrical object
in their respective cells. The previous equivalence class leads to a curl-conforming FE
space if local orientations of geometrical objects coincide with a global orientation, i.e.,
on oriented meshes only.

For the sake of illustration, see the simple mesh depicted in Fig. 2.7, composed by two
tetrahedra defined by the global vertices v1, v2, v3, v4 and v5. The two elements share
a common face, defined by 3 vertices that have different local indices for all vi ∈ Ki

and vj ∈ Kj . The ordering convention, local indexing according to ascending global
indices, ensures that both triangles agree on the direction of the common edges and the
common face. Note that the Jacobian of the transformation may become negative with
the orientation procedure. We only need to make sure that the absolute value of the
Jacobian is taken whenever the measure of the change of basis is applied. The situation
is much more involved for general hexahedral meshes. In any case, our implementation
of hexahedral meshes relies on octree meshes, where consistency is ensured. It is easy to
check that an octree mesh in which a cell inherits the orientation of its parent is oriented
by construction.
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2.5 Edge FEs in h-adaptive meshes

In this section, we expose an implementation procedure for non-conforming meshes and
edge FEs of arbitrary order. In the following, we restrict ourselves to hexahedral meshes,
even though the extension to tetrahedral meshes is straightforward. Our procedure
can also be readily extended to any FE space that relies on a pre-basis of Lagrangian
polynomial spaces plus a change of basis, e.g., Raviart-Thomas FEs.

2.5.1 Hierarchical AMR on octree-based meshes

The AMR generation relies on hierarchically refined octree-based hexahedral meshes [139]
and the p4est [47] library is used for such purpose. In this method, one must enforce
constraints to ensure the conformity of the global FE space, which amounts to compute
constraints between coarser and refined geometrical entities shared by two cells with
different level of refinement [55]. For Lagrangian elements, restriction operators in geo-
metrical sub-entities are generally obtained by evaluating the shape functions associated
with the coarse side of the face at the interpolation points of the shape functions on the
refined side of the face [31]. The idea is conceptually equivalent for edge elements but
considerably more complex to implement because DOFs do not represent nodal values
but moments on top of geometrical entities. In this thesis, we follow an approach based
on the relation between a Lagrangian pre-basis, where moments are trivial to evaluate,
and the edge basis, so we can avoid the evaluation of edge moments on the refined cell
to compute constraints.

Let T ′h be a conforming partition of Ω into a set of hexahedra (quadrilateral in 2D)
geometrical cells K. T ′h can, e.g., be as simple as a single quadrilateral or hexahedron.
Starting from T ′h , hierarchical AMR is a multi-step process in which at each step, some
cells of the input mesh are marked for refinement. A cell marked for refinement is
partitioned into four (2D) or eight (3D) children cells by bisecting all cell edges EK .
Let us denote by Th the resulting partition of Ω. Th can be thought as a collection
of quads (2D) or octrees (3D) where the cells of T ′h are the roots of these trees, and
children cells branch off their parent cells. The leaf cells in this hierarchy form the
mesh in the usual meaning, i.e., Th. Thus, for every cell K ∈ Th we can define `(K) as
the level of K in the aforementioned hierarchy, where `(K) = 0 for the root cells, and
`(K) = `(parent(K)) + 1 for any other cell. Clearly, the cells in Th can be at different
levels of refinement. Thus, these meshes are non-conforming. In order to complete
the definition of Th, let us introduce the concept of hanging geometrical entities. For
every cell K ∈ Th, consider its set of vertices NK , edges EK and faces FK . We can
represent the set of geometrical entities that have lower dimension than the cell by
GK = NK ∪ EK ∪ FK . Its global counterpart is defined as GT = ∪K∈ThGK . For every
geometrical entity s ∈ GT , we can represent by Ts the set of cells K ∈ Th such that
s ∈ GK . Additionally, T̃s is defined as the set of cells K ∈ Th such that s ( s′ for
some s′ ⊂ GK . Roughly speaking, one set contains all the cells where the geometrical
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(a) Hanging enti-
ties marked in red.

(b) Not permitted
hanging entities
marked in blue.

(c) Centered re-
finement pattern.
` ∈ {2, 3, 4} from
clearest to darkest.

Figure 2.8: h-adaptive refined (single octree) non-conforming meshes.

entity is found while the other set contains all the cells where the geometrical entity is a
strict subset of a coarser geometrical entity. A geometrical entity s ∈ GT is hanging (or
improper) if and only if there exists at least one neighbouring cell in T̃s. We represent
the set of hanging geometrical entities with Ghg

T . The definition of the proposed AMR
approach is completed by imposing the so-called 2:1 balance restriction, which is used
in mesh adaptive methods by a majority of authors as a reasonable trade-off between
performance gain and complexity of implementation [139, 47, 55].

Definition 1. A d-tree (d = {2, 3}) is 2:1 k-balanced if and only if, for any cell K ∈ Th
there is no s ∈ GK of dimension m ∈ [k, d) having non-empty intersection with the closed
domain of another finer cell K ′ ∈ T̃h such that `(K ′)− `(K) > 1.

For edge FEs it is enough to consider 1-balance since vertices do not contain any asso-
ciated DOF. For the sake of clarity, in Figs. 2.8a and 2.8b, allowed hanging geometrical
entities are depicted in red, whereas in Fig. 2.8b, not allowed ones are shown in blue.
Clearly, the latter mesh is the result of a refinement process that does not accomplish the
2:1 balance, thus not permitted in our AMR approach. Note that in order to enforce the
2:1 balance in the situation depicted in Fig. 2.8b, one would need to apply additional
refinement to some cells with lower values for `(K) until the restriction (1) is satisfied.

2.5.2 Conformity of the global FE space

In order to preserve the conformity of the FE space NDk(Ω), we cannot allow an arbi-
trary value for DOFs placed on top of hanging geometrical entities, which will be denoted
by hanging DOFs. Our approach is to eliminate the hanging DOFs of the global system
by defining a set of constraints such that curl-conformity is preserved. We propose an
algorithm that computes the edge FE constraints by relying on the ones of Lagrangian
FEs and the change of basis in Sect. 2.3.4. This way, one can reuse existing ingredients
in a nodal-based AMR code and work already required to define the edge FE shape
functions.

The computation of constraints requires some preliminary work at the geometrical
level, i.e., independent of the FE space being used. Let us first compute the set of hanging
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(a) Fine cell Kh ≡ K(g) and
coarse cell K2h ≡ K(G(g)).

(b) Coarse cell refined into
children cells {Ks

h}4s=1. In
this example, s(g) = 2.

Figure 2.9: The coarse cell K2h is refined in order to meet the highest
level of refinement. Then, the index s(g) can be determined.

geometrical entities Ghg
T . For every g ∈ Ghg

T , let us compute the coarser geometrical
entity G(g) ∈ G \ Ghg

T that contains it. Let us assign to every g ∈ GT one cell such
that K(g) ∈ Tg. With this information, for every g ∈ Ghg

T , we can extract the fine cell
Kh ≡ K(g) and the coarse cell K2h ≡ K(G(g)) (see Fig. 2.9a).

The coarse cell K2h can be refined (once) to meet the level of refinement of Kh. (The
coarse cell is only refined for the computation of constraints so the original mesh is not
affected.) Let us consider its children cells {Ks

h}2
d

s=1 obtained after isotropic refinement
by the procedure exposed in Sect. 2.5.1, see Fig. 2.9b. We represent the patch of subcells
with K̃h =

⋃2d

i=1K
s
h. We can determine a subcell index s(g) such that g ∈ G

K
s(g)
h

; s(g)

is not unique in general, see Fig. 2.9b.

Constraints for Lagrangian FEs

In this section, we compute the constraints for Lagrangian FE spaces. Using the ge-
ometrical information above, given a hanging geometrical entity g, let us consider the
Lagrangian FE spaces Lk(K2h), Lk(K̃h) and Lk(Ks

h) (see Sect. 2.4 for the definitions,
Figs. 2.10a and 2.10b for an illustration). The objective is to compute the constraints
over DOFs on g ∈ Ghg

T that enforce global continuity. This continuity is enforced by
evaluating the coarse cell K2h shape functions on the fine cell Kh nodes (DOFs) on g.
Since both cells share the FE order, such set of constraints leads to full continuity across
g [130, Ch. 3]. Let us explain the steps followed to compute these constraints.

Clearly, Lk(K2h) ⊂ Lk(K̃h), so we can apply the Lagrangian interpolant to inject
u2h ∈ Lk(K2h) into Lk(K̃h). For this purpose, consider the set of original Lagrangian
basis functions {ϕj}nkj=1 spanning Lk(K2h), which has cardinality nk =

∏d
i (ki + 1) (see

Sect. 2.3.2 for details). Further, consider the set of moments {σi}ñki=1 uniquely defining
a solution in Lk(K̃h), which has cardinality ñk =

∏d
i (2ki + 1) (see Sect. 2.3.2). Given

the vector of DOF values of u2h, the restriction operator R : Lk(K2h)′ → Lk(K̃h)′

Rij
.
= σi(ϕ

j), i = 1, . . . , ñk, j = 1, . . . , nk, (2.32)

provides the DOFs of the interpolated function.
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(a) FE spaces represen-
tation.

(b) A function in the coarse
cell injected in the refined
space or its restriction to a sub-

cell (denoted in blue).

(c) DOFs identification
as conforming meshes.

Figure 2.10: Scheme for enforcing continuity at common entities for
two cells with different level of refinement with second order Lagrangian

FEs.

Further, note that given a hanging DOF uh,i on top of g, it is easy to check that
Rij = 0 if DOF u2h,j is not on G(g).

For every subcell Ks
h one can readily determine the map ws(·) such that, given the

local cell index i ∈ {1, . . . , nk} for moments defined on Lk(Ks
h)′ (s ∈ {1, . . . , 2d}), returns

a global moment index i′ ∈ {1, . . . , ñk} in the space Lk(K̃h)′. It leads to the subcell
restriction operator (of DOF values) Rs : Lk(K2h)′ → Lk(Ks

h)′ defined as

Rsij
.
= Rws(i)j i = 1, . . . , nk, j = 1, . . . , nk. (2.33)

A representation of the action of R and Rs can be seen in Fig. 2.10b. Note that they
are independent of the level of refinement and the cell in the physical space; they are
computed only once at the reference cell.

We can identify every DOF i ∈ Lk(Kh)′|g with a DOF i′ ∈ Lk(K
s(g)
h )′|g as for

conforming Lagrangian meshes; two local DOF values must be identical if their corre-
sponding nodes are located at the same position (see Fig. 2.10c). Finally, the DOF value
i ∈ Lk(Kh)′|g is constrained by the DOF values of the coarse cell through the row i′ of
Rs(g).

Constraints for edge FEs

In order to compute the constraints for edge FEs one could follow a similar procedure
as the one above, see Fig. 2.11 for an illustration. Nevertheless, we propose a different
approach for the implementation of restriction operator in edge FEs (see Fig. 2.11b),
which allows us to reuse the restriction operator defined for nodal FEs and avoids the
evaluation of edge moments in subcells. Besides, our approach for computing the edge
FE constraints is applicable to any FE space that relies on a pre-basis of Lagrangian
polynomials plus a change of basis (e.g., Raviart-Thomas FEs) without any additional
implementation effort.
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(a) FE spaces represen-
tation.

(b) Restriction of a function in-
jected in the refined space to a

subcell.

(c) DOFs identification
as conforming meshes.

Figure 2.11: Scheme for enforcing continuity at common entities for
two cells with different level of refinement with second order edge FEs.

Figure 2.12: Sequence of spaces in order to compute the restriction
operator entries for K2

h with second order edge FEs. Representation of
edge and inner DOFs by arrows and nodes, resp.

The idea is to build the restriction operator for edge FEs as a composition of op-
erators. We recall the change of basis matrix Q : Lk(K) → NDk(K) between La-
grangian and edge FE basis functions (see Sect. 2.3.4). It leads to the adjoint operator
QT : NDk(K)′ → Lk(K)′ and its inverse Q−T : Lk(K)′ → NDk(K)′. As a result, given
a subcell Ks

h, we can define the restriction operator R̂
s .

= Q−TRsQT : NDk(K2h)′ →
NDk(Ks

h)′ that takes the edge FE DOF values in the coarse cell K2h and provides the
ones of the interpolated function (see (2.31)) in Ks

h. Again, R̂
s
can be computed once

at the reference cell. An illustration of the sequence of spaces is shown in Fig. 2.12.
Given a hanging edge/face g ∈ Ghg

T (vertices do not have associated DOFs for edge
FEs), the constraints of its DOFs are computed as follows. We can identify every DOF
i ∈ NDk(Kh)′|g with a DOF i′ ∈ NDk(K

s(g)
h )′|g as for conforming meshes (see the equiv-

alence class in Sect. 2.4.3 and Fig. 2.11c). As a result, the DOF value i ∈ NDk(Kh)′|g
is constrained by the DOF values of the coarse cell through the row i′ of R̂

s(g)
.
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Global assembly for non-conforming meshes

The definition of the constraints is used in the assembly of the linear system as follows.
First of all, let us write the problem Eq. (2.10) in algebraic form. The solution u ∈
NDk(Ω) is expanded by {φa}na=1. The elemental matrices are defined as Mij =

∫
K βφ

j ·
φi andKij =

∫
K(α∇×φj)·(∇×φi), whereas the elemental right-hand side is the discrete

vector f i =
∫
K fK · φ

i for i, j ∈ {1, . . . , n}. The usual assembly for every K ∈ Th is
performed to obtain the global matrix and array, hence the algebraic form readsAu = f ,
where A = K + M. Let us now distinguish between the set of conforming DOFs uc
and the set of non-conforming DOFs unc, whose cardinalities are nc + nnc = n. One
can write the constraints that unc must satisfy in compact form, unc = Guc, where the
entries of G (of dimension nnc × nc) are given by the described procedure for obtaining
the constraining factors between the constrained and the constraining part. Then, the
solution uh, expressed in terms of both types of DOFs can be written as

uh =

[
uc

unc

]
=

[
I

G

]
uc = Puc, (2.34)

and we can write the constrained problem only in terms of the conforming DOFs uc as

Āuc = f̄ , (2.35)

where Ā = P TAP and f̄ = P Tf . Our implementation directly builds the constrained
operator Ā by locally applying the constraints to eliminate unc DOFs using the con-
straints given by G in the assembly process (see [15] for further details). Once the solu-
tion for conforming DOFs is obtained, hanging DOF values are recovered by Eq. (2.34)
as a postprocess.

2.6 Numerical experiments

In this section, we test the implementation of edge elements and H(curl)-conforming
spaces in the scientific software FEMPAR (see Chapter 1 for an introduction). Regarding
the content of this chapter, FEMPAR supports arbitrary order edge FEs on both hexahedra
and tetrahedra, on either structured and unstructured conforming meshes, and also mesh
generation by adaptation using hierarchically refined octree-based meshes. In order to
test our implementation, we will compare both theoretical and experimental convergence
rates. Generally, log-log plots of the computed error in the considered norms (L2-norm or
H(curl)-norm) against different values of h or number of DOFs will be shown. Let us first
cite some a priori error estimates for edge FEs of the first kind. In the H(curl)-norm,
we find the following optimal estimate, presented in [8]:
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Theorem 1. If Th is a regular family of triangulations on Ω for h > 0, then there exists
a constant C > 0 such that

‖v − πkhv‖H(curl) ≤ Ch
min{r,k}‖v‖Hr(curl), (2.36)

for all v ∈ Hr(curl), where r > 1
2 determines the regularity of the function v, which

is valid for H(curl)-conforming elements. If the function v is smooth enough to have
bounded derivatives such that s > k, then the estimate states that superlinear convergence
can be achieved as we increase the polynomial order k.

For the L2(Ω) approximation, the following convergence rate can be expected [104].

Theorem 2. If Th is a regular family of triangulations on Ω for h > 0, then there exists
a constant C > 0 such that

‖v − πkhv‖L2(Ω) ≤ Ch
k‖v‖Hk(Ω). (2.37)

In general, we choose analytical functions that do not belong to the FE space. We
show convergence plots with respect to the mesh size for uniform mesh refinement or the
number of DOFs for h-adaptive mesh refinement. In all cases, we will solve the reference
problem Eq. (2.6) with homogeneous, scalar parameters α = β = 1. Unless otherwise
stated, the results are computed in the unit box domain Ω := [0, 1]d. We utilize the
method of manufactured solutions, i.e., to plug an analytical function u∗ in the exact
form of the problem and obtain the corresponding source term that verifies the equation.
Then, one can solve the problem for the unknown u so that the computed solution must
converge to the exact solution with mesh refinement.

2.6.1 Uniform mesh refinement

In this section, the experimental rate of convergence will be numerically included in the
legend as the value for the slope computed with the two last available data points in
each plot. We will make use of the following analytical function and source term for all
the 2D cases presented in this section:

u∗ =

[
cos(πx1) cos(πx2)

sin(πx1) sin(πx2)

]
, f = (2π2 + 1)u∗,

whereas in 3D cases the analytical function and corresponding source term are given by

u∗ =

cos(πx1) cos(πx2)

sin(πx2) sin(πx3)

cos(πx1) cos(πx3)

 , f = (π2 + 1)u∗ + π2

sin(πx1) sin(πx3)

sin(πx1) sin(πx2)

cos(πx2) cos(πx3)

 .
Dirichlet boundary conditions are strongly imposed over the entire boundary, i.e., ∂ΩD :=

∂Ω, where we enforce the tangent component of the analytical function u∗τ .
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(a) Analytical function u∗ in the 2D case. (b) Analytical function u∗ in the 3D case.

Figure 2.13: Analytical functions.

10
-2

10
-1

h

10
-10

10
-5

10
0

e
rr

o
r

in
L

2
-n

o
rm

ND
1
, r=-1.01

ND
2
, r=-2.00

ND
3
, r=-3.00

ND
4
, r=-4.00

ND
5
, r=-5.00

ND
6
, r=-6.00

L
2
-n

o
rm

e
rr

o
r

in

(a) L2-norm of the error.

10
-2

10
-1

h

10
-10

10
-5

10
0

e
rr

o
r 

in
 H

(c
u
rl
)-

n
o
rm

ND
1
, r=-0.99

ND
2
, r=-1.99

ND
3
, r=-3.00

ND
4
, r=-4.00

ND
5
, r=-5.00

ND
6
, r=-6.00

(b) H(curl)-norm of the error.

Figure 2.14: Error norms for different orders 2D hexahedral edge FEs.
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Figure 2.15: Error norms for different orders 3D hexahedral edge FEs.

Hexahedral meshes

Structured simulations are performed with a structured mesh on the unit box domain
with the same number of elements nK in each direction. Figs. 2.14 and 2.15 show the
convergence rates with the order of the element k for 2D and 3D cases, resp. In all cases,
the expected convergence ratio (see (2.36) and (2.37)) is achieved, presented up to k = 6

in 2D and k = 4 in 3D.
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Figure 2.16: Error norms for different orders 2D tetrahedral edge FEs.
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Figure 2.17: Error norms for different orders 3D tetrahedral edge FEs.

Tetrahedral meshes

Edge FEs are tested in this section with tetrahedral mesh partitions of the domain Ω.
Consider a family of tetrahedral meshes {Tm}Mm=1, obtained by structured, hexahedral
meshes plus triangulation of hexahedral cells. Here the element size denotes the usual
definition h = maxK∈Tm hK , being hK the diameter of the largest circumference or
sphere containing K for 2D and 3D, resp. Convergence results in Figs. 2.16 and 2.17
are computed with this family of meshes. In all cases, computed convergence ratios are
consistent with the estimates in (2.36) and (2.37).

2.6.2 h-adaptive mesh refinement

In this section, we present results for meshes obtained by adaptive refinement from an
initial structured, hexahedral conforming mesh. The refinement process follows the usual
steps: 1) solve the problem on a given mesh, 2) compute an estimation of the local error
contribution at every cell using the solution computed at the previous step, 3) mark the
cells with more error for refinement, and 4) refine the mesh and restart the process if the
stopping criterion is not fulfilled. Since the analytical solution is available, we compute
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(a) L-shaped domain with initial mesh. (b) Analytical solution for the 2D L-shape
domain with a singularity at the corner.

(c) L-shaped domain with refined mesh af-
ter 18 iterative mesh refinements.

(d) Corner zoom of the refined mesh.

Figure 2.18: fichera 2D problem. At each mesh refinement step the 5%
of cells with highest local cell contribution to the L2-norm of the error

are refined.

directly the cell contribution to the true error in step 2). For comparison purposes, we
will also consider a uniform mesh refinement. Then, log-log convergence plots for the
(L2 or H(curl)-) error against the number of free DOFs involved in the simulation is
presented for analytical solutions that contain a singularity in a re-entrant corner.

Let us consider a L-shaped domain, Ω = [−1, 1]2 \ ([0, 1] × [−1, 0]) with Dirichlet
boundary conditions imposed over the entire domain boundary. The source term f is
such that the solution in polar coordinates (r, θ) is

u = ∇
(
r

2n
3 sin

(
2n

3
θ

))
. (2.38)

The chosen analytical function u has a singular behaviour at the origin of coordinates for
n = 1, which prevents the function to be in H1(Ω). Larger values of n lead to smoother
solutions. The regularity of the solution is well studied [108], and theoretical convergence
rates Eq. (2.36) are bounded by min(2n/3, k).

In Figs. 2.19 and 2.20, the theoretical convergence rates are achieved for every order
of converge. In the case n = 1, all FE orders lead to the same convergence rate since k >
2/3. For a smoother solution, corresponding to n = 4, solutions converge to the expected
order min(k, 8/3). Next, we analyze the error with adaptive refinement. The refinement
process is such that, at every iterate, the 5% of cells with higher local contribution to
the L2-error are marked for refinement. The fraction of cells to be refined is intentionally
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Figure 2.19: Error norms for the fichera 2D problem with uniform
refinement for n = 1.
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Figure 2.20: Error norms for the fichera 2D problem with uniform
refinement for n = 4.

chosen to be small since we aim to obtain a localized refinement around the singularity.
Figs. 2.18a and 2.18c show the initial mesh and the final mesh after 18 refinement steps,
resp. In Fig. 2.21, we plot the (L2− or H(curl)−) error against the number of DOFs.
We show two plots for each order, namely uniform refinement (solid line) and adaptive
refinement (solid line with circles). In all cases, better efficiency is achieved by adaptive
meshes, i.e., less error for a given number of DOFs.

Let us now consider the Fichera domain Ω = [−1, 1]3 \ [−1, 0]3. The source term f

is such that the solution is

u = ∇
(
r

2
3 sin

(
2t

3

))
t = arccos

(xyz
r

)
, (2.39)

where r is the radius in 3D polar coordinates. The analytical solution has a singular be-
haviour near the origin and again u /∈ H1(Ω). We follow the same analysis to determine
the efficiency of the h-adaptive scheme.

Fig. 2.22 shows the error vs. the number of DOFs of the h-adaptive refinement
process. In Fig. 2.23, we illustrate the refinement process that takes place from an initial



44 Chapter 2. Curl-conforming Finite Elements

10 2 10 4 10 6

# DoFs

10 -5

10 -4

10 -3

10 -2

10 -1
er

ro
ri

n
L

2
-n

or
m

h-ref, ND 1

h-ref, ND 2
h-ref, ND 3

h-ref, ND 4
h-ref, ND 5

10 -2 10 -1

h

10 -10

10 -5

10 0
er

ro
ri

n
L 2

-n
or

m

ND1, r=-1.01

ND2, r=-2.00

ND3, r=-3.00

ND4, r=-4.00

ND5, r=-5.00

ND6, r=-6.00

10 -2 10 -1

h

10 -10

10 -5

10 0
er

ro
ri

n
L 2

-n
or

m

ND1, r=-1.01

ND2, r=-2.00

ND3, r=-3.00

ND4, r=-4.00

ND5, r=-5.00

ND6, r=-6.00

(a) L2-norm of the error with number of
DOFs.

10
2

10
4

10
6

# DoFs

10
-5

10
-4

10
-3

10
-2

10
-1

e
rr

o
r 

in
 H

(c
u
rl
)-

n
o
rm

h-ref, ND
1

h-ref, ND
2

h-ref, ND
3

h-ref, ND
4

h-ref, ND
5

(b) H(curl)-norm of the error with number
of DOFs.

Figure 2.21: Error norms for the fichera 2D with n = 1 and adaptive
refinement, which at every iterate marks for refinement the 5% of cells
that show the highest local cell L2-norm of the error. Lines without
markers show the error convergence with uniform refinement process for

every FE order.
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Figure 2.22: Error norms for the Fichera 3D problem with uniform
(straight line) and adaptive refinement. 5% of cells that have the highest
local L2-norm of the error are marked for refinement at every refinement

step.

structured mesh composed of 83 elements (see Fig. 2.23a). Clearly, the closer a cell K is
to the corner (see Fig. 2.23b), the higher the final `(K). However, Fig. 2.23b also shows
that the refinement is not as localized as in the 2D case, with a greater portion of the
domain with higher levels of refinement. This fact has a clear impact on the efficiency
achieved by the adaptive refinement for first order edge FEs, where the efficiency gain
is mild. On the other hand, the gain for second order FEs is noticeably higher. Finally,
Figs. 2.23c and 2.23d show the refined mesh after 12 refinement iterates and a zoom at
the corner with the singularity.
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(a) Initial mesh for the Fichera cube do-
main.

(b) Analytical solution for the 3D Fichera
cube.

(c) Mesh after 12 iterative refinement steps
for the Fichera cube domain.

(d) Corner zoom for the 3D Fichera cube.

Figure 2.23: Adaptive meshes for the Fichera 3D problem. Cells with
highest 5% Local L2-error(K) are refined at each refinement step.

2.7 Conclusions

In this chapter, we have covered in detail a general implementation of p-adaptive and h-
adaptive tetrahedral and hexahedral edge FE methods. We have implemented pre-bases
that span the local FE spaces (anisotropic polynomials) which combined with a change
of basis automatically provide the shape functions bases. It leads to a general arbitrary
order implementation, confronted with hard-coded implementations that preclude high
order methods. In order to guarantee the tangent continuity of Piola-mapped elements,
special care must be taken with the orientation of the cell geometrical entities. In the
implementation, we require the local numbering of nodes within every element to rely
on sorted global indices, i.e., oriented meshes. This manner, we automatically satisfy
consistency in every geometrical entity shared by two or more FEs. Finally, we propose
an original approach to implement global curl-conforming FE space on hierarchically
refined octree-based non-conforming meshes. The strategy, which is straightforwardly
extensible to any FE based on polynomial spaces, is based on the original Lagrangian
constraints and the interplay between the sets of Lagrangian and edge basis functions.
To obtain every constraint, a sequence of spaces can be built so as we can avoid the
evaluation of moments in the edge FE space. A detailed set of numerical experiments
served to test the implementation, where we show agreement between theoretical and
numerical rates of convergence. The proposed approach has been implemented (for first
kind edge H(curl)-conforming FE) in FEMPAR.
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We note that this framework can be extended to other polynomial-based FEs. Cus-
tomizable ingredients are the original pre-basis of polynomials, the moments, the ge-
ometrical mapping, and the equivalence class of DOFs. However, the change of basis
approach to obtain the corresponding shape functions and the enforcement of continuity
for non-conforming meshes is identical. In fact, the same machinery has already been
used in FEMPAR to implement Raviart-Thomas FEs and can straightforwardly be used
to implement Brezzi-Douglas-Marini FEs [44], second kind edge FEs [105], or recent
divergence-free FEs [106].

We believe that the comprehensive description of all the implementation issues be-
hind edge FE method provided herein will be of high value for other researchers and
developers that have to purport similar developments and increase their penetration in
the computational mechanics community.



Chapter 3

Balancing Domain Decomposition
by Constraints solvers for
heterogeneous problems in H(curl)

In this chapter, we present scalable balancing domain decomposition by constraints
(BDDC) methods for linear systems arising from arbitrary order edge finite element (FE)
discretizations of multi-material and heterogeneous 3D problems. These methods rely
on the definition of a FE space with relaxed continuity, which is defined by choosing
only some quantities of the solution (e.g., averages, moments) to be continuous across
the interface between subdomains rather than the solution itself. In order to enforce
this continuity, we use a partition of the interface objects (edges and faces) into sub-
objects determined by the variation of the physical coefficients of the problem. For
multi-material problems, a constant coefficient condition is enough to define this sub-
partition of the objects. For arbitrarily heterogeneous problems, a relaxed version of
the method is defined, where we only require that the maximal contrast of the physical
coefficient in each object is smaller than a predefined threshold. Besides, the addition of
perturbation terms to the preconditioner is empirically shown to be effective in order to
deal with the case where the two coefficients of the model problem jump simultaneously
across the interface. The new method, in contrast to existing approaches for problems
in curl-conforming spaces, preserves the simplicity of the original preconditioner whilst
providing robustness with regard to coefficient jumps and heterogeneous materials. A de-
tailed set of numerical experiments, which includes the application of the preconditioner
to 3D realistic cases, shows excellent weak scalability properties of the implementation
of the proposed algorithms.

3.1 Introduction

Realistic simulations in electromagnetic problems often involve multiple materials (e.g.,
dielectric and conducting materials), which may imply high contrasts in the coefficients
describing the physical properties of the different materials. Besides, the behaviour of
conducting materials may be modelled by highly variable, heterogeneous coefficients.

47
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This problem definition inevitably leads to high condition numbers for the resulting lin-
ear systems arising from curl-conforming FE discretizations of the corresponding partial
differential equation (PDE), which pose great challenge for solvers. Furthermore, the de-
sign of solvers for H(curl)-conforming approximations poses additional difficulties, since
the kernel of the curl operator is non-trivial. Consequently, for realistic electromagnetic
simulations in 3D, the use of robust iterative solvers is imperative in terms of complex-
ity and scalability. In this chapter, we will focus on the development of robust BDDC
preconditioners for problems posed in H(curl) involving high variation of the coefficients
for the corresponding PDE.

BDDC preconditioners [57] belong to the family of non-overlapping domain decom-
position (DD) methods [138]. They can be understood as an evolution of the earlier Bal-
ancing DD method [95]. These methods rely on the definition of a FE space with relaxed
inter-element continuity, which is defined by choosing some quantities to be continuous
across subdomain interfaces, i.e., the coarse or primal degrees of freedom (DOFs). Then,
the continuity of the solution at the interface between subdomains is restored with an av-
eraging operator. The method has two properties that make it an outstanding candidate
for extreme scale computing, namely it allows for aggressive coarsening and computa-
tions among the different levels can be performed in parallel. Outstanding scalability
results have been achieved by an implementation in the scientific computing software
FEMPAR (see Chapter 1 for an introduction), that exploits these two properties in up to
almost half a million cores and two million subdomains (MPI tasks) [23]. Another work
showing excellent scalability properties up to two hundred thousand cores is [146], which
is implemented in the software project PETSc [28].

The main purpose of this chapter is to construct BDDC methods for the linear
systems arising from arbitrary order edge (Nédélec) FE discretizations of heterogeneous
electromagnetic problems. An analysis for 3D FETI-DP1 algorithms with the lowest
order Nédélec elements of the first kind was given by Toselli in [137], who argued that
the difficulty of iterative substructuring methods for edge element approximations mainly
lies in the strong coupling between the energy of subdomain faces and edges. In short,
no efficient and robust iterative substructuring strategy is possible with the standard
basis of shape functions for the edge FE (see Chapter 2). A suitable change of basis
was introduced in [137] for lowest order edge elements and box-subdomains. Besides, an
extension to arbitrary order edge FEs and subdomain geometrical shapes is presented
in [149]. In this work, we will offer some new insights in the definition and construction
of the change of basis for the latter general case. As pointed out in [58], the change
of variables can be implemented in practice with just a few simple modifications to the
standard BDDC algorithm [57].

Modern BDDC methods [120] propose coarse space enrichment techniques that adapt
1FETI-DP algorithms [67] are closely related to BDDC methods. In fact, it can be shown that the

eigenvalues of the preconditioned operators associated with BDDC and FETI-DP are almost identical
[97, 91, 43].
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to the variation of coefficients of the problem [99, 131, 50, 133, 134, 88], where coarse
DOFs are adaptively selected by solving generalized eigenvalue problems. This approach
is backed up by rigorous mathematical theory and has been numerically shown to be
robust for general heterogeneous problems. On the other hand, several different scalings
have been proposed for the averaging operator in the literature to improve the lack of
robustness of the cardinality (i.e., arithmetic mean) scaling for coefficient jumps. The
stiffness2 scaling takes more information into account but can lead to poor preconditioner
performance with mildly varying coefficients [121]. The most robust approach up-to-date
is the deluxe scaling, first introduced in [58] for 3D problems in curl-conforming spaces.
It is based on the solution of local auxiliary Dirichlet problems to compute efficient
averaging operators [59, 120, 110, 146, 147, 148], involving dense matrices per subdomain
vertex/edge/face. However, to solve eigenvalue and auxiliary problems is expensive and
extra implementation effort is required as coarse spaces in DD methods are not naturally
formulated as eigenfunctions.

The main motivation of this chapter is to construct robust BDDC preconditioners
for problems in curl-conforming spaces that keep the simplicity of the standard BDDC
method, i.e., to avoid the spectral solvers of adaptive versions, whereas keeping robust-
ness and low computational cost. In order to do so, we follow the idea of the physics-based
BDDC (PB-BDDC) preconditioner, presented in [16] for problems in grad-conforming
spaces. Based on the fact that BDDC methods ( and DD methods in general ) are robust
with regard to jumps in the material coefficients when these jumps are aligned with the
partition [138, 89], one can use a physics-based (PB)-partition obtained by aggregating
elements of the same (or similar) coefficient value. However, using this type of partition
can lead to a poor load balancing among subdomains and large interfaces. To overcome
this situation, the PB-BDDC respects the original partition (well-balanced) but consid-
ers a sub-partition of every subdomain based on the physical coefficients, leading to a
partition of the objects into sub-objects defined according to the variation of the coef-
ficients. Consequently, the method is also based on an enrichment of the coarse space
but with the great advantage of not requiring to solve eigenvalue or auxiliary problems,
i.e., the simplicity of the original BDDC preconditioner is maintained. The PB-BDDC
preconditioner turned out to be one order of magnitude faster than the BDDC method
with deluxe scaling in [146] for linear elasticity and thermal conductivity problems with
high contrast.

Our problem formulation arises from the time-domain quasi-static approximation
to the Maxwell’s Equations for the magnetic field (see Chapter 4), which involves two
different operators, the mass and double curl terms. This fact certainly poses more
complexities than the ones faced in [16] for the PB-BDDC solver, since it has to deal
with the interplay of both (simultaneous) coefficient jumps. Our solution is to propose
a simple technique to recover the scenario where only one coefficient has a jump across
interfaces: we will add a perturbation at the preconditioner level so that the perturbed

2weighted averages with the diagonal entries of the operator for every DOF
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formulation does not involve a jump for the mass-matrix terms across interfaces. The
effectiveness of the technique will be empirically shown. In order to extend the PB-BDDC
algorithm to heterogeneous materials, a relaxed definition of the PB-partition will be
stated where we only require that the maximal contrast of the physical coefficient in
each PB-subdomain is smaller than a predefined threshold. The threshold can be chosen
so that the condition number is reasonably small while the size of the coarse problem is
not too large.

The chapter outline is as follows. The problem is defined in Sect. 3.2, where basic
definitions are introduced. Sect. 3.3 is devoted to the presentation of the PB-BDDC
preconditioner for heterogeneous 3D problems in H(curl). In Sect. 3.4 we will give some
implementation insights, based on our experience through the implementation of the
algorithms in the scientific software project FEMPAR. In Sect. 3.5, we present a detailed
set of numerical experiments, covering a wide range of cases and applications for the
PB-BDDC preconditioner. Finally, some conclusions are drawn in Sect. 3.6.

3.2 Problem setting

Let us consider the boundary value Maxwell problem on a physical domain Ω ⊂ R3:

∇× (α∇× u) + βu = f inΩ, (3.1)

n× (u× n) = 0 on ∂Ω, (3.2)

where α ≥ 0, β > 0 are the resistivity and the magnetic permeability of the materials,
respectively, n is an unit normal to the boundary and ∇× is the 3D curl operator, see
[101]. For the sake of simplicity, we consider homogeneous Dirichlet conditions, i.e., zero
tangential traces on ∂Ω. Nevertheless, all the developments in this work can readily
be applied to Neumann and/or inhomogeneous conditions, see Chapter 2 for proper
definitions. In order to pose the weak form of the problem, let us define the functional
space H(∇×; Ω) as follows:

H(∇×; Ω)
.
= {v ∈ L2(Ω)3 : ∇× v ∈ L2(Ω)3}, (3.3)

and its subspace that satisfies homogeneous Dirichlet boundary conditions,

H0(∇×; Ω)
.
= {v ∈ H(∇×; Ω) : n× (u× n) = 0 on ∂Ω}. (3.4)

Besides, we will also make use of the space

H1(Ω)
.
= {v ∈ L2(Ω) : ∇v ∈ L2(Ω)3}. (3.5)

Functions in H(∇×; Ω) are approximated by edge FE methods of arbitrary order, which
we represent by Xh ⊂ H(∇×; Ω). In addition, functions in H1(Ω) are approximated
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by standard scalar, continuous Lagrangian FE methods, which we represent by Vh ⊂
H1(Ω). The weak form of the boundary value Maxwell problem in Eq. (3.1) reads: find
u ∈ H0(∇×; Ω) such that

Ah(u,v) = (f ,v), ∀v ∈ H0(∇×; Ω), (3.6)

where

Ah(u,v) =

∫
Ω

[(α∇× u) · (∇× v) + βu · v] dx, (f ,v) =

∫
Ω
f · vdx. (3.7)

3.2.1 Domain partition

Let us consider a bounded polyhedral domain Ω ⊂ R3. Let Th be a partition of Ω into a
set of tetrahedral or hexahedral cells K. For every cell K ∈ Th consider its set of vertices
VK , edges EK , or faces FK . They constitute the set of geometrical entities of the cell
(excluding itself) as GK = VK∪EK∪FK . The union of these sets for all cells is represented
with G .

= ∪K∈ThGK . We consider a partition Θ of the domain Ω into non-overlapping
subdomains Ω̃i, i = 1, . . . , Ñ obtained by aggregation of elements K ∈ Th. These
subdomains are assumed to be such that the computational cost of solving the discrete
Maxwell problem in the different subdomains leads to a well-balanced distribution of
computational loads among processors in memory distributed platforms. We denote by
Γ(Θ) the interface of the partition Θ, i.e., Γ(Θ) = ∪Ω̃i⊂Ω ∂Ω̃i \ ∂Ω. Every subdomain
Ω̃i ⊂ Ω can be also partitioned into the smallest set of subdomains Ωij , j = 1, . . . , Ni,
such that the material properties (α, β) in Eq. (3.1) are constant at every Ωij . For obvious
reasons, we call this sub-partition a PB-partition and will be denoted by Θpb. Clearly,
the resulting global Θpb is also a partition of Ω, and there is a unique D ∈ Θ for every
D′ ∈ Θpb such that D′ ⊂ D. We consider a global numbering for the PB-subdomains,
i.e., Ωk, k = 1, . . . , N , having a one-to-one mapping between the two indices labels.
Analogously, we define the interface of the PB-partition as Γ(Θpb) = ∪Ωk⊂Ω ∂Ωk \ ∂Ω.

3.2.2 Finite Element spaces

Let us define the FE spaces Xi
h
.
= Xh(Ω̃i) ⊂ H(∇×; Ω̃i) for every subdomain D ∈ Θ, and

the corresponding Cartesian product space X̂h = ΠÑ
i=1X

i
h. Note that functions belonging

to this space are allowed to have discontinuous tangent traces across the interface Γ(Θ).
The global space in which the global problem is sought, i.e., Xh, can be understood
as the subspace of functions in X̂h that have continuous tangent traces across Γ(Θ).
We can now define the subdomain FE operator Aih : Xi

h → Xi
h
′, i = 1, . . . , Ñ , as

Aih(ui,vi) =
∫

Ω̃i
[(α∇× ui) · (∇× vi) + βui · vi] dx for all ui,vi ∈ Xi

h. Then, the sub-

assembled operator Âh : X̂h → X̂ ′h is defined as Âh(u,v) =
∏Ñ
i Aih(ui,vi), in which

contributions between subdomains have not been assembled. The assembled operator
Ah : Xh → Xh

′ (see Eq. (3.7)) is the Galerkin projection of the operator Âh onto Xh.
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The space of edge FE functions can be represented as the range of an interpolation
operator πh, which is well-defined for sufficiently smooth functions u ∈ H(∇×; Ω), by

πh(u) :=
∑
a

σa(u)ϕa (3.8)

where σa(u) are the evaluation of the moments, i.e., the DOF values, and ϕa are the
elements of the unique basis of functions that satisfies σa(ϕb) = δab, i.e., the shape
functions. The reader is referred to Chapter 2 for a comprehensive definition of edge
moments and the construction of polynomial spaces and basis of shape functions for the
tetrahedral/hexahedral edge FE of arbitrary order.

3.2.3 Objects

In this section we introduce the definitions of global objects, or simply globs, which are
heavily used in DD preconditioners (see, e.g., [138]). Given a geometrical entity s ⊂ Γ(Θ)

and a subdomain partition Θ, we denote by neighΘ(s) the set of subdomains in Θ that
contain s. Then, we define a geometrical object as the maximal set λ of geometrical
entities in Γ(Θ) with the same neighΘ(s) subdomain set. We denote by neighΘ(λ) the
set of subdomains in Θ containing λ and by ndof(λ) the total number of DOFs placed
on top of all s ∈ λ. An object λ such that ndof(λ)>0 is a face F if |neighΘ(λ)| = 2 or
an edge E if |neighΘ(λ)| > 2. In addition, an object such that ndof(λ)=0 is a corner.
Grouping together the objects of the same type, we obtain the set of corners ΛC , edges
ΛE and the set of faces ΛF . Therefore, the set of globs is defined as Λ(Θ) = ΛC∪ΛE∪ΛF .

Remark 2. This definition differs from the standard one (see, e.g., [21]). It is inten-
tionally done in order to isolate globs that do not contain DOFs, i.e., ΛC , which can be
omitted in the rest of our exposition.

Once globs are defined, let us also introduce the set of PB-globs, denoted by Λpb(Θ),
as classification of all s ⊂ Γ(Θ) into ΛC , ΛE or ΛF by considering the previous definitions
based on neighΘpb

(s) rather than neighΘ(s). Λpb(Θ) is a sub-partition of Λ(Θ) where
coefficients are constant within each λ ∈ Λpb(Θ).

3.3 Physics-Based BDDC

3.3.1 Change of basis

Any BDDC method that employs a standard 3D edge FE basis of shape functions is
bound to show a factor dependent on the element size h−2 in the condition number
[137], which precludes scalability. A key aspect of the curl-conforming edge FE spaces
is the fact that ∇V i

h ⊂ Xi
h. One of the main ingredients of any BDDC method are the

averaging operators Wh : X̂h → Xh (see detailed exposition in Sect. 3.3.2) that restore
the continuity of the solution at the interface among subdomains. Since the averaging
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operators are usually based on some algebraic operations over DOF values, they are,
more precisely, scaling matrices that depend on the basis being used to describe X̂h (and
Xi
h, by restriction to every subdomain). A key property that must hold such operator to

end up with a stable decomposition is the following: Given a function u ∈ X̂h such that
its local component in every processor belongs to ∇V i

h , the restriction of the resulting
function Whu ∈ Xh to every subdomain must belong to ∇V i

h too. Otherwise, the
energy of such functions is much increased after the averaging operation, and thus, the
decomposition is not scalable. A key result in this direction is the decomposition proposed
in [137] in the frame of FETI-DP methods for problems in H(∇×; Ω).

Edge FE space moments can be assigned to edges/faces of the mesh (see Chapter 2).
Let us denote by Xi

h(I) the subspace of functions of Xi
h such that their DOF values are

not located on some E ∈ ΛE or F ∈ ΛF , i.e., the DOFs are interior. Clearly, Xi
h =

{Xi
h(I)} ⊕ {Xi

h(F )}F⊂∂Ω̃i
⊕ {Xi

h(E)}E⊂∂Ω̃i
. On the other hand, a function vi ∈ Xi

h(E)

for a coarse edge E ⊂ ∂Ω̃i admits a unique decomposition as follows (see [137, 59] for
more details):

vi · tE = s0,E(vi)ΦE · tE +

nE−1∑
j=1

wjE(vi)∇φjE · tE , ∀E ∈ ΛE , (3.9)

with φjE ∈ V i
h(E) being the Lagrangian shape functions related to the internal nodes of

E and nE their cardinality, whereas s0,E(vi)
.
=
∫
E v

i ·tEds. It is clear from Eq. (3.9) that
two kind of DOFs arise in the new basis for each subdomain edge E ∈ ΛE : a DOF asso-
ciated with the basis function ΦE , which represents the average tangent value over the
coarse edge E, and DOFs associated with gradients of scalar, Lagrangian shape functions
placed at the internal nodes (i.e., nodes ξ ∈ E such that ξ /∈ ∂E). An illustration for the
variables in the old (original) and new basis for a given E is presented in Fig. 3.1. Thus,
we have that Xi

h(E)
.
= ∇V i

h(E)⊕ΦE . As a result, Xi
h admits the unique decomposition:

Xi
h = {Xi

h(I)} ⊕ {Xi
h(F )}F⊂∂Ω̃i

⊕ {∇V i
h(E)}E⊂∂Ω̃i

⊕ {ΦE}E⊂∂Ω̃i
, (3.10)

where ΦE is the tangential vector such that ΦE · tE = 1, being tE the unit tangent to
E ∈ ΛE .

Let us now describe the relation between the original set of DOFs (old basis in the
global space) and the one that arises from Eq. (3.10) (new basis) for Xh. A function
u ∈ Xh can be written in the old basis as u =

∑
a u

aϕa, where ϕ = {ϕ1, . . . ,ϕn} is the
set of global edge shape functions. Furthermore, consider the set of new basis functions
ψ = {ψ1, . . . ,ψn}, where old basis elements ϕa associated to E ∈ ΛE are replaced by its
corresponding functions in Eq. (3.9) (i.e., interior and face edge functions, Lagrangian
shape functions gradients, and the coarse edge functions). The interpolation operator
πh (see Eq. (3.8)) induces the change of basis matrix, whose entries are computed by
evaluating the original edge moments σa for the introduced set of new basis functions ψ
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as (Einstein notation)

uaold = σa(unew) = σa(ψb)ubnew = Qabubnew, (3.11)

or in compact form, uold = Qunew. Furthermore, we can readily define the inverse
change of basis as unew = Q−1uold. The usual restriction operator Ri : Xh → Xi

h is used
to obtain local restrictions of the global change of basis as Qi = RiQRTi . Finally, local
restrictions lead to the change of basis Q̂ =

∏
iQi, which will be applied for functions

defined on X̂h. A detailed exposition of an implementation strategy for the change of
basis is found in Sect. 3.4.2.

3.3.2 Preconditioner

Similarly to other BDDC methods, we associate coarse DOFs to some of the globs in
Λpb(Θ). In particular, BDDC methods for 3D curl-conforming spaces associate two
coarse DOFs to every E ∈ ΛE , defined as

s0,E(vi)
.
=

∫
E
vi · tEds (3.12a)

s1,E(vi)
.
=

∫
E
svi · tEds, (3.12b)

where s is an arc-length parameter s ∈ [−|E|/2, |E|/2]. Thus, the expression Eq. (3.12b)
refers to the first order moment of the tangent component of the solution on the edge
E, in contrast to the zero-order moment in Eq. (3.12a). In the new basis (see Eq. (3.9)),
it is easy to check that s0,E(vi) = s0,E(ΦE) and s1,E(vi) = s1,E(

∑ne−1
j=1 wjE∇φjE) [137].

Let us define the subspace X̃h as

X̃h
.
= {w ∈ X̂h : sD0,E = sD

′
0,E , s

D
1,E = sD

′
1,E ∀E ∈ ΛE ,∀D,D′ ∈ neighΘpb

(E)} (3.13)

i.e., the subspace X̃h ⊂ X̂h such that for allw ∈ X̂h, coarse DOFs (3.12a) and (3.12b) are
continuous across subdomain interfaces Γ(Θ) for all E ∈ ΛE . Clearly, Xh ⊂ X̃h ⊂ X̂h.

The following key ingredient in the BDDC method is the averaging operator Wh :

X̂h → Xh, defined as some weighted average of the DOF values at the interface. This
operator is in practice defined as a matrix for a particular choice of the basis functions
for Xi

h (and by extension Xh). Let us consider the new basis functions in ψ. Given a
fine edge/face f ⊂ Γ(Θ), we define a weight for each D ∈ neighΘ(f) as

δ†D(f) =

∑
D′∈neighΘpb

(f)∩D χD′∑
D′∈neighΘpb

(f) χD′
, (3.14)

where the choice of χ defines the scaling: the cardinality scaling with χ = 1.0 or the
α-based, β-based scaling with χ = α or χ = β, respectively. Besides, one can consider a



Chapter 3. Balancing Domain Decomposition by Constraints solvers for heterogeneous
problems in H(curl) 55

weighted coefficient for χ, ω = α+ βh2, which is also constant within all E ∈ ΛE in our
definitions if regular structured meshes are considered. We note that all the expressions
for the scalings are constant on globs by construction, due to objects generation based
on Θpb with constant coefficients. Then, we define the weighted function Whv ∈ Xh as
follows. First, we compute for every subdomain the weighted local functions as

wi = viI +
∑
F⊂ΛF

δ†D(F )viF +
∑
E⊂ΛE

δ†D(E)viE , (3.15)

where vI , viF , and v
i
E include the components related to interior, face, and edge DOFs

in 3.10, respectively. Next, we sum the values of DOFs on different subdomains that
represent the same DOFs in X̂h, i.e., assemble the DOFs as

v =
∑
i

RTi w
i. (3.16)

Next, we recover the sub-assembled bilinear form Âh, whereas Ah and Ãh are the
Galerkin projection of Âh onto Xh and X̃h, respectively. We additionally define the har-
monic extension operator E , that, given u ∈ Xh, provides u+ δuI , where δuI ∈ Xi

h(I)

is a bubble function that vanishes on the interface Γ(Θ) and holds:

〈AihδuiI ,viI〉 = −〈Aihui,viI〉, ∀viI ∈ Xi
h(I). (3.17)

Let us denote the Galerkin projection of Ah onto the global bubble space Xh(I)
.
= {v ∈

Xh such that v = 0 on Γ(Θ)} by Ah,0. Thus, the action of the harmonic extension
operator can be written as

Eu .
= (1−A−1

h,0Ah)u. (3.18)

We finally define the operator H = EWh. We can now state the BDDC preconditioner
as

P .
= A−1

h,0 +H(Ãh)−1HT . (3.19)

Note that having the expression of the operators associated with the new basis is
essential in order to apply the averaging operator Wh. Nevertheless, it is possible to
employ the original operators in the standard basis and work with the change of basis
matrix Q [58]. In this case, the only difference with regard to Eq. (3.19) is the application
of the averaging operator as

H = EQWhQ̂−1 or HT = Q̂−TWh
TQTET . (3.20)

Application details for the change of basis are detailed in Sect. 3.4.2. Therefore, the
definition of the preconditioner is the one of the standard BDDC [57] with a set of
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globs generated by a partition based on coefficients and a modification of the averaging
operator to take into account this fact. Besides, one can work with the standard basis of
edge FEs and use strategically the change of basis required to attain a scalable algorithm
in the application of the weighting operator.

3.3.3 Perturbed PB-BDDC preconditioner

The presented PB-BDDC preconditioner has been shown to be robust with the jump of
coefficients in the steady Poisson equation [16]. However, the problem in Eq. (3.1) adds
the complexity of the interplay between the two different parameters α and β across the
interface. Following the robust approach in [16], our idea is to get rid of the jump of one
coefficient across the interface so the preconditioner has not to deal with the interplay
between the two of them and the scenario where the method is successful is recovered. In
order to decide which coefficient is affected, we consider the locality of the mass matrix
operator in front of the double curl terms. The main idea is to add a perturbation in
the original formulation of the preconditioner so we end up with common information
for the mass matrix operator for DOFs that are replicated among different subdomains,
i.e., located on top of the interface Γ(Θ). Therefore, the problem posed in X̃h will only
contain a jump in the double curl term across the interface.

Given a function ui ∈ Xi
h, we can define its extension as a global function ūi ∈ Xh

such that all DOFs belonging to Ω̃i are identical to the ones of ui and the rest are
zero. The extended function has support on Ω̃i and its neighbours, denoted by Ω̄i. The
perturbed preconditioner for a local subdomain Ω̃i is expressed as:

Ãih(ui,vi) =

∫
Ω̃i

(α∇× ui) · (∇× vi)dx+

∫
Ω̄i

βūi · v̄idx. (3.21)

Therefore, entries for interface DOFs in the local mass matrix will be fully-assembled
instead of partially assembled, leading to common information at the interface across all
subdomains. In the situation where no jump occurs for the mass matrix coefficients at
the interface among subdomains, we consider the original preconditioner presented in
Sect. 3.3.2, avoiding the perturbed formulation for obvious reasons.

Remark 3. The definition of the original problem is not modified, we only consider the
perturbed local operator Ãih in the formulation for the preconditioner.

3.3.4 Relaxed PB-BDDC

In previous sections, the definition of Θpb (and consequently the definition of PB-globs)
is based on the requirement that coefficients are constant in each PB-subdomain, i.e.,
different subparts with constant coefficients can be identified in a subdomain, e.g. a
problem composed by different homogeneous materials. However, physical coefficients
may vary across a wide spectrum of values, even in a small spatial scale. Besides, the
requirement that coefficients have to be constant in each PB-subdomain may result in
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an over-partitioned domain where coefficient jumps are not significant among different
PB-subdomains. In order to address these situations and to deal with a more general
applicability of the preconditioner, we introduce the relaxed PB-BDDC (rPB-BDDC)
extension of the preconditioner. In short, relaxed PB (rPB)-subdomains are not deter-
mined by constant coefficients within the original partition but we only require that the
maximal contrast in each PB-subdomain is less than some predefined tolerance r. We
define the maximal contrast independently for each coefficient present in the problem
Eq. (3.1), thus defining two (different) thresholds. Then, one can find a rPB-partition,
which we denote by Θr

pb, such that

αmax(D)

αmin(D)
< rα and

βmax(D)

βmin(D)
< rβ ∀D ∈ Θr

pb (3.22)

where {rα, rβ} ≥ 1. Hence, the choice of both thresholds will determine the partition Θr
pb

as a sub-partition of the original partition Θ. Note that if we consider rα = rβ =∞, we
recover the original partition Θ, while lower values for the thresholds lead to an increasing
number of subparts, consequently globs, and thus richer coarse spaces. The rPB-BDDC
preconditioner can be defined for any value of the threshold r > 1. By tuning r one can
obtain the right balance between computational time and robustness.

As coefficients α, β are no longer constant in each rPB-subdomain, we propose to use
averaged coefficients in Eq. (3.14) in order to define the averaging operator. The averaged
coefficients, denoted as ᾱ and β̄, are computed in the rPB-subdomain Ωk simply as

ᾱ =
1

‖Ωk‖

∫
Ωk

αdx, β̄ =
1

‖Ωk‖

∫
Ωk

βdx. (3.23)

Hence, the definition of the averaging operator Eq. (3.14) is not modified and all DOFs
on top of the same coarse geometrical entity are weighted by the same constant value.
Thus, under the Θr

pb, the preconditioner expression is written exactly in the same form
as in Sect. 3.3.2.

3.4 Implementation aspects

In this section, we expose implementation strategies for some key points that the au-
thors find of interest for potential users/developers of similar methods, namely: an edge
partition algorithm to avoid problematic cases in (unstructured) PB-partitions, the con-
struction of the change of basis, the implementation of the original BDDC constraints
and the aggregation of cells into rPB-subdomains based on heterogeneous coefficients α,
β and the thresholds rα, rβ . For a comprehensive implementation strategy of arbitrary
order curl-conforming tetrahedral/hexahedral FEs, the reader is referred to Chapter 2.
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3.4.1 Coarse Edge partition

Special care has to be taken with the general definition for subdomain edges presented in
Sect. 3.2.3. In particular, when globs are generated based on Θpb or a partition obtained
with graph partitioners, e.g. METIS, the presented definition of E in Sect. 3.2.3 may not
be sufficient for expressing the function and the coarse DOFs in the new basis. We detail
the pathological cases identified in [59] plus an additional case, for which we provide
examples. We propose a unique cure, based on the partition of problematic coarse edges
E into coarse sub-edges Ej such that the problematic cases are solved.

[1] Disconnected components. We say that fine edges e ∈ E are connected if they have
an endpoint in common. Consequently, if a coarse edge E has m disconnected
components, it has 2m endpoints. Note that, while this fact does not preclude the
invertibility of the change of basis, if each of the components is treated as a coarse
edge we recover original meaningful definitions for continuity constraints across
subdomains. Furthermore, if the disconnected components are due to disconnected
subdomains, each one must be treated separately in order to ensure the well-
posedness of local Neumann problems.

[2] Interior node in touch with another subdomain. This case occurs when an internal
node v to E does not have the same set of subdomains as neighΘpb

(E), i.e., is
shared by neighΘpb

(E) plus additional subdomains. In fact, v is then an element
of ΛC in the classification provided in Sect. 3.2.3. We recall that the change of
variables is made for gradients of scalar, Lagrangian functions ∇φE defined on all
internal nodes of E. However, if we consider a nodal shape function associated
to v, it will be coupled with other internal nodal DOFs for E, thus introducing a
coupling between an external subdomain to neighΘpb

(E) and itself, which is clearly
not present in the original basis. A remedy for it consists on simply splitting the
coarse edge E into two sub-edges at the problematic node v. Let us denote by Vp
the subset of this kind of nodes for all e ∈ E.

[3] Edge n-furcation. This situation occurs when a coarse edge E that does not have
disconnected components has more than two endpoints. At some internal node the
coarse edge is n-furcated into n edges, so the definition of the shape function ΦE

in the new basis loses its original meaning. Furthermore, this fact precludes the
locality of the change of basis for every edge E. In this case, a simple remedy is
again to split the edge into sub-edges at any node shared by more than two edges.

[4] Closed loop. In this case we cannot identify endpoints for a coarse edge and there-
fore define a unique orientation for it. Furthermore, the new set of basis functions
is not well defined since the definition in Sect. 3.3.1 relies on the fact that every
edge has 2 end points, thus not being applicable in this case. In this situation, an
internal node for the coarse edge E must be chosen as start/end point (common
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in all subdomains) to assign an orientation to the edge and be treated as an edge
endpoint in the change of basis definition.

In order to address all the presented problematic cases we propose a simple algorithm
based on a classification ∀e ∈ E into sub-edges. Our goal is to find a partition of
e ∈ E ∈ ΛE into Ej such that every Ej is constructed connecting fine edges that share
(only) one vertex with the following edge. Therefore, every coarse sub-edge Ej ⊂ E

has a unique starting point, a chain of connected fine edges sharing only one node and
a unique end-point, which defines its unique orientation across all subdomains. Let us
consider the set of nodes V = ∪e∈E(v ∈ ∂e), where the number of occurrences for each
node v ∈ V is denoted by count(v). First, we can identify the set of nodes where E is
n-furcated as

n-furcation nodes VN
.
= {v ∈ V \ Vp| count(v) > 2} (3.24)

We note that Vp is already identified in the glob generation algorithm. Then, we can
find a partition of the set of nodes into the two following subsets:

Edge boundary nodes VB
.
= {v ∈ V | count(v) = 1} ∪ Vp ∪ VN (3.25a)

Interior nodes VI
.
= {v ∈ V \ VB}. (3.25b)

Note that by definition of interior nodes count(v) = 2 holds. Such classification is per-
formed by simply counting the number of appearances of nodes plus setting problematic
nodes belonging to other objects as edge boundary nodes. Then, the coarse edge parti-
tioning Alg. 1 finds paths from one edge boundary node (with a global criteria to select
it) till the following edge boundary node. Furthermore, in this procedure we identify the
direction of every fine edge with regard to its container coarse edge.

From this point onwards, we consider that each E ∈ ΛE is a (sub-)edge of the original
coarse edges such that they do not present problematic cases.

3.4.2 Change of basis

In this section we provide some implementation details of the change of basis described
in Sect. 3.3.1. In the application of the averaging operator in Eq. (3.20), we note that
one must apply the global change of basis and its restriction to subdomains. A practi-
cal implementation of their application in both cases can be performed with the local
restriction of the change of basis to the subdomains, i.e., Qi = RiQRTi , thus it can
be performed in parallel in distributed memory environments. The parallel applica-
tion of the inverse of the restriction of the change of basis to subdomains Q̂−1 or Q̂−T

(Eq. (3.20)) is immediate given its definition, see Sect. 3.3.1. On the other hand, the
sparsity pattern of of the global change of basis Q can be exploited in order to achieve a
parallel implementation of the application of Q and QT to a function u ∈ Xh that only
relies on restricted (to the subdomains) information.
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Data: V = VB t VI , e ∈ E
Result: Ej s.t. E = tEj
j ← 0
while card(V ) > 0 do

if card(VB) > 0 then
Find vs ∈ VB with minimum global id

else
Find vs ∈ VI with minimum global id
VI ← VI \ vs and VB ← VB ∪ vs

end
j ← j + 1
Find ve s.t. {vs, ve} ∈ ∂e with minimum global id Ej ← {e}
update counters and subsets (Alg. 2)
while ve ∈ VI do

vs ← ve

Find ve s.t. {vs, ve} ∈ ∂e Ej ← Ej ∪ e
update counters and subsets (Alg. 2)

end
end

Algorithm 1: Edge partition algorithm

Data: vs, ve, VB , VI
Result: VB , VI
for k in s, e do

count(vk)← count(vk)− 1
if count(vk) = 0 .and. vk ∈ VB then

VB ← VB \ vk
else if count(vk) = 0 .and. vk ∈ VI then

VI ← VI \ vk
end

end
Algorithm 2: Update counters and subsets
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Proposition 3.4.1. The expression RiQu = Qiui holds, where u ∈ Xh and ui ∈ Xi
h.

Proof. Let us denote by Xi
h
c the subspace of functions in Xh such that functions in

Xi
h vanish, thus Xh = Xi

h ⊕ Xi
h
c. Now, we can define Rci : Xh → Xi

h
c, i.e., the

complementary operator to any Ri such that u = (RTi Ri + RTciRci)u. Then, we can
make use of this identity to write

RiQu = RiQRTi Riu+RiQRTciRciu. (3.26)

If v = RTciRciu ∈ X
i
h
c, the application of RiQv results in a null local vector, since the

evaluation of (standard) edge local moments in Xi
h
′ of the function v ∈ Xi

h
c (expressed

in the new basis) vanishes, thus we can write

RiQu = RiQRTi Riu = Qiui. (3.27)

Unfortunately, this reasoning cannot be applied to the transpose of the change of
basis since RciQRTi Riu evaluates the edge moments in Xi

h
c′ of a function RTi Riu ∈ Xi

h,
which can be nonzero.

Proposition 3.4.2. Consider arbitrary local weighting diagonal matrices Wi for every
subdomain such that u =

∑
iR

T
i WiRiu, i.e., they form a partition of the unity. Then,

the expression RiQTu = Ri
∑

iR
T
i QTi Wiu

i holds, where u ∈ Xh and ui ∈ Xi
h.

Proof. We can make use of the restriction Ri and its complementary operator Rci for
every subdomain to write

RiQTu = Ri
∑
i

QTRTi WiRiu

= Ri
∑
i

RTi RiQTRTi WiRiu+Ri
∑
i

RTciRciQ
TRTi WiRiu.

(3.28)

Again, if v = RTi WiRiu ∈ Xi
h, an analogous reasoning to that in proof of Prop. 3.4.1

leads to RciQTv = 0, thus we can state

RiQTu = Ri
∑
i

RTi RiQTRTi WiRiu = Ri
∑
i

RTi QTi Wiu
i. (3.29)

Therefore, the application of the change of basis can rely only on restrictions of the
same to subdomains whereas the application of the transpose change of basis can be per-
formed in parallel with subdomain restrictions plus nearest neighbour communications.

With this purpose in mind, we detail here how to implement the restriction of the
change of basis local to subdomains. Let us define a partition of the DOFs in Xi

h
′ into

three subsets of DOFs, namely: the DOFs placed on top of e ∈ E, the DOFs placed on
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(a) Black arrows rep-
resent standard basis

DOFs over E.

(b) Nodes represent
Lagrangian-like new
basis DOFs. Long
arrow represents the
DOF for function ΦE .

Figure 3.1: Standard (old) and new basis DOFs for 3D hexahedra sec-
ond order edge FE over E. Additional depicted DOFs values are affected
by the change of basis for E, while the remaining DOFs are invariant

under the change of basis.

top of interface edges/faces f /∈ E such that ∂f ∩ E 6= ∅, and the remaining DOFs in
Xi
h
′, denoted by uE , uf and ur, respectively. Furthermore, let us consider that DOFs in

uE are sorted such that DOFs belonging to the same coarse E are found in consecutive
positions. Note that shape functions associated to uf , ur are common in both (i.e., old
and new) bases. For edge FEs of order k, k moments (i.e., DOFs) are defined on top
of each e ∈ Th. Let us denote by ne the number of fine edges e ∈ E. Then, the total
number of DOFs on top of a coarse edge E is kne. On the other hand, the number of
Lagrangian-like DOFs interior to E (i.e., excluding ∂E) is (kne − 1), i.e., the number of
shape functions of the type ∇φE . The change of basis is completed with the addition
of the function ΦE to the new basis so that the dimension of both bases coincides. For
the sake of illustration, both sets of basis functions restricted to a coarse edge E are
depicted in Fig. 3.1.

Let us denote by nE the number of coarse edges E ∈ ΛE for a given subdomain.
Then, we define the change of basis QEj , j = {1, . . . , nE} local to every Ej ∈ ΛE as

QEjab = σa(∇φbE), for b = 1, . . . , kn
Ej
e − 1 QEj

a,kn
Ej
e

= σa(ΦEj ), (3.30)

where σa, a = 1, . . . , kn
Ej
e , are the (original basis) edge moments defined on top of Ej

(the superscript in nEje has been introduced to show that it depends on the coarse edge).
We can now define the change of basis QE = diag(QE1 , . . . ,QEnE ) local to coarse edges.
We remark that the same orientation for every coarse edge E ∈ ΛE must be defined
on the set of subdomains D ∈ neighΘ(E). Otherwise, the definition of the new basis
function ΦE is not consistent across subdomains. In addition, the change of basis must
take into account the effect of the new DOF values uE associated to ∇φjE and ΦE for
E in the old values uf . Thus, we evaluate for all indices b of shape functions associated
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to uE

Qfcb = σc(∇φbE), (3.31)

where c corresponds to the index of all moments associated to uf . We recall that,
by definition, σc(ΦE) = 0. The application of the moments σc to the (original) shape
functions associated to uf results in σc(ϕ

b) = δcb. Finally, DOFs in ur are invariant
under the change of basis. We can now state the (local) change of basis for the subdomain
as

uold =

uEuf
ur


old

=

Q
E 0 0

Qf I 0

0 0 I


uEuf
ur


new

= Qiunew, (3.32)

where becomes clear the fact that the inverse of the change of basis is well defined if and
only if QE is invertible. In turn, QE will be invertible if and only if every change of basis
local to E ∈ ΛE (Eq. (3.30)) is invertible.

Remark 4. Although it is used in this exposition for the sake of clarity, we do not require
any particular ordering of DOFs in u ∈ Xi

h
′ in a practical implementation of Qi.

3.4.3 BDDC constraints

In this subsection we propose a practical manner of computing the BDDC constraints
Eqs. (3.12a) and (3.12b) for local problems. In our implementation, constraints over
local problems are strongly imposed through the usage of Lagrange multipliers on the
original basis. Therefore, the local matrix Aih is extended with the discrete version of
the constraints Ci in order to obtain constrained (Neumann) local problems.

The computation of constraints requires to integrate zero and first order moments
for the solution over all coarse edges E. We note that the first constraint Eq. (3.12a)
can be easily implemented for k-order edge FEs as

s0,E(u)
.
=

∫
E
u · tEds =

∫
E

(

kne∑
a=1

uaϕa) · tEds =

kne∑
a=1

ua
∫
E
ϕa · tEds (3.33)

=

kne∑
a=1

ua
∫
E
ϕa · tE(

k∑
b=1

pb)ds =

kne∑
a=1

(te · tE)ua =

kne∑
a=1

Caua,

where we used the partition of the scalar, unit function into the set of Lagrangian test
functions pb belonging to the polynomial space Vh(E) of order k−1. These functions are
used for defining the k local moments on every e as σb(u) =

∫
e u · tepb, b = {1, . . . , k}

(see Chapter 2 for details). Its duality with basis shape functions, i.e., σb(ϕa) = δba, has
been used in Eq. (3.33). Thus, to compute the first constraint one only needs to add
±1 at the corresponding entry in C for each DOF, where the sign is determined by the
agreement between fine and coarse edge orientations, i.e., te · tE . On the other hand,
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the computation of the second constraint Eq. (3.12b) requires to define an arc-length
parameter over E. A practical implementation of the constraint Eq. (3.12b) can avoid
it by considering the constraint in the new basis. Since φjE vanish at ∂E, integration by
parts yields

s1,E(wi)
.
=

∫
E
swi · tEds =

∫
E
s(uEΦE +

kne−1∑
a=1

ua∇φaE) · tEds = (3.34)

−
kne−1∑
a=1

ua
∫
E
φaEds = −

kne−1∑
a=1

Canewu
a,

where the contribution of ΦE is null due to the antisymmetry of the product sΦE ( we
recall that s ∈ [−|E|/2, |E|/2] ) over E. Then, we can apply the change of basis to
obtain the expression in the original basis, i.e., C = CnewQ−1.

3.4.4 Building Θr
pb

In the rPB-BDDC method, a Θr
pb partition is used such that the maximal contrast, for

each one of the coefficients, is lower than a predefined tolerance r in each subdomain.
Our goal is to identify a partition of every subdomain into D′ ∈ Θr

pb subdomains where
the thresholds αmax(D′)

αmin(D′) < rα and βmax(D′)
βmin(D′) < rβ are respected. It can be accomplished

using different algorithms. One approach is to consider a seed cell and aggregate the
surrounding cells such that the contrast(s) are below the give threshold(s), proceeding
recursively till no neighbouring cells can be aggregated. We take another seed among
the non-aggregated cells and proceed again till all cells have been processed.

Alternatively, one can first determine the maximum and minimum values for α and
β in a given subdomain D ∈ Θ. With this information and the thresholds rα, rβ , we can
determine the number of sub-intervals for every subdomain and coefficient as follows.
First, we compute `α(D) and `β(D) as the smallest positive integers for which

αmax(D)

αmin(D)
< r`α(D)

α ,
βmax(D)

βmin(D)
< r

`β(D)
β , (3.35)

respectively. One can now define the intervals

Ii,j
.
= [ri−1

α αmin(D), riααmin(D)]× [rj−1
β βmin(D), rjββmin(D)],

for i ∈ [1, `α(D)], j ∈ [1, `β(D)]. Cells with their coefficients on the same interval Ii,j
are aggregated in a PB-subdomain. Those cells that have coefficients across multiple
sub-intervals are treated as additional PB-subdomains.

For the sake of illustration, we include an example where all the different subset
indices are presented for a unit cube domain: the original partition into P = 3 × 3 × 3

subdomains Fig. 3.2a, the aggregation of cells into subsets based on log(β) = 3 sin(3πy)

(see Fig. 3.3a) for r = 103 in Fig. 3.3b, combined with an analogous partition for log(α) =
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3 sin(3πx) leading to a coefficient-based partition in Fig. 3.2b and the final rPB-partition
Θr

pb in Fig. 3.2c.

(a) Original geometrical
partition Θ

(b) Aggregation of cells into
subsets based on coefficients

(c) Resulting rPB-partition
Θr

pb.

Figure 3.2: Partitions for scalar coefficients described by log(α) =
3 sin(3πx) and log(β) = 3 sin(3πy) with an initial 3 × 3 × 3 partition

of the unit cube.

(a) Analytical function. (b) Aggregation of cells into
subsets.

Figure 3.3: Aggregation of cells into subsets based on log(β) =
3 sin(3π(y)) with threshold r = 103.

Note that the PB-BDDC approach requires an interface between the problem dis-
cretization, i.e., access to the physical properties, and the preconditioner set-up. This is
in the core of FEMPAR, which provides a tight interaction among building blocks to fully
exploit the mathematical structure of the PDE operator.

3.5 Numerical results

In this section we evaluate the weak scalability of the proposed preconditioner for the
problem in Eq. (3.1), within the preconditioned conjugate gradient (CG) Krylov iterative
solver. The robustness of the rPB-BDDC-CG solver is tested in 3D simple domains,
which are discretized either with structured and unstructured meshes. As performance
metrics, we focus on the number of rPB-BDDC preconditioned CG iterations required
to attain the convergence criteria, which is defined as the reduction of the initial residual
algebraic L2-norm by a factor 10−6. On the other hand, the total computation time
will be presented, which will include both preconditioner set-up and the preconditioned
iterative solution of the linear system in all the experiments reported. The particular
definition of coefficients α and β and its distribution will be specified throughout the
section for each case.
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3.5.1 Experimental framework

The rPB-BDDCmethods have been implemented in the scientific software project FEMPAR
(see Chapter 1). Regarding the content of this chapter, FEMPAR provides the basic
tools for the efficient parallel distributed-memory implementation of substructuring DD
solvers [21, 23], based on a fully-distributed implementation of data structures involved in
the parallel simulation. The parallel codes in FEMPAR heavily use standard computational
kernels provided by BLAS and LAPACK. Besides, through proper interfaces to several
third party libraries, the local constrained Neumann problems and the global coarse-grid
problem can be solved via sparse direct solvers. In this thesis, we use the overlapped
BDDC implementation proposed in [18], with excellent scalability properties. It is based
on the overlapped computation of coarse and fine duties. As long as coarse duties can
be fully overlapped with fine duties, perfect weak scalability can be attained. We refer
to [23] for more details.

The experiments in this section have been performed on the MareNostrum-IV [4]
(MN-IV) supercomputer, hosted by the Barcelona Supercomputing Center (BSC). In
all cases, we consider a one-to-one mapping among subdomains, cores and MPI tasks.
Provided that the algorithm allows for a high degree of overlapping between fine and
coarse duties, an additional MPI task is spawn into a full node (i.e., 48 cores) in order to
perform the coarse problem related tasks. The multi-threaded PARDISO solver in Intel
MKL is used to solve the coarse-grid problem within its computing node.

Unless otherwise stated, the problem Eq. (3.1) will be solved in the unit cubic domain
Ω = [0, 1]3 with Dirichlet homogeneous boundary conditions on the whole boundary and
the forcing term f = 1. Let us denote by h the usual mesh element size, and by H the
size of the subdomain. Then, local problem sizes can be characterized in a structured
mesh and partition by H

h . In order to perform a weak scalability analysis, we build a set
of structured meshes consisting on (4Hh k× 4Hh k× 3Hh k) hexahedra. A uniform partition
of the meshes into P = (4k × 4k × 3k) = 48k3 subdomains is considered, where local
problem sizes are (Hh )3.

3.5.2 Homogeneous problem

Let us first consider homogeneous coefficients α = β = 1.0 for the whole domain Ω. We
test the problem with different local problem sizes H

h and FE orders. In this case, the
PB-BDDC preconditioner reduces to the standard BDDC preconditioner since Θ = Θpb.
In Fig. 3.4, we present weak scalability results for the homogeneous problem up to
16464 subdomains with different local problem sizes H

h = {10, 20, 30}, where the largest
case has more than 103 M DOFs. We present the number of solver iterations until
convergence in Fig. 3.4a, and employed wall clock times in Fig. 3.4b, which are composed
by the preconditioner set-up time and the solution time with the BDDC preconditioned
solver. The plots indicate that both the algorithm and its implementation in FEMPAR

have excellent weak scalability properties. Provided that the algorithm overlaps fine
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and coarse tasks, coarse tasks computing times are masked as long as they not exceed
computing times for local problems, which allow us to observe excellent weak scalability
times for the largest case H

h = 30 in Fig. 3.4b. The size of both local and coarse problems
is presented in Fig. 3.4c. Finally, we add a plot (Fig. 3.4d) of the time needed to set-
up the change of basis, which includes the edge partition algorithm (Alg. 1) to detect
problematic cases, to show that consumed time is only dependent on the local problem
size and not significant compared to the one spent in the solver run.
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Figure 3.4: Weak scalability results for first order edge FE with a con-
stant distribution of materials for different local problem H

h sizes.

Fig. 3.5 shows the weak scalability results for an homogeneous problem with constant
coefficients and different FE orders up to 4. First, the number of iterations is (asymptot-
ically) constant, thus the method is scalable. In this case, local problems sizes are such
that the coarse problem is larger from an early number or subdomains (see Fig. 3.5c),
thus it is reflected in the solver times plot in Fig. 3.5b. In Fig. 3.5d, the time spent in
the set-up of the change of basis is presented. Out of the presented results for the ho-
mogeneous case, a clear conclusion can be drawn for the standard BDDC: the algorithm
and its implementation have excellent weak scalability properties.

3.5.3 Multi-material problem

Checkerboard distribution

The checkerboard arrangement of coefficients is a widely used distribution of materials
to test the robustness of the BDDC algorithms for problems in H(curl) against the jump
of coefficients across the interface [137, 59]. In short, it is a bi-material distribution of
subdomain-constant coefficients such that every subdomain presents a jump of coeffi-
cients through the faces to all its neighbours. For the sake of ease, let us distinguish
between black and white subdomain-constant materials, see Fig. 3.6a. Note that in the
checkerboard distribution case, the jumps of coefficients are aligned with the partition,
thus Θpb = Θ.
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Figure 3.5: Weak scalability results for different order edge FE with a
constant distribution of materials and a local problem H

h = 10.

(a) Checkerboard distribution of
coefficients, aligned with the par-

tition and thus Θpb = Θ.

(b) Channel distribu-
tion of coefficients with
N = 3 and γ = 0.2.

Figure 3.6: Bi-material distribution cases in a structured 3 × 3 × 3
partition of the unit cube [0, 1]3.

We first test the robustness of the algorithm against the contrast of the coefficients.
Consider a 3× 3× 3 partition of a unit cube domain with a checkerboard distribution of
coefficients such that αwhite = βwhite = 1.0 and αblack = 10i, βblack = 10−i. The contrast
is defined here as αblack

βblack
. With the variation of the value for i in the range [−5, 5] we

test all the possible scenarios, namely the mass dominated problem (i < 0) and the
curl dominated problem (i > 0). The number of iterations with the contrast of the
coefficients for different configurations of the preconditioner is presented in Fig. 3.7. Out
of the plot, the most salient property is the robustness of the perturbed preconditioner
(see Sect. 3.3.3) with the contrast of the coefficients. In fact, the original formulation of
the preconditioner suffers from a large number of iterations when the contrast between
the two coefficients is large, specially in the curl-dominated case. Therefore, the proposed
perturbation of the preconditioner is essential to achieve a robust preconditioner, in the
case where both coefficients α and β jump across the interface. Clearly, the perturbed
formulation only has a (negligible) negative impact in the case i = 0, since actually no
jump occurs across the interface. In the curl-dominated limit, α and ω-based scalings
show the same behaviour, as it is suggested by the definition of ω when α >> β. On
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H
h

/ P 23 33 43 53 63 73 83

4 14 24 35 38 40 40 41
8 26 37 61 65 70 69 70
12 31 52 72 78 82 82 84

(a) Standard BDDC preconditioner

H
h

/ P 23 33 43 53 63 73 83

4 8 9 10 10 11 12 12
8 12 14 16 16 17 17 17
12 15 22 21 21 21 21 21

(b) Perturbed BDDC preconditioner

Table 3.1: Weak scalability in terms of number of iterations for both
preconditioners. Checkerboard distribution of materials with αwhite =

102, βwhite = 1.0 and αblack = 104 and βblack = 10−2.

the other hand, when the coefficient β becomes dominant, the choice of cardinal and ω-
based scalings also leads to good scalability results in the limit. In sum, the combination
of the perturbed formulation and α-based scaling is the most robust approach. Unless
otherwise stated, this combination will be used throughout the section.
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Figure 3.7: Number of iterations for first order edge FE with a 3×3×3
partition of the unit cube and H/h = 8. A checkerboard arrangement of
materials is defined: αwhite1.0, βwhite = 1.0 and αblack = 10i and βblack =

10−i, leading to a contrast = αblack

βblack
= 10i

10−i = 102i. Labels include scaling
information, where P denotes perturbation of the preconditioner.

Let us now consider a checkerboard arrangement of coefficients such that αwhite =

102, βwhite = 1.0 and αblack = 104 and βblack = 10−2. In order to show the importance of
the perturbed formulation of the preconditioner for jumps of both coefficients across in-
terfaces, we collect the number of iterations for the original and perturbed preconditioner
in Tabs. 3.1a and 3.1b, respectively. The problem is solved with a P = N×N×N parti-
tion of the unit cube and the ω-based scaling is employed in both cases. Iteration counts
for the perturbed preconditioner are noticeably lower in all cases without exception.

Once we have shown the importance of the perturbed formulation, we present a
weak scalability analysis up to 16464 subdomains and the checkerboard arrangement of
materials with the perturbed preconditioner. Problem sizes in this experiment coincide
to the ones presented for the homogeneous problem in Fig. 3.4c. As expected, plots
in Fig. 3.8 show excellent scalability properties of the preconditioner in this case, i.e.,
the preconditioner is robust with jumps of coefficients across the interface. Although
higher values of H

h lead to a significantly higher number or iterations, these ones are
(asymptotically) constant and remain in a reasonable range, see Fig. 3.8a. On the other
hand, Fig. 3.9 presents the number of iterations for different order FEs and problem
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size H/h = 4, which also is shown to be scalable. Out of the contrast and scalability
results, we would like to remark the following issues. First, the perturbed formulation of
the preconditioner is essential to achieve a robust preconditioner. Second, the method
is weakly scalable for problems with high coefficient jumps across interfaces for different
local sizes and FE orders.
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Figure 3.8: Weak scalability results for first order edge FE with a
checkerboard distribution of materials: αwhite = 102, βwhite = 1.0 and

αblack = 104 and βblack = 10−2.
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Figure 3.9: Weak scalability results for different order edge FE and
H/h = 4 with a checkerboard distribution of materials: αwhite = 102,

βwhite = 1.0 and αblack = 104 and βblack = 10−2.

In order to show the robustness of the method not only with structured, regular
hexahedral meshes we solve the problem for a spherical domain and partition with a
graph partitioner METIS. Let us consider a spherical domain with R = 0.5, discretized
with an unstructured tetrahedral mesh containing around 50.000 cells. In order to achieve
high contrast of coefficients across interfaces, a bi-material distribution of coefficients is
assigned such white or black subdomain-constant materials are randomly assigned, see
Fig. 3.10b for an illustration. The definition of the sets of coefficients is αwhite = 102,
βwhite = 1.0 and αblack = 104 and βblack = 10−2. Fig. 3.11 shows the number of iterations
with the original and the perturbed formulation of the preconditioner. The perturbed
preconditioner, combined with a α-based scaling, is the unique method shown to be
robust with regard to the coefficients contrast, reproducing the behaviour observed in
the structured case.

Multiple channels

In this arrangement of materials we have a background domain, denoted by black re-
gion, and a set of inclusions, denoted by white regions, that cross the domain from one
boundary to the opposite one, in parallel to the axis directions. We include one channel
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(a) Partition of the sphere into 20 sub-
domains.

(b) Bi-material random distribution of
materials with constant properties on

each subdomain.

Figure 3.10: Sphere partition and distribution of materials.
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Figure 3.11: Robustness for a tetrahedral mesh for different scalings.
Material parameters defined as αwhite = 10i, αblack = 1.0, βwhite = 10−i

and βblack = 1.0, contrast defined αwhite

βwhite
. Mesh partitioned into 20 sub-

domains and random assignment of materials. Labels include scaling
information, where P denotes perturbation of the preconditioner.

per direction per subdomain so that with an increasing number of P subdomains we
are solving a harder problem with P channels. Channels are parallel to the axis and
are positioned in the lowest corners. They and have a squared cross-section of size γH,
thus occupying a γ2|Ω̃i| volume in every subdomain, see Fig. 3.6b for an illustration of
a 3× 3× 3 partition of the unit cube with the described channel inclusions. The distri-
bution of coefficients is such that contains coefficient jumps within each subdomain and
also across all interfaces, thus the perturbed formulation of the PB-BDDC preconditioner
will be employed.

Let us first compare the number of iterations for the PB-BDDC preconditioner
against the ones that one would have with the standard BDDC, where the definition
of globs is generated with the original partition Θ. In Sect. 3.5.3, the effectiveness of
the perturbation formulation has been empirically shown. Consequently, in order to
provide a fair comparison among them, the perturbed formulation is considered for both
preconditioners. On the other hand, while α-based scaling is shown to be the most
robust approach for PB-BDDC preconditioner, it miserably fails when considered with
the standard globs, i.e., given by Θ. In this case, a better result is obtained with cardi-
nality scaling. Tabs. 3.2a and 3.2b show iteration counts for the described BDDC and
PB-BDDC preconditioners, respectively, for the solution of the channels problem with
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H
h
/c 10−4 10−2 1.0 102 104

4 36 29 13 31 74
8 67 36 16 38 104

(a) BDDC preconditioner

H
h
/c 10−4 10−2 1.0 102 104

4 14 14 11 13 14
8 18 19 16 17 20

(b) PB-BDDC preconditioner

Table 3.2: Comparison in number of iterations for both preconditioners
in a 3 × 3 × 3 partition. Channel distribution of materials with γ = 0.5
and αblack = βblack = 1.0, αwhite = 10i and βwhite = 10−i. Contrast

defined as c = αwhite

βwhite
.

γ = 0.5 and a partition of the unit cube into P = 3× 3× 3 subdomains with local size
H/h = 8. We define the coefficients αblack = βblack = 1.0, while we distinguish between
αwhite = 10i and βwhite = 10−i, which allow us to define the contrast as αwhite

βwhite
. As

expected, the PB-BDDC preconditioner is robust with the contrast of coefficients. On
the other hand, the number of iterations is notably higher for the BDDC preconditioner
in the curl-dominated case.

The following experiment evaluates the weak scalability properties for a channel-type
distribution of materials. In Figs. 3.12 and 3.13 we present weak scalability results for
different problem sizes and FE orders. The most salient property out of this plots is
that the number of iterations is asymptotically constant for all cases. However, coarse
problem sizes become larger as the partition into PB-subdomains generates a higher
number of coarse DOFs, see Fig. 3.12c. In this context, the coarse problem is larger
than local problems size from an early number of subdomains, thus coarse tasks will
predominate computing times precluding wall clock time scalability, as it is shown in
Fig. 3.12b. In Figs. 3.12d and 3.13b we present scalable wall clock times for the change
of basis set-up, for different local problem sizes and FE orders.

We would like to remark that the proposed PB-BDDC preconditioner is weakly scal-
able for the number of iterations until convergence not only with regard to the jump of
coefficients across interfaces but also for distributions of different materials within each
subdomain. A multilevel version of the preconditioner for curl-conforming spaces [149],
not addressed in this thesis, is expected to push forward the limits of the computing
times scalability results.

3.5.4 Heterogeneous problems

In this section we study the scalability of the rPB-BDDC method for problems where
the coefficients α, β are described by continuous (at least element-wise) functions, which
contain high contrasts for their maximum and minimum values.

Periodic analytical functions

In this case, α and β are defined as exponential functions with a sinusoidal exponent
such that the function is periodic on the domain and the number of peaks scales with
the number of original subdomains in Θ, thus solving a harder problem as we increase
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Figure 3.12: Weak scalability results for first order edge FE with a
channel distribution of materials: αwhite = 102, βwhite = 1.0 and αblack =

104 and βblack = 10−2.
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Figure 3.13: Weak scalability results for different order edge FE and
H/h = 4 with a channel distribution of materials: αwhite = 102, βwhite =

1.0 and αblack = 104 and βblack = 10−2.

the number of processors. In particular, let us consider log(α) = cmax
2 sin(Nxπx) and

log(β) = cmax
2 sin(Nyπy), where Nx, Ny denote the number of subdomains in x, y di-

rections, respectively, in a P = Nx × Ny × Nz structured partition, (see β depicted in
Fig. 3.3a for the case cmax = 6, Nx = Ny = 3). Clearly, the maximum contrast within
each coefficient is given by rmax = 10cmax . We present weak scalability results up to 3072
subdomains for two different thresholds r = {rmax, 103}, and H

h = 20 local problem size
in three different scenarios: coefficients α (Fig. 3.14), β (Fig. 3.15) or both are hetero-
geneous (Fig. 3.16), being set to α = 1.0, β = 1.0 otherwise. Out of these plots, we
can draw some conclusions. First, the case where only β is heterogeneous converges in a
lower number of iterations compared to problems with heterogeneous α. Secondly, the
consideration of lower values for r consequently results in larger coarse problems, but
its size is only (approximately) doubled when only one coefficient is heterogeneous or
(approximately) quadrupled when both are defined heterogeneous. In fact, in the range
of subdomains considered in this experiment, the coarse problem computational times
in all cases can be masked by local problem ones (Figs. 3.14b, 3.15b and 3.16b). Finally,
and most salient, the rPB-BDDC method with r = 103 is weakly scalable in all cases
with an excellent reduction in the number of iterations and computing times compared
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to the case where r = rmax.
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Figure 3.14: Weak scalability for the rPB-BDDC when only an hetero-
geneous α is considered, β = 1.0.
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Figure 3.15: Weak scalability for the rPB-BDDC when only an hetero-
geneous β is considered, α = 1.0.
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Figure 3.16: Weak scalability for the rPB-BDDC when both coefficients
are heterogeneous.

High Temperature Superconductors

Next, we study the scalability of the algorithm with a practical application, the modelling
of High Temperature Superconductors (HTS). The problem consists in the magnetization
of a superconducting cube completely surrounded by a dielectric material (see Fig. 3.18a),
subjected to an external AC magnetic field. The formulation Eq. (3.1) arises in the time-
domain quasi-static approximation of the Maxwell’s equations for solving the magnetic
field, see Chapter 4 for details. Furthermore, the standard Backward Euler method
is used to perform time integration over a time interval [0, T ], so let us define a time
partition {0 = t0, t1, . . . , tN = T} into N time elements. Then, the form Eq. (3.1) can
be used to compute the magnetic field for a particular time tn, provided the solution
on the previous time un−1. The coefficient β is affected by the current time step size
∆t = (tn − tn−1) as β = µ0

∆t , where µ0 = 4π · 10−7 is the magnetic permeability of the
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vacuum. While the dielectric material is modelled with a constant value for α = 10−3,
the superconducting material behaviour is modelled with a stiff nonlinear dependence
of the resistivity α with the solution as α = α0

(
‖∇×u‖
Jc

)m
, with m = 100, Jc = 10−8

and α0 = 10−12. The equivalence with Eq. (3.1) is completed by considering the source
term f = βun−1 and the strong imposition of an external magnetic field un × n = un0
over the whole boundary. For the time step tn, the weak form of the nonlinear problem
reads: find un ∈ Xh such that

(α(un)∇× un,∇× v) + β(un,v) = β(un−1,v) ∀v ∈ Xh. (3.36)

In order to derive the linearized form with Newton’s method we consider the current
approximation un,k and a (small) correction δun,k for the iterate k such that un,k+1 =

un,k+δun,k. We plug the expression in Eq. (3.36), consider a first order Taylor expansion
of α(un,k+1) around un,k and neglect the quadratic terms with respect to δun,k, which
yields the linearized problem: find δun,k ∈ Xh such that

J (un,k, δun,k,v) = −R(un−1,k,un,k,v) ∀v ∈ Xh, (3.37)

where

J (un,k, δun,k,v) = (α(un,k)∇× δun,k,∇× v) + β(δun,k,v)+ (3.38a)

+ (α′(un,k)δun,k∇× un,k,∇× v),

R(un−1,k,un,k,v) = −β(un−1,v) + β(un,k,v) + (α(un,k)∇× un,k,∇× v). (3.38b)

The reader is directed to Chapter 4 for further details regarding the linearization pro-
cedure. Therefore, the rPB-BDDC preconditioner is applied to the linearized problem
Eq. (3.37) at every nonlinear iteration of every time step. In this section, we will focus
on the performance of the linear solver.

The problem is solved in Ω = [0, 40] mm3, composed by an outer dielectric Ωair

material which includes a concentric superconducting cube Ωhts of size 10 mm such
that Ω = Ωhts ∪ Ωair. There is no source term and Dirichlet-type boundary con-
ditions are imposed over the entire boundary as the time-dependent magnetic field
uext = B0

µ0
[0, 0, sin(2πωt)], where B0 = 200 mT and ω = 50 Hz. We solve the prob-

lem in the time interval [0, 5] ms, which corresponds to a quarter of a full cycle in the
applied uext. Initial conditions are simply u0 = 0. The partition Θr

pb is obtained in
all simulations for r = 102. The nonlinear scheme is stopped when the L2-norm of the
nonlinear residual (Eq. (3.38b)) is below 10−4, while the convergence criteria for the
rPB-BDDC preconditioned linear solver is the reduction of the initial L2-norm of the
residual of the linearized system by 10−8.

We first present weak scalability results for the first set-up and solve with the
rPB-BDDC preconditioner in Fig. 3.17, i.e., the first linearized problem (Eq. (3.37))
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P # Average
iters.

Average
size(Ac)

size(Ac)
ratio

49 16.8 196.7 1.31c0

385 18.9 2424.5 2.02c0

1297 21.7 7728.7 1.91c0

Table 3.3: Average metrics for the simulation of the time interval T =
[0, 5] ms. c0 denotes the num. of coarse DOFs of the original, geometrical

partition.

for the first time step. We include results for H
h = {10, 20, 30}. As expected, the method

shows good weak scalability properties in number of iterations (see Fig. 3.17a) and com-
puting times (see Fig. 3.17b).
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Figure 3.17: Weak scalability for the first linear solver in the HTS
problem with r = 102.

Next, we present average counters for the total number of linear solver applications for
the simulation of the whole time interval [0, 5] ms in Table 3.3. The resulting aggregation
of cells into subsets based on their physical coefficient α (see Sect. 3.4.4) for t = 4 ms
is depicted in Fig. 3.18c. We can identify two main regions in the distribution of α (see
Fig. 3.18b): an inner region that is still not magnetized (i.e., with null resistivity) and a
surrounding region, separated by a thin layer. Therefore, the selected value for r allows
us to capture the behaviour of the different regions in Ωhts. Out of the results in Tab. 3.3,
scalability in the average number of iterations is observed. Besides, we show how the
coarse problem size is only (approximately) doubled regarding to the size that would be
obtained with the partition Θ instead of the Θpb.

3.6 Conclusions

In this chapter, we have proposed an extension of the BDDC preconditioners for arbi-
trary order curl-conforming spaces that are robust for heterogeneous problems with high
contrast of coefficients. The main idea is to enrich the continuity constraints enforced
among subdomains (i.e., coarse DOFs) for those which contain high contrast of coeffi-
cients. The approach, which is shown to be robust for the grad-conforming case in [16],
makes use of the knowledge about the physical coefficients to define a sub-partition of the
original edge FE-based definition of coarse objects (edges and faces). The motivation for
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(a) Magnetic field strength
in the HTS device surrounded
by a dielectric box, for which
only the outline is depicted.
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Figure 3.18: Domain and HTS device for t = 4 ms.

that is the well-known robustness of DD methods when there are only jumps of physical
coefficients across the interface between subdomains. However, our case is more complex
than the one in [16] for Poisson and elasticity problems, since two different coefficients are
involved in the time-domain quasi-static approximation to the Maxwell’s equations. Our
solution is to add a perturbation term to the preconditioner so as we recover a scenario
similar to the one in which only one coefficient jumps across the interface. A relaxed
definition of the PB subdomains, where we only require that the maximal contrast of
the two physical coefficients is smaller than a predefined thresholds, allows one to extend
the range of applicability of the preconditioner to truly heterogeneous materials. Our
preconditioners, which use the crucial change of variables in [137] to obtain weakly scal-
able algorithms for problems in H(curl) with few modifications to the standard BDDC
algorithm in [57], are empirically shown to be robust with the contrast of coefficients.
We would like to remark that our preconditioners maintain the simplicity of the standard
BDDC and do not require to solve any eigenvalue or auxiliary problem.

We devoted a section to describe all the non-trivial implementation issues behind
the method based on our experience through the implementation of the preconditioners
in FEMPAR. Its task-overlapping implementation of the PB-BDDC preconditioner allows
one to mask the computing times for the coarse problem, as long as they do not exceed
local solvers time. With such implementation, we have been able to provide notable
weak scalability results in the application of our new preconditioners to a wide range
of multi-material and heterogeneous electromagnetics problems, including realistic 3D
problems where coefficients can be defined by arbitrary functions, even dependent on
the solution itself. In the future, the multilevel extension of the algorithm is expected to
push forward the limits of its scalability properties.





Chapter 4

Simulation of High Temperature
Superconductors and experimental
validation

In this chapter, we present a parallel, fully-distributed finite element numerical frame-
work to simulate the low-frequency electromagnetic behaviour of superconducting de-
vices, which efficiently exploits high performance computing platforms. We select the so-
called H-formulation, which uses the magnetic field as a state variable. Nédélec elements
(of arbitrary order) are required for an accurate approximation of the H-formulation
for modelling electromagnetic fields along interfaces between regions with high contrast
medium properties. An h-adaptive mesh refinement technique customized for Nédélec
elements leads to a structured fine mesh in areas of interest whereas a smart coarsening is
obtained in other regions. The composition of a tailored, robust, parallel nonlinear solver
completes the exposition of the developed tools to tackle the problem. First, a compari-
son against experimental data is performed to show the availability of the finite element
approximation to model the physical phenomena. Then, a selected state-of-the-art 3D
benchmark is reproduced, focusing on the parallel performance of the algorithms.

4.1 Introduction

High Temperature Superconductors (HTS) devices possess a number of unique properties
that make them attractive for its use in a wide range of engineering applications. In or-
der to design and optimize devices using superconducting tapes or bulks, computational
tools are a powerful technique to simulate its electromagnetic behaviour by solving the
system of partial differential equations (PDEs) that governs the problem. In this context,
finite element (FE) methods are commonly used because they can handle complicated
geometries whilst providing a rigorous mathematical framework. However, the electro-
magnetic modelling of superconductors at low frequencies is an extremely challenging
simulation process that stresses many aspects of a numerical code such as multiphysics
modelling, multiscale modelling, highly nonlinear behaviour, and a large number of time
steps involved. Hence an appropriate definition of the formulation, the FE method, and

79
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the solver will play a crucial role in order to obtain meaningful results in a reasonable
amount of time.

Many formulations exist for the eddy-current problem [48]. These formulations can
be mainly classified into three kinds, named after the variables used in the system of
PDEs that one aims to solve: the A-V formulation [79, 94, 51], which is based on
the magnetic vector potential, the T -Φ formulation [82, 10, 136], which is based on the
current vector potential, and the H-formulation [119, 64, 80, 150], which is based directly
on the magnetic field. Additionally, the mixed H-ϕ-Ψ formulation [135, 90] of the FE
method uses cohomology basis functions in the dielectric region and allows to treat the
air as an exact zero conductivity region. An alternative approach to the FE method is
the variational method, which is valid for any electric field-current density relation and
exists for several formulations: theH-formulation [38, 62, 27], the effective magnetization
T -formulation [116] and the J-φ formulation [122, 118, 123, 103]. Other accurate results
have been achieved with circuit models, such as those in [142] for calculating alternating
currrents (AC) losses. In this chapter, we have selected the most common and widespread
formulation, which is the H-formulation. The H-formulation provides the direct solution
to the magnetic vector field, and has the advantage of dealing with boundary conditions
in the model in a simple way. External magnetic fields can be applied directly by setting
boundary values of the magnetic field, while currents in the superconductor device can
be injected through Ampère’s law. We stress, however, that the techniques presented
here are also applicable with minor adaptations to other formulations as well.

In this chapter, the FE discretization of the magnetic field relies on the curl-conforming
edge (or Nédélec) element of arbitrary order (see Chapter 2). Edge elements are preferred
over grad-conforming Lagrangian ones, since they facilitate the modelling of the field near
singularities by allowing normal fields components to jump across interfaces between two
different media with highly contrasting properties [102]. In general, Lagrangian (nodal)
elements with a weak imposition of the divergence constraint can converge to singular
solutions for homogeneous problems (see, e.g., [14]), but these methods are not robust
for heterogeneous problems like the ones in HTS modelling.

The high complexity of the problem at hand (i.e., modelling of superconducting de-
vices with surrounding air or dielectric material regions) certainly requires customized
solutions for every step in the simulation pipeline, namely mesh generation, discretization
of the PDE system at hand and solution of the nonlinear system arising from discretiza-
tion. With regard to mesh generation, computational cost may become rapidly expensive
as we have to mesh not only the region of interest (superconducting device and immediate
surrounding) but also the entire dielectric region. Common practice in theH-formulation
FE modelling is to choose the latter region to be large enough such that interferences
between the external applied magnetic field and the magnetic field generated by the
superconducting device are avoided. This may imply that a large number of degrees of
freedom (DOFs) are used on the mesh cells covering the dielectric region, while only a
small portion of these DOFs might be actually needed for the accurate approximation of
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the magnetic field on this region. The most immediate approach found in the literature
to tackle this issue consists in the usage of conforming unstructured meshes with variable
size cells, where the mesh cells are coarsened as the boundary of the dielectric domain
is approached. The usage of a more fitted (to the superconductor) dielectric domain has
been used as well in [78]. In such a case, one has to take into account self-generated
magnetic fields while imposing external magnetic field boundary conditions. Finally, a
more involved approach is the employment of cohomology basis functions, which allows
to significantly reduce the number of DOFs in the dielectric region [135, 90]. Alterna-
tively, methods taking the current density as state variable may reduce the number of
DOFs, since only the sample volume is taken into account. For 2D problems, this has
been done by the variational method in J formulation [122], integral methods [40, 39]
and circuit methods [143]. In this thesis, a adaptive mesh refinement (AMR) strategy
for Nédélec elements has been implemented, see Chapter 2. Using AMR, we can intro-
duce an aggressive coarsening of the mesh in the dielectric region, whereas a fine mesh
is achieved in the superconducting device. On the other hand, one can start with a
very coarse (possibly unstructured) conforming mesh that represents the geometry at
hand, drastically reducing the mesh generation computational cost. The AMR strategy
is based on octree-based meshes, which can be compactly represented and efficiently ma-
nipulated in high-end distributed-memory computers. In this work, the p4est [47] MPI
library is used for such purpose. For the solution of the nonlinear problem at every time
step, we use the Newton-Raphson solver. At each nonlinear iteration, the resulting linear
system is solved by means of preconditioned Krylov subspace iterative solvers [125]. An
efficient preconditioner is crucial for their robustness and (parallel/algorithmic) scala-
bility. In Chapter 3, we introduced the so-called balancing domain decomposition by
constraints (BDDC) preconditioning approach [57, 18, 23]. For the problem at hand,
we propose a curl-conforming BDDC preconditioner equipped with the coarse space
presented in [137] for finite element tearing and interconnect (FETI)-fual-primal (DP)
methods, and the approach in [16] to deal with high jumps of material properties.

Research on the simulation of the HTS problem has typically focused on the ap-
plication side, and has considered moderate scale test cases with commercial software
implementations of linear (at most quadratic) edge elements; see, e.g., [150, 84, 6]. On
the other hand, 3D problems are of high interest in HTS modelling [94, 82, 150, 117, 68],
but far from being at the maturity level as one can find in 2D, due to their high compu-
tational complexity and the poor (parallel) scalability of commercial software. Indeed,
for large-scale FE 3D simulations, the efficient exploitation of High Performance Com-
puting (HPC) resources becomes a must for providing a reasonable time-to-solution.
In this context, the current work goes one step beyond by proposing a parallel, fully-
distributed simulation software pipeline for the electromagnetic behaviour of HTS based
on state-of-the-art numerical techniques for every building block.

The proposed algorithms in this chapter are available in the scientific software FEMPAR
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(see Chapter 1). Therefore, this work also aims to introduce FEMPAR to the HTS mod-
elling community as a new and powerful HPC tool for their simulations. In order to
show its applicability, a validation with the Hall probe mapping experiment [78] is per-
formed, obtaining a good agreement between the simulation results and the experimental
data. In order to show the benefit of the proposed fully-parallel simulation software, a
selected state-of-the-art 3D benchmark [85] is reproduced with excellent time-to-solution
reductions on a massively parallel supercomputer.

The outline of the chapter is as follows. The problem is defined in Sect. 4.2 and some
notation is introduced. The FE approximation of the problem is developed in Sect. 4.3.
In Sect. 4.3.3, we present advanced mesh generation techniques customized for our model
problem. In Sect. 4.4, we present a customized nonlinear parallel solver suitable for the
problem at hand. We present a detailed set of numerical experiments in Sect. 4.5, which
include a validation phase against experimental data and the reproduction of a selected
benchmark, together with a strong scaling analysis. Finally, some conclusions are drawn
in Sect. 4.6.

4.2 The system of equations

4.2.1 Notation

In this section, we introduce the problem to be solved and its particularities. Let Ω ⊂ Rd

be a bounded domain with d = 2, 3 the space dimension. Let us denote by L2(Ω) the
space of square integrable functions. Furthermore, we will make use of the space

H(curl,Ω) := {v ∈ L2(Ω)d | ∇ × v ∈ L2(Ω)d}, (4.1)

and its subspace

H0(curl,Ω) := {v ∈ H(curl,Ω) | n× v = 0 in ∂Ω}, (4.2)

where n denotes the outward unit normal to the boundary of the domain Ω. In the sequel,
bold characters will be used to describe vector functions or tensors, while regular ones
will determine scalar functions or values. No difference is intended by using upper-case
or lower-case letters for functions. Calligraphic letters are used to describe functional
spaces and bold calligraphic letters will denote bilinear operators.

4.2.2 Maxwell equations in electromagnetics

Let us first state the Maxwell equations, which physically describe magnetostatics. Let
us consider Ω ⊂ Rd to be a simply connected nonconvex polyhedral domain with a
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connected Lipschitz continuous boundary ∂Ω. The differential Maxwell equations read

∇×E = −∂B
∂t

, Maxwell-Faraday equation (4.3)

∇×B = µ0J , Ampère’s circuital law (4.4)

∇ ·B = 0, Gauss’s law for magnetism (4.5)

∇ ·E =
%

ε0
, Gauss’s law (4.6)

in Ω × (0, T ], where E is the electric field, B is the magnetic field, J is the electric
current density, µ0 is the magnetic permeability of the vacuum, ε0 is the vacuum per-
mittivity and % is the electric charge density. This form of the equations is valid for
negligible displacement current. Furthermore, we add the constitutive law that specifies
the (possibly nonlinear) relationship between the electric field and the current density
in a material by

E = ρJ , Ohm’s law (4.7)

ρ > 0 being the material resistivity tensor (inverse of conductivity). In this chapter, we
restrict ourselves to non-magnetic media since we consider the constitutive lawB = µ0H

for magnetic fields.

4.2.3 The H-formulation

After some trivial manipulation of Eqs. (4.3)-(4.4) and the substitution of the constitu-
tive law in Eq. (4.7), one can obtain the so-called H-formulation for the magnetic field
H. The proposed formulation reads: seek a magnetic field H solution of

∂µ0H

∂t
+∇× ρ∇×H = f in Ω× (0, T ], (4.8)

where f is a solenoidal given source term. Taking the divergence of Eq. (4.8), and
given that H is solenoidal at the initial time, follows that H is solenoidal for every
time. Besides, Eq. (4.8) needs to be supplied with appropriate boundary and initial
conditions. The boundary of the domain ∂Ω is divided into its Dirichlet boundary part,
i.e., ∂ΩD, and its Neumann boundary part, i.e., ∂ΩN , such that ∂ΩD ∪ ∂ΩN = ∂Ω and
∂ΩD ∩ ΩN = ∅. Then, boundary and initial conditions for the problem at hand read

H × n = g on ∂ΩD × (0, T ], (4.9)

n× (ρ∇×H) = 0 on ∂ΩN × (0, T ], (4.10)

H(x, t = 0) = 0 in Ω. (4.11)

Note that Dirichlet boundary conditions prescribe the tangent component of the mag-
netic field on the boundary of the domain, while Neumann boundary conditions prescribe
the tangent component of the electric field E (see Eq. (4.7)). Finally, the variational
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form of the H-formulation reads as follows: find H ∈ H(curl,Ω) such that

(
∂µ0H

∂t
,v) + (ρ∇×H,∇× v) = (f ,v), ∀v ∈ H0(curl,Ω). (4.12)

4.2.4 Transmission conditions

Natural boundary conditions appear on the formulation after integrating by parts Eq.
(4.12):∫

Ω
(∇× ρ∇×H) · v =

∫
Ω

(ρ∇×H) · (∇× v)−
∫
∂ΩN

(ρ∇×H) · (n× v) , (4.13)

where we can identify the condition n × (ρ∇ ×H) to be introduced in the Neumann
boundary ∂ΩN . Consider now two different non-overlapping regions on the domain Ω

corresponding to two different media, namely Ω1 and Ω2 such that Ω = Ω1 ∪ Ω2 and
Γ = Ω1∩Ω2. Let us denote by {nΓ1 ,nΓ2} the unit normal pointing outwards of {Ω1,Ω2}.
Clearly, nΓ1 = −nΓ2 and we state the natural interface conditions (transmission condi-
tions) for Eq. (4.8) as

n× (ρ1∇×H1 − ρ2∇×H2) = 0 on Γ, (4.14)

where n holds in this case for n = nΓ1 . Note that, with no other sources, Eq. (4.14)
enforces the continuity of the tangent component of the electric field E over the interface,
i.e., n × (E1 −E2) = 0. For the problem at hand, the domain will be composed of an
HTS device Ωhts and a surrounding dielectric region Ωair.

On the other hand, currents in the superconductor device are injected through Am-
père’s circuital law, Eq. (4.4), in a closed surface S as (by the Stokes theorem)∫

S
(∇×H) · n =

∮
∂S
H · τ = Iapp, (4.15)

where now n denotes the unit normal pointing outwards to the surface S defined by
a section of Ωhts (the domain itself in a 2D case). On the other hand, τ is the unit
tangent to the surface boundary. The scalar value Iapp is the net current enforced in the
superconductor in the perpendicular direction to the surface.

The final HTS problem will read as follows: findH ∈ H(curl,Ω) such that Eq. (4.12)
holds in Ωhts and Ωair, together with the transmission condition (4.14) and the constraint
(4.15).

4.2.5 Material modelling

In previous sections, a suitable H-formulation (applicable to general electromagnetics)
has been presented. In this section, the general formulation is extended to supercon-
ductivity by means of the constitutive law definition that relates current densities and
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electric fields. We consider a dielectric domain Ωair large enough for neglecting bound-
ary effects associated to the magnetization of the superconductor. In order to model its
non-conducting behaviour, we consider a conductivity (inverse of resistivity) value that
ideally tends to 0. However, the dramatic jump of resistivity on the interface introduces
a boundary layer on the interface that would require huge computational resources to
be captured, whereas we are mainly interested in the superconductor behaviour. Thus,
it is common practice to consider a fixed value for the resistivity in Ωair that, whilst
maintaining a large magnitude ratio with regard to the superconducting material, allows
the computation to take place with a desired level of precision. On the other hand, a
nonlinear electric field-current density relation is used in Ωhts to describe the penetration
of the magnetic flux and induced currents. For describing E(J), we will use the power
law

E =
Ec
Jc

(
‖J‖
Jc

)n
J , (4.16)

where Ec is the critical electric field, Jc is the critical current density, and n is the
exponent of the power law. This kind of expression tends to the analytical Bean’s model
[32] when n tends to infinity. One can identify Ohm’s law (Eq. (4.7)) in this E-J relation,
with the following expression for the resistivity parameter in the superconducting region:

ρhts(H) =
Ec
Jc

(
‖∇ ×H‖

Jc

)n
. (4.17)

In turn, Jc may be considered a fixed current density value, or a value dependent on the
magnetic field (magnitude and direction). For instance, for the magnetization of type-II
superconductors, the Kim’s model [86] introduces a dependence on the magnetic field
strength,

Jc(B) =
Jc0B0

B0 + µ0‖H‖
, (4.18)

where Jc0 and B0 are parameters determined by the physical properties of the supercon-
ducting material.

4.3 Numerical approximation

For the FE approximation of the problem, we select the edge (Nédélec) hexahedral el-
ement of arbitrary order. Nevertheless, we do not go into detail in this section for
conforming FE spaces with respect to H(curl,Ω), since it has been deeply covered in
Chapter 2. Therefore, we present the remaining ingredients of the numerical approxima-
tion in order to discretize, in space and time, the problem at hand.
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4.3.1 Time discretization

Let us consider a partition of the time interval [0, T ] into N time slabs. We denote the
n-th time slab by ∆tn = (tn−1, tn], for n = 1, . . . , N . We also denote each time slab
size by |∆tn|. Time integration is performed with a θ-method, even though the use of
other time integrators is straightforward. For the sake of clarity, we use the Backward-
Euler (BE) time integration in the presentation of the method. The already discretized
in time problem reads: Given H(t0) = 0, find at every time step n = 1, . . . , N the
solution Hn

h ∈ NDk such that

µ0

|∆tn|
(Hn

h,vh) + (ρ(Hn
h)∇×Hn

h,∇× vh) (4.19)

= (fnh,vh) +
µ0

|∆tn|
(Hn−1

h ,vh), ∀vh ∈ NDk

(4.20)

where fnh is the discrete version of the source term f evaluated at time tn. Note that
non-homogeneous initial conditions are readily imposed by considering H0

h = Hh(t0),
where Hh(t0) is the interpolation of the initial value onto the FE space NDk.

4.3.2 Dirichlet Boundary Conditions

The H-formulation is preferred over other formulations, among other reasons, due to
its straightforward manner of handling magnetic fields and currents. External magnetic
fields can be applied directly by setting boundary values of the magnetic field on Dirichlet
boundaries, while currents in the superconductor device can be injected through Am-
père’s law (see Eq. (4.4)) through constraints. Dirichlet boundary conditions will be
strongly imposed on the resulting system (usual implementation in FE codes), hence
we need the DOF values over the boundary to be fixed. Hh DOFs are obtained by
means of moments defined over edges, faces, and cells. As a result, one has to use the
corresponding Nédélec FE interpolator, which consists in evaluating the moments (see
Chapter 2) for the continuous boundary function.

4.3.3 Mesh generation by hierarchical AMR

Uniform refinement is not a choice for problems that exhibit localized phenomena and
multiscale features, since the size of the resulting system may rapidly become prohibitive.
The purpose of any mesh adaptive method is to achieve a high degree of accuracy in areas
of the domain of particular interest while saving computational efforts in other areas. To
this end, the mesh is refined in regions of the domain that present a complex behaviour
of the solution. AMR is mostly used with a posteriori error estimate that determines the
accuracy of the solution in every mesh cell and requires to know the solution of the PDE
at every iteration (dynamic AMR). However, the areas of interest in the problem at
hand are located in an a priori known region of the domain, the superconductor region,
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therefore we can leverage the AMR technique presented in Chapter 2 with a refined
static mesh approach. Let us clarify this approach with the problem at hand.

Superconducting regions of the domain and immediate surroundings show high values
for the gradients of the solution (i.e., high variation of the solution in small regions of the
domain), while a smoother solution is expected in a vast majority area of the dielectric
region. Besides, quantities of interest (e.g., AC losses) are computed on Ωhts, hence we
are mainly interested in taking control over the degree of accuracy that can be achieved
there. On the other hand, the ratio between the volume of the superconductor material
and the dielectric region is very low and thus saving efforts in Ωair is crucial to obtain
results in a reasonable amount of time. At this point, we should stress that we restrict
ourselves to h-adaptivity, i.e., only the mesh is adapted, in contrast to the so-called hp-
adaptivity, where the polynomial order p of the FEs (see Sect. 4.3) may also be adapted,
and thus vary among mesh cells. In this chapter, we explore the usage of hierarchically
refined octree-based hexahedral meshes in the discretization of the HTS problem.

4.4 Nonlinear transient solver

HTS modelling requires not only a reliable constitutive model but also a robust and effi-
cient nonlinear solver. Superconductor phenomena may occur in a very short time period
and thus abrupt changes of behaviour are found in a very small time scale. Furthermore,
the nonlinearity associated to the constitutive law E − J presents extreme parameters
(n ∼ 30 − 100). Spatial scales, time scales, and nonlinearity make superconductivity
modelling a very challenging task from a computational point of view. The nature of the
nonlinearity is very stiff, since the exponent in (4.16) usually takes high values, which
makes the Lipschitz continuity constant of the nonlinear PDE operator at hand large.
For this purpose, a specific nonlinear transient solver is proposed in this section.

4.4.1 Algebraic form

For the sake of clarity in forthcoming sections, let us write the problem in algebraic form.
The magnetic vector fieldHh is expanded by means of the vector shape functions {φi}NHi=1

related to the curl-conforming edge element. Let us define the following element-wise
matrices in the element K:

MK :=

NH∑
i=1

NH∑
j=1

∫
K
φi · φj (4.21)

KK :=

NH∑
i=1

NH∑
j=1

∫
K
ρ(Hh)(∇× φj) · (∇× φi) (4.22)

Consider also the right-hand side discrete vector F i
K :=

∫
K fKφ

i. Then, the usual
assembly is performed to obtain global matrices and arrays.
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Once the operators have been introduced in algebraic form, the problem for a single
time step tn (n > 0) in algebraic form reads:[

µ0

|∆tn|M + K(Hn
h) Ct

C 0

][
Hn

h

λn

]
=

[
F h(tn) + µ0

|∆tk|MHn−1
h

Iapp

]
, (4.23)

where Hh is the discrete function containing the DOF values for the magnetic field.
λn is the Lagrange multiplier introduced to enforce the current constraint, and C is the
one-row matrix that enforces the current value Iapp over a given closed surface S through
Eq. (4.15), i.e., the application of a constraint over the solution

CHn
h =

NH∑
i=1

∫
S

(
∇× φi

)
· nHni

h = Iapp.

4.4.2 Adaptive time stepping

Time scales may be very small in this problem due to the applied fields frequency.
However, the process of magnetization of the superconductor allows to identify different
needs in different periods of the process. Although restrictions in the time step size are
severe in some periods of time (when ‖J‖ becomes larger than Jc in some region), the
time step can be relaxed in monotone magnetization curves. The same effect occurs for
the validation model that will be considered in Sect. 4.5.3, where an injected current
is kept constant for a period of time before proceeding to the following current load
increment. A simple adaptive time stepping will be used to accelerate convergence. The
time step size is updated with

|∆tn| = κ

#iters
|∆tn−1|, (4.24)

where κ stands for a selected growing ratio and #iters denotes the number of iterations
to attain nonlinear convergence for the last converged time step. Usually, one may select
κ as the “ideal” number of iterations to convergence sought in the nonlinear algorithm.
Finally, the trial time step size is restricted to upper and lower bound values

|∆tn| =


∆tmin if |∆tn| ≤ ∆tmin,

|∆tn| if ∆tmin ≤ |∆tn| ≤ ∆tmax,

∆tmax if ∆tmax ≤ |∆tn|.
(4.25)

4.4.3 Linearization

The problem and its residual are stated in an algebraic form as

A(x)x = b, R = A(x)x− b = 0, (4.26)
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where the full vector of unknowns x and the right-hand side b have been presented in
(4.23). It is essential to build a robust nonlinear solver together with an effective adaptive
time stepping technique. Note that the resistivity takes a constant value ρair in the air
region Ωair hence the problem is linear in this part of the domain. However, a highly
nonlinear problem is found in the superconductor region Ωhts. Therefore, our strategies
focus on the linearization of the problem associated to the extreme nonlinearity given by
the resistivity ρhts(H). For that purpose, we will make use of a composition of nonlinear
solvers. Our nonlinear solver is the composition of a Newton-Raphson (NR) method
with an exact derivation of the Jacobian and a Cubic Backtracking (CB) line search
algorithm (see [46]).

By means of the NR method, we obtain (for the time step tn) the direction of the
solution update at the iterate k, i.e., δxn,k = xn,k+1−xn,k, solving the linearized problem
for the current linearization point (Hn,k

h , λn,k)

J (xn,k)δxn,k = −R(xn,k). (4.27)

Later, the BT technique tries to minimize the residual of the iterate xn,k+1 = xn,k +

βδxn,k with the found direction δxn,k by means of the step length β, i.e.,

β = argmin
0<β̃≤1

‖R(xn,k + β̃δxn,k)‖2, (4.28)

and the process is repeated until a convergence criterion is attained. It is not our intention
to define neither the CB technique nor the basic NR algorithm, which can be found in
[46], but we will introduce the expression of the application of the Jacobian operator J
that is specific to our formulation. To this end, let us first define the discrete residual
of the resulting algebraic system evaluated at the point (Hn,k

h , λn,k). For the sake of
simplicity, time step and iterate indices {n, k} will be omitted in the rest of the section,
where expressions always refer to a concrete evaluation point. The component-wise
definition of the residual R, of the form R(Hh, λ) = [RHh , Rλ], follows

RHi
h(Hh, λ) =

NH∑
j=1

∫
Ωhts

µ0

|∆t|
φj · φiHj

h +

NH∑
j=1

∫
Ωhts

ρhts(Hh)(∇× φj) · (∇× φi)Hj
h

+

∫
S

(∇× φi) · nλ−
∫

Ωhts

f · φi, (4.29)

Rλ(Hh) =

NH∑
j=1

∫
S

(∇× φj) · nHj
h − Iapp (4.30)

for the magnetic field DOFs {H i
h}
NH
i=1 and the Lagrange multiplier λ used to enforce the

applied current Iapp in the closed surface S. In this case, n denotes the unit normal to
the surface Ωhts. The application of the Jacobian to a given direction z, i.e., J (x, z),
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given the linearization point x, i.e., J (x)z, reads:

J (x)z = DR(x, z) = A(x)z +DA(x, z)x. (4.31)

where, e.g., DR(x, z) is the Gâteaux derivate of R at x in the direction of z. Following
the notation proposed in Sect. 4.4.1, the linearized J (x) at each iterate {n, k} can be
stated as

J (x) =

 µ0

|∆t|M + K(Hh) +
∂K(Hh)

∂Hh
Hh Ct

C 0

 , (4.32)

where the original operator A can be directly identified. The entries for the block
corresponding to the magnetic field read:

[J (Hh)]ij =
∂Ri

∂Hj
h

=[A(Hh)]ij +

∫
Ωhts

∂ρhts(Hh)

∂Hj
h

(∇×Hh) · (∇× φi), (4.33)

where {i, j} = 1, · · · , NH , i.e., the magnetic field number of unknowns. It becomes
clear in this expression that the nonlinearity is given by the discrete magnetic field
Hh whereas the Lagrange multiplier enforcing the current is a linear relation. If we
go one step further, for the constitutive law presented in Eq. (4.7), and considering Jc
independent of the magnetic field, we obtain the expression for the tangent resistivity
with respect to the magnetic field at the evaluation point Hh:

∂ρhts(Hh)

∂Hj
h

=
Ec
Jc
n

(
‖∇ ×Hh‖

Jc

)n−2 (∇×Hh)

Jc
· (∇× φj)

Jc
. (4.34)

4.4.4 Parallel linear solver

The presented nonlinear solver (Sect. 4.4.3) can rely on either parallel sparse direct or
iterative solvers to solve the linearized problems that arise at every nonlinear iteration.
In contrast to sparse direct solvers, iterative solvers can be efficiently implemented in
parallel computer codes for distributed-memory computers. However, they have to be
equipped with an efficient preconditioner, which is crucial for their robustness and (paral-
lel/algorithmic) scalability. In this chapter, we ground on the so-called BDDC precondi-
tioning approach [57, 18, 23], which has been presented in Chapter 3 for curl-conforming
problems, as a preconditioner for Krylov subspace iterative solvers [125]. In this section,
we are interested in strong scaling1, since we aim at reducing time-to-solution for a fixed
problem size. For the sake of robustness, we have implemented the most conservative
coarse space proposed in [137], called Alg. C in this reference, and the approach in [16]
to deal with high jumps of material properties.

1Strong scaling is the ability of a parallel algorithm to reduce time-to-solution with increasing number
of processors in the solution of a fixed problem size.
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4.5 Numerical experiments

In this section, we test the h-adaptive FE approximation of the H-formulation and the
parallel nonlinear solver presented in the previous sections. In general, the physical
domains in our simulations consist of a superconducting bulk completely surrounded by
a dielectric box (see Fig. 4.3 for an illustrative example). Dirichlet boundary conditions
are applied on the boundary of the outer domain. Thus, we make sure that this external
boundary is far enough from the superconducting device to avoid interior magnetic fields
generated by itself reaching the boundary and interfere external applied fields. Unless
otherwise stated, the stopping criterion for the nonlinear solver is the reduction of the
ratio between the discrete L2-norm of the nonlinear residual and right-hand side below
10−10. At the same time, the stopping criterion for the iterative linear solver applied to
each linearized time step is the reduction of the discrete L2-norm of the relative residual
below 10−12. The adaptive time stepping algorithm in Sect. 4.4.2 will be used with
κ = 5.

4.5.1 Software

All the algorithms described in this work are available in the scientific software FEMPAR

(see Chapter 1). Regarding the content of this chapter, FEMPAR supports arbitrary order
edge FEs on both hexahedra and tetrahedra, on either structured or unstructured con-
forming meshes (i.e., typically generated by an external mesh generator), and mesh gen-
eration and adaptation using hierarchically refined octree-based meshes. The serial and
MPI-parallel versions of the process described in Sect. 4.3.3 are grounded on p4est [47].
p4est is an MPI library for efficiently handling (forest of) octrees on distributed-memory
processors. Among others, it provides a set of octree manipulation primitives which are
essential for our approach: (1) to adapt an octree by refining (or coarsening) its cells; (2)
to redistribute the octree cells among the available processors for dynamic load-balancing
(by means of space-filling curves [47]); and (3) to enforce the 2:1 balance ratio. Using
a compact representation, p4est provides memory-efficient and scalable algorithms for
all the aforementioned manipulation primitives [47]. On top of p4est, FEMPAR builds a
richer representation of the mesh (essentially mesh cells and lower dimensional geomet-
rical entities connectivity information) to support the implementation of adaptive FE
methods using hanging DOFs constraints (see Sect. 4.3.3 ). Both the mesh, and the
rest of data structures used in the simulation are fully-distributed among the processors
involved in the parallel simulation. This implies, e.g., that each processor holds a partial
portion of the global mesh cells, and a subset of the DOFs of the global FE space. It is
essential to scale FE simulations to large core counts.

At the linear solver kernel, it offers several alternatives depending on the program-
ming environment at hand. In this chapter, we used the ones described in the sequel. For
small scale problems on, e.g., a Desktop computer, we rely on a parallel multi-threaded
sparse direct solver available at Intel MKL PARDISO [1]. On the other hand, for a
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hybrid OpenMP/MPI environment, linear solvers are based on preconditioned Krylov
subspace solvers. FEMPAR hallmark is an abstract object-oriented (OO) framework for
the implementation of widely applicable highly scalable multilevel domain decomposi-
tion (DD) solvers. The preconditioners which are accommodated within this framework
require the solution of linear systems which are local to each subdomain, and the so-
called coarse-grid problem, that is crucial for preconditioner efficiency and scalability.
These problems are solved using the aforementioned sparse direct solver. Each MPI
task in the parallel computation handles the computations to be performed at a single
subdomain. Provided that the algorithm lets a high degree of overlapping to be achieved
among fine and coarse-grid tasks, an additional MPI task is spawn in order to carry
out coarse-grid-related computations; see, e.g., [18] for additional details. Our BDDC
preconditioner implementation (see Chapter 3) can deal with curl-conforming spaces of
arbitrary order, tetrahedral/hexahedral meshes and structured/unstructured partitions.

4.5.2 Experimental framework

The experiments in this section have been performed on the MareNostrum-IV [4] (MN-
IV) supercomputer, hosted by the Barcelona Supercomputing Center (BSC). MN-IV is
equipped with 3456 compute nodes connected together with the Intel OPA HPC net-
work. Each node is equipped with 2x Intel Intel Xeon Platinum 8160 multi-core CPUs,
with 24 cores each (i.e., 48 cores per node), and 96 GBytes of RAM. FEMPAR was com-
piled with the Intel Fortran compiler (v18.0.1) using system-recommended optimization
flags, and linked against the Intel MPI Library (v2018.1.163) for message-passing, and
the BLAS/LAPACK and PARDISO available on the Intel MKL library for optimized
dense linear algebra kernels, and sparse direct solvers, respectively. All floating-point
calculations were performed in IEEE double precision.

4.5.3 Comparison against experimental data

In this section, the proposed FE model is validated against experimental data, obtained
by means of the Hall scanning magnetometer experiment, exposed in detail in [78].
Our goal is to compare the experimental data for a 2G tape sample (see Tab. 4.1 for
properties) with the numerical results obtained with FEMPAR. The problem of a HTS
tape magnetized by a current flowing through it has been solved by several authors (see,
e.g., [109, 107, 114]). Besides, several comparisons between experimental and numerical
results can be found, e.g., in [61, 70, 129].

In the experiment we consider that the current is applied in a HTS tape by a se-
quence of step functions, with time intervals of 100 seconds each before proceeding to
the following increment. The current applied is gradually increased up to Iapp = 460 A,
which corresponds to 1.03 · Ic (i.e., Ic = 446.16). See Fig. 4.1b for a clear exposition
of the injected current. The applied current remains constant during short periods of
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Parameter
Comparison

to experimental
data

3D benchmark Units

air domain size 100× 100 100× 100× 100 mmd

HTS width 12 10 mm
HTS thickness 110 1000 µmm
n power law exponent 32 24
µ0 4π · 10−7 4π · 10−7 H/m
µr 1.0 1.0 H/m
E0 10−4 10−4 V/m
Jc 3.38 · 108 1.0 · 108 A/m2

Ic 446.16 1.0 · 103 A
ρair 1.0 10−2 Ω·m

Table 4.1: Geometric and electrical parameters of the HTS tape used
in different problems. Domain units depend on domain dimension d.

time so it allows the flux creep effects to pass, and therefore the current distribution is
stabilized along the superconductor specimen.

We will compare the experimental and numerical profiles of the vertical component
of the magnetic field (i.e., By = µ0Hy) 400 µm above the HTS tape surface (where
the active part of the sensor is located). For the computational model, we simplify the
superconducting region as a homogenization of the multiple layers typically found in a
2G tape (e.g., the substrate, the silver, and the copper covering), where only a layer of
1-2 µm corresponds to superconducting material. As it is shown in this section, such
approximation is accurate in the magnetic field computation at 400 µm above the tape
surface. Following [78], a critical current dependence with the magnetic field, i.e., Jc(B),
is introduced through tabulated values (see Fig. 4.1a), where effective Jc values can be
obtained at each nonlinear iteration from the corresponding linearization point B. A
Lift Factor (LF=Jc/Jc0) is obtained for each component Bi of B, i.e., LFi(Bi), where
i ∈ {1, 2} in this 2D simulation (see Fig. 4.1a). Then, the resulting Jc is obtained as
Jc0 · ‖LF‖, where Jc0 is the value of Jc in absence of magnetic field, i.e., Jc(0), detailed
in Tab. 4.1.

Fig. 4.2 shows the comparison between the experimental and numerical vertical mag-
netic field µ0Hy. The numerical results are obtained for first order edge FEs. All plots
in Fig. 4.2 show profiles along the x-axis section for the full HTS tape length and 6 addi-
tional mm to each side. Therefore, with the reference domain Ω = [0, 100]×[0, 100] mm2,
these profiles correspond to the line y = 50.455, 38 < x < 62 mm. Out of these results,
some conclusions can be drawn. First and most important, the experimental data is in
good agreement with the performed simulations and therefore, the proposed formulation
is able to reproduce the physical phenomena. Second, the magnetic field peak values are,
in all cases, in excellent agreement. It is important to note that the experimental data
does not possess symmetry, while the computed data respects such expected symmetry.
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This fact can be attributed to small imperfections in the experiment. Out of the valida-
tion test, we can identify three phases. A first one, where the computed data reproduces
with a high accuracy the experimental data (see Figs. 4.2a, 4.2b, and 4.2c). A second
stage, in which, even though the peak values are in good agreement, the experimental
data presents small variations in the superconductor area (see Figs. 4.2d-4.2g). Finally, a
third stage, coinciding with the unloading of the sample, where a slightly higher discrep-
ancy is observed. However, peak values are correctly captured and the model predicts
the physical phenomenon throughout the entire simulation.

4.5.4 3D benchmark

In this section, our algorithms are applied to a recently proposed benchmark in [85],
suggested as a stepping stone for future investigations in the 3D modelling of the elec-
tromagnetic behaviour of superconductors. The benchmark consists in the magnetization
of a superconducting parallelepiped subjected to an AC magnetic field making an angle
with the normal to the larger surface. Many authors have previously analysed the case
of a tape under an external field by several methods [122, 107, 41, 9, 115]. In our case,
the scenario is valid to model two different cases: the magnetization of an isotropic su-
perconducting bulk and the one of stacks of HTS coated conductors. The stack can be
modelled as a bulk [151] in which the current cannot flow along one direction due to the
presence of high-resistivity layers.

Consider a box domain Ω = [0, 100]×[0, 100]×[0, 100] mm3 where the superconductor
fills the volume Ωhts = [45, 55] × [45, 55] × [49.5, 50.5] mm3. The air domain is defined
as Ωair = Ω \ Ωhts. There is no source term, i.e., f = 0, and Dirichlet-type boundary
conditions are imposed over the entire boundary as a time-dependent magnetic field.
Initial conditions are simply H(t = 0) = 0 T. On the other hand, no net current
flow condition is imposed on the superconductor. The parallelepiped is subjected to a
uniform external sinusoidal magnetic field in the xz plane at an angle α = π/6 with
respect to the x-axis, an amplitude of Bext = 200 mT, and frequency ω =50 Hz. The
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Figure 4.1: Validation problem inputs definition.
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(a) Loading Iapp = 50 A. (b) Loading Iapp = 100 A. (c) Loading Iapp = 200 A.

(d) Loading Iapp = 300 A. (e) Loading Iapp = 400 A. (f) Loading Iapp = 460 A.

(g) Unloading Iapp = 400 A. (h) Unloading Iapp = 300 A. (i) Unloading Iapp = 200 A.

(j) Unloading Iapp = 100 A. (k) Unloading Iapp = 50 A. (l) Unloading Iapp = 0 A.

Figure 4.2: Magnetic field By = µ0Hy profiles for experimental (Hall
probe mapping) and computed data in a full load-unload cycle for the

validation test.

superconductor behaviour is modelled with the resistivity nonlinear law (see Eq. (4.16))
with an exponent n = 24. The first situation, where an isotropic resistivity tensor is
considered, i.e., ρhts = ρhtsI3×3, models a bulk behaviour. On the other hand, the
situation where current cannot flow along the z-direction models a stack. In this case,
a high value is assigned to the z-component of a diagonal anisotropic resistivity tensor,
ρz = ρair, whereas the resistivity is set to ρhts in the remaining directions. For the sake
of brevity, the two situations are referred to as bulk and stack, respectively. A detailed
exposition of the parameters being used can be found in Tab. 4.1. Note the slight
reduction of the resistivity parameter in the dielectric region, which allows to enhance
convergence performance without any impact in the computed quantities, as will be
shown by results. Simulations are performed for a full cycle and an additional quarter of
a cycle to take into account the initial magnetization of the HTS device. Maximum and
minimum allowed time step sizes are set to 5T/4

2·102 and 5T/4
2·105 , with T = ω−1. Therefore, the

full simulation is performed with the lower bound of 200 time steps. Through this section,
we will make use of several different meshes, described in Tab. 4.2. First, aiming to show
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#cells
on Ωhts

#DOFs
on Ωhts

#cells
on Ω

#DOFs
on Ω

Mesh 1 12× 12× 2 288 1,254 1,464 6,386
Mesh 1r=1 24× 24× 4 2,304 8,500 11,712 42,948
Mesh 1r=2 48× 48× 8 18,432 61,544 93,696 312,008
Mesh 2 52× 52× 6 16,224 55,438 28,624 101,368
Mesh 3 102× 102× 10 104,040 337,222 147,904 495,190

Table 4.2: Summary of meshes used to reproduce the benchmark. The
superscript r denotes the number of uniform refinements applied to every

cell of the original mesh.

the accuracy of high-order Nédélec FEs, we will employ a very coarse mesh consisting of
12× 12× 2 cells on the superconducting domain. Finer meshes are obtained through r
isotropic refinements (i.e., dividing every single cell into 8 cells). Thus, these meshes are
defined by the original mesh and the levels of refinement r in Tab. 4.2. Besides, we will
make use of two different meshes for the study of the computational times: a coarser
mesh, consisting of 52 × 52 × 6 cells in the superconducting region and 28624 cells in
the whole computational domain, and a finer mesh consisting of 102× 102× 10 cells in
the superconducting region and 147904 in total. This study is performed for first order
Nédélec FEs. Nonlinear iterations are stopped when the Euclidean norm of the residual
is below 10−4. Further details of the benchmark can be found in [85].

Fig. 4.4 shows the pattern of computed current density distributions within the su-
perconducting device for the bulk and the stack. All the current density plots are taken
at t = 5 ms, when the sinusoidal function reaches its first peak value. On the other hand,
Fig. 4.5 shows the computed magnetization loops in the bulk and the stack, respectively.
Up to three different curves are shown for each magnetization plot: the projection of the
magnetization on directions x, z and α (i.e., the direction of the applied magnetic field).
Shown data is normalized with the magnitude Jc · b, with b the length of the side of the
base of the parallelepiped. Finally, Fig. 4.6 shows the computed instantaneous power
loss in both cases.

The estimation of AC losses is essential to assess the performance of superconduct-
ing devices (see [81], where a review of the field up to 2013 is presented). Therefore,
any numerical tool modelling HTS devices must estimate AC losses accurately. Tab. 4.3
shows a direct comparison between computed AC losses from the benchmark and our
numerical results, computed with Mesh 2 (see Tab. 4.2) and lowest order Nédélec ele-
ments. In particular, presented AC losses are computed via two different methods. The
magnitude, for a full cycle, can be calculated by integrating the instantaneous power
dissipation J ·E in the superconductor, i.e.,

QJE = 2

∫ T

T
2

∫
Ωhts

J ·E = 2

∫ T

T
2

∫
Ωhts

ρhts‖J‖2, (4.35)

where the AC loss for half cycle is computed and doubled. Alternatively, the magnitude
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(a) Half domain in cross-section perpendicular
to x-axis.

(b) Zoom to centered region. HTS domain de-
picted in blue.

(c) Half domain in cross-section perpendicular
to z-axis.

(d) Zoom to centered region. HTS domain de-
picted in blue.

Figure 4.3: Illustration of Mesh 2 (see Tab. 4.2). Refinement pattern
is common to all meshes. Adaptive refinement technique results in a
structured mesh for the HTS device, while a smart coarsening following
the 2:1 ratio can be observed in the dielectric domain surrounding the

superconducting region.

QJE bulk QMH bulk QJE stack QMH stack
Reference 4.59 4.62 3.47 3.45
Computed 4.64 4.62 3.48 3.46

Table 4.3: Comparison of AC losses (in mJ) in the bulk and in the stack
calculated with two different methods against benchmark results.

can be obtained with the magnetization loop in the direction of the applied external field
Hα as

QMH = −µ0

∮
Hα

Mα ‖Ωhts‖ (4.36)

for the full cycle, calculated in the time interval from peak to peak of the applied field.
The numerical results are in excellent agreement with those presented in the benchmark,
demonstrated by the integral quantities (4.35) and (4.36), see Tab. 4.3.

In order to show the accuracy of high order FE schemes, we intentionally choose
a coarse mesh with 12 × 12 × 2 elements in the HTS domain (Mesh 1). Better ap-
proximations can be obtained by either increasing the order of the FEs or reducing
uniformly the mesh size h, known in the literature as p-refinement and h-refinement,
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(a) Jx in cross-sections perpendicular to x-axis. (b) Jy in cross-sections perpendicular to y-axis.

(c) Jx in cross-sections perpendicular to x-axis. (d) Jy in cross section perpendicular to y-axis.

Figure 4.4: Distribution of normalized current densities for the bulk
(top) and the stack (bottom).
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Figure 4.5: Magnetization loops for the models. Magnitudes are nor-
malized with critical current density and HTS device size.

respectively. The effect of applying r consecutive uniform refinements in all cells results
in a mesh with 8rNc elements (i.e., every cell is partitioned into 8 children cells), where
Nc is the number of elements in the coarsest mesh. We recall that NDk, where the
discrete solution H lies, is the discrete curl-conforming space based on the polynomial
space Qk−1,k,k ×Qk,k−1,k ×Qk,k,k−1 (see Sect. 4.3). The current density is obtained as
J = ∇×H, thus belonging to Dk := {Qk,k−1,k−1 ×Qk−1,k,k−1 ×Qk−1,k−1,k}. Fig. 4.7
depicts how the solution is converging with the order of the elements and a fixed mesh
(Mesh 1), whereas Fig. 4.8 shows the behaviour of the solution for a uniformly size-refined
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Figure 4.6: Instantaneous power dissipation in the bulk and the stack.

mesh and lowest order elements; current densities are normalized with the critical cur-
rent density in all cases. Plots are taken for t = 5 ms, i.e., first peak value of the applied
external field, and over the line {x = 0, z = 0}. The bottom axis represents the size of
the parallelepiped, its centre being located at y = 5 mm in the plots. Out of this length,
the normalized current density is negligible since it is out of the limits of the supercon-
ducting domain. Note that current density profiles are in general discontinuous across
elements. Furthermore, as J ∈ Dk, its i-th component, for i ∈ {1, 2, 3}, is a polynomial
of degree k with respect to xi, and k − 1 otherwise.

Convergence to a solution is shown with respect to p-refinement (Fig. 4.7) and h-
refinement (Fig. 4.8). It is clear from the plots that, for coarse meshes, the current density
is much better captured with high order elements. Fig. 4.9a shows a direct comparison
between quadratic FEs in the coarsest mesh and linear FEs in the mesh after one level of
refinement, i.e., r = 1. Note that both discretizations involve the same number of DOFs.
More accurate solutions, i.e., closer to the solution for the most accurate simulation in
Fig. 4.9b, are obtained for quadratic FEs. It is expected, since, for smooth solutions,
which is the case for the current profiles, p-refinement leads to exponential convergence
rates.

Fig. 4.9b shows a comparison between the coarsest mesh with third order FEs and
first order elements in the mesh after two levels of refinement. The simulation with third
order FEs involves a lower number of DOFs (136,038 vs 312,008). Again, p-refinement
is more effective than h-refinement, achieving better results with a substantially lower
number of DOFs. Summarizing, p and h-refinement converge to the same solution, but
p-refinement is more effective for the smooth solutions at hand (see Figs. 4.9a and 4.9b).

Tabs. 4.4 and 4.5 show total parallel execution times for the 3D benchmark with
Meshes 2 and 3, respectively (see Tab. 4.2). This total time includes the time spent
in every single step of the simulation pipeline, including mesh generation. The BDDC-
preconditioned conjugate gradient (CG) iterative solver (see Sect. 4.4.4) was set up such
that the coarse-grid problem is mapped and solved on a single node of the MN-IV
supercomputer by means of Intel MKL PARDISO on 48 threads (cores). Hence, the
simulations have actually been run in 48 + P cores, P being the number of subdomains
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(a) Jx profiles. (b) Jy profiles. (c) Jz profiles.

Figure 4.7: Normalized J components over a line in the y-axis direction
that passes through z = 0 with a fixed mesh and variable FE orders, i.e.,

p-refinement.

(a) Jx profiles. (b) Jy profiles. (c) Jz profiles.

Figure 4.8: Normalized J components over a line in the y-axis direction
that passes through z = 0 with first order FEs and different uniformly

refined meshes, i.e., h-refinement.

(a) Comparison with same #DOFs. (b) Higher order contains less #DOFs.

Figure 4.9: J components over a line in the y-axis direction that passes
through z = 0 for different FE orders (p-refinement) and meshes (h-

refinement).

in which the global domain is partitioned. These tables show two key parameters for
measuring strong scalability: the parallel speed-up, defined as the ratio between the
parallel execution time tP when using P processors and the sequential execution time
t1, i.e., Sp = tP /t1, and the parallel efficiency, defined as Ep = Sp/p. (Thus, the closer
Sp and Ep are to P and 1, resp., the better.) Note that the nonlinear convergence
rate for a given problem does not depend on the linear solver being used (up to linear
solver tolerance). Therefore, all the runs that involve the same mesh share the same
the nonlinear convergence history (hence time stepping). The difference is found in the
solution of the linearized problems, since the performance of the preconditioner (Sect.
4.4.4) does depend on the partition being used. Aiming to show the impact of the
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P Wall clock
time Sp Ep

#DOFs
per part

#DOFs
coarse
solver

#Linear solver
iterations

Serial run 1d 19h 23’ 1.00 1.00 101,428 - -
6 8h 29’ 5.23 0.87 19,091 286 22
12 4h 28’ 9.95 0.82 9,854 520 29
24 2h 25’ 18.26 0.76 5,143 990 30
48 1h 32’ 28.81 0.60 2,775 1,852 34
72 1h 14’ 35.79 0.49 1,928 2,507 35
96 1h 47’ 22.87 0.23 1,489 3,037 42

Table 4.4: Computing times for problem solved using Mesh 2. Iteration
and free DOF counters show average values. Simulation ends after 246

converged time steps involving 976 linearized problem solves.

P Wall clock
time Sp Ep

#DOFs
per part

#DOFs
coarse
solver

#Linear solver
iterations

Serial run* 23d 06h 14’ 1.00 1.00 495,190 - -
6 4d 22h 30’ 4.71 0.78 88,807 474 28
12 2d 08h 23’ 9.90 0.82 45,043 834 29
24 1d 08h 31’ 17.18 0.71 23,001 1,550 29
48 17h 16’ 32.64 0.68 11,938 2,846 34
96 12h 05’ 46.23 0.48 6,214 4,924 42
120 10h 46’ 51.86 0.43 5,087 6,253 44
144 10h 38’ 52.53 0.36 4,316 7,446 47

Table 4.5: Computing times for problem solved using Mesh 3. Iteration
and free DOF counters show average values. Simulation ends after 459
converged time steps involving 2374 linearized problem solves. *Serial
run time is computed with an extrapolation with the number of linearized
problem solves after 3 days of computation due to limited computing time

in the access to MN-IV.

preconditioner for each partition, Tabs. 4.4 and 4.5 show the number of preconditioned
Krylov iterations needed to attain convergence; the presented number of iterations is
an arithmetic mean value of the number of iterations until convergence of all linearized
problems taking place during the simulation, i.e., for every time step and nonlinear
iteration.

Let us comment on the results in Tabs. 4.4 and 4.5. Clearly, the most salient property
of the algorithms at hand is the remarkable reduction in time-to-solution in both cases.
By exploiting parallel resources, the computational time is reduced by a factor of 35.8
and 52.5 for Mesh 2 (Tab. 4.4) and Mesh 3 (Tab. 4.5), respectively. As far as we know,
such speed-ups have not been presented so far for FE HTS modelling. In practice,
these speed-ups allow us to reduce the time-to-solution for a practical HTS simulation
from days to hours. For the largest problem size, time-to-solution is reduced up to
144 parts. Above this core count, time-to-solution increases due to parallelism related
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overheads; more computationally intensive simulations (i.e., larger loads per processor)
would be required to exploit additional computational resources efficiently. Although
average iteration counts increase mildly with the number of processors, the size of the
coarse problem keeps growing while the local problems become smaller. Therefore, at
some point, the coarse solver, which only exploits a bounded number of cores (i.e., 48),
dominates computing times, loosing parallel efficiency. Fortunately, there is a large
room for improvement in this direction, e.g., a multilevel version of the preconditioner is
expected to push forward the limits of the presented strong scalability results (see, e.g.,
[23]).

4.6 Conclusions

In this chapter, we presented a parallel, fully-distributed FE framework suitable for the
solution of nonlinear problems modelling the electromagnetic behaviour of HTS devices.
We have selected the widespread H-formulation as a demonstrator of the potential of
the presented advanced numerical algorithms, which have been tailored for the problem
at hand and combined through the simulation pipeline, even though the ingredients pre-
sented in this chapter could be applied to other formulations. For the mesh generation,
we have considered the advanced AMR technique presented in Chapter 2, which provides
an aggressive coarsening in dielectric regions. The smart coarsening is restricted by the
2:1 balance, which allows for efficient parallel implementations. For the FE approxima-
tion, we choose edge (or Nédélec) elements of arbitrary order, which have been introduced
in Chapter 2. These elements are favoured in electromagnetics simulations due to their
sound mathematical structure. For the solution of the arising algebraic systems, we have
presented the design of a tailored nonlinear parallel solver, which includes a linearization
with a Newton-Raphson method (with exact Jacobian derivation) and advanced DD pre-
conditioners for H(curl) spaces on adaptive meshes and heterogeneous problems, which
have been defined in Chapter 3. Time integration was performed with the Backward
Euler integrator and a variable time step, taking advantage of the convergence history
of the nonlinear solver, and thus reducing time-to-solution. Finally, we have provided
a detailed set of numerical experiments. First, a comparison with experimental data
has shown an excellent agreement between experimental and numerical data. Second, a
time-to-solution study reproducing a 3D benchmark has shown a remarkable reduction
of computing times when exploiting parallel resources, and thus the capability of our
algorithms to efficiently exploit HPC platforms. The work here presented has been im-
plemented in the open source simulation software FEMPAR, which can become a powerful
tool for the HTS modelling community.



Chapter 5

Nonlinear parallel-in-time solvers
for ordinary differential equations

In this chapter, we propose a parallel-in-time solver for linear and nonlinear ordinary
differential equations, which will allow us to identify the key ingredients towards a full
space-time approach. The time parallel method is based on an efficient multilevel solver
of the Schur complement related to a multilevel time partition. For linear problems,
the scheme leads to a fast direct method. Next, two different strategies for solving
nonlinear ordinary differential equations (ODEs) are proposed. First, we consider a
Newton method over the global nonlinear ODE, using the multilevel Schur complement
solver at every nonlinear iteration. Second, we state the global nonlinear problem in
terms of the nonlinear Schur complement (at an arbitrary level), and perform nonlinear
iterations over it. Numerical experiments show that the proposed schemes are weakly
scalable, i.e., we can efficiently exploit increasing computational resources to solve for
more time steps the same problem.

5.1 Introduction

At the beginning of the next decade supercomputers are expected to reach a peak perfor-
mance of one exaflop/s, which implies a 100 times improvement with respect to current
supercomputers. This improvement will not be based on faster processors, but on a much
larger number of processors (in a broad sense). This situation will certainly have an im-
pact in large scale Computational Science and Engineering (CSE). Parallel algorithms
will be required to exhibit much higher levels of concurrency, keeping good scalability
properties.

When dealing with transient problems, since information always moves forward in
time, one can exploit sequentiality. However, the tremendous amounts of parallelism to
be exploited in the near future certainly motivates to change this paradigm. One of the
motivations to exploit higher levels of parallelism will be to reduce the time-to-solution.
In the simulation of ODEs, the way to go is to exploit concurrency in time. The idea
is to develop parallel-in-time solvers that provide the solution at all time values in one
shot, instead of the traditional sequential approach that exploits the arrow of time. If
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scalable parallel-in-time solvers are available, the use of higher levels of parallelism will
certainly reduce the time-to-solution.

Parallel-in-time solvers are receiving rapidly increasing attention. Different iterative
methods have been considered so far, e.g., the parareal method [93] or spectral deferred-
correction time integrators [63]. With regard to direct methods, time-parallel methods
can be found in [71]. In general these methods can exploit low levels of concurrency [52]
or are tailored for particular types of equations [72]. We refer to [71] for an excellent
up-to-date review of time parallelism.

In this chapter, we propose a parallel-in-time solver for ODEs that relies on the well-
known Schur complement method in linear algebra. For linear (systems of) ODEs, the
approach can be understood as a Schur complement solver in time.

When the coarse problem is too large compared to the local problems, due to the
structure of the coarse problem, we can consider recursively the Schur complement strat-
egy, leading to multilevel implementations, in order to push forward scalability limits.
The method can be applied to θ-methods, discontinuous Galerkin (DG) methods, Runge-
Kutta (RK) methods, and Backward differentiation formula (BDF) methods. We also
note that the proposed method can also be understood as a parareal scheme in which the
coarse solver is automatically computed in such a way that the scheme is a direct method
(convergence in one iteration is assured). (The interpretation of the parareal method as
an approximation of the Schur complement problem has already been pointed out in
[65].) As a result, the proposed method solves the drawback of the parareal scheme,
i.e., its poor parallel efficiency, inversely proportional to the number of iterations being
required by the iterative algorithm. One of the messages of this work is to show that
the approximation of the Schur complement in parareal methods does not really pay the
price when (just by roughly multiplying by two the number of operations) one can have
a highly scalable direct parallel-in-time solver.

In order to extend these ideas to nonlinear partial differential equations (PDEs), we
consider two different strategies. First, we consider a global linearization of the problem
in time using, e.g., Newton’s method. We note that the idea of a global linearization
of nonlinear ODEs to exploit time-parallelism is not new. It was already considered by
Bellen and Zenaro in 1989 [33]. (In any case, the solvers proposed in [33] are different
from the ones presented herein. They are restricted to the Steffensen’s linearization
method, which leads to a diagonal problem per nonlinear iterations, where parallelization
can obviously be used.) After the linearization of the problem, we consider the Schur
complement solver commented above at every nonlinear iteration. A second strategy
consists in applying the nonlinear Schur complement strategy first, and next to consider
the linearization of such operator, leading to nested nonlinear iterations.

The parallel-in-time ideas in this chapter can naturally be blended with domain
decomposition (DD) ideas to design highly scalable space-time parallel solvers. Indeed,
we have combined these ideas with a multilevel balancing domain decomposition by
constraints (BDDC) preconditioner (see [98, 140]) in Chapter 6.
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Figure 5.1: Multilevel time partition of [0, T ]. The subindex in tβα
denotes the partition level, whereas the superindex denotes the time step
in such partition. In order to relate time values of two constitutive levels,
we use the notation tβα = t

m(β)
α−1 , i.e., the time value tβα corresponds to the

time step m(β) at the previous level.

The outline of the chapter is as follows. In Sect. 5.2, we state the problem. We
introduce a time-parallel direct method for linear ODEs based on the computation of a
multilevel time Schur complement in Sect. 5.3. In Sect. 5.4, we extend the method to
nonlinear ODEs, by combining first a Newton linearization step with a Schur complement
linear solver and next considering nonlinear Schur complement problems. We present
a detailed set of numerical experiments in Sect. 5.5, showing the excellent scalability
properties of the proposed methods. Finally, we draw some conclusions in Sect. 5.6.

5.2 Statement of the problem

In this section, we develop a parallel direct solver for the numerical approximation of
ODEs. We consider a system of ODEs of size munk:

du(t)

dt
+ κ(t,u(t)) = 0, u(t0) = u0, (5.1)

for t ∈ (t0 = 0, T ]. Let us assume that κ(·, ·) is continuous with respect to the first argu-
ment and Lipschitz continuous with respect to the second argument, and that existence
and uniqueness holds.

For the time interval [0, T ], we define a hierarhical multilevel partition as follows
(see Fig. 5.1 for a detailed illustration). We define a (level-0) time partition {0 =

t00, t
1
0, . . . , t

n0
0 = T} into n0 time elements. Next, we consider a (level-1) coarser time

partition {0 = t01, . . . , t
n1
1 = T} into n1 time subdomains (or level-1 elements), defined

by aggregation of elements at the previous level, i.e., for every i ∈ {0, . . . , n1} there
exists an m(i) ∈ {0, . . . , n0} such that ti1 = t

m(i)
0 . We proceed recursively, creating

coarser partitions for higher levels. We define the time element i at level-k as the time
interval (tik, t

i+1
k ).

We will present the method in a general way that is independent of the time inte-
gration scheme being used. We define the nonlinear operators Ai+1

0 : ui 7→ ui+1 for
i ∈ {0, . . . , n0 − 1}, such that, given the initial value ui, solves (5.1) in (ti0, t

i+1
0 ), and

provides ui+1 = u(ti+1
0 ). We conceptually state the solver at the continuous level, even
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though one can consider different time integration schemes instead, e.g., θ-methods, DG
methods, or RK methods. The use of BDF-type schemes requires some further ellabo-
ration. We refer to Sect. 5.3.1 for more details.

5.3 An ODE direct solver

In this section, we assume that κ(t, ·) is a linear operator. (The nonlinear extension is
described in Sect. 5.4.) In this case, it is easy to check that Ai+1

0 (·) is an affine mapping,
and we have Ai+1

0 (ui) = Φi+1
0 ui+gi+1

0 , where Φi+1
0 is a linear operator (an munk×munk

matrix). Both Φi+1
0 and gi+1

0 can be explicitly computed from κ(·, ·) and f for a given
time integration scheme. Thus, the global problem (5.1) for linear ODEs can be stated
in algebraic form as:

I
−Φ1

0 I
. . . . . .

−Φn0
0 I




u0
0

u1
0
...
un0

0

 =


u0

g1
0
...
gn0

0

 , (5.2)

where I is the identity matrix (of size munk ×munk). We can also represent the global
system (5.2) in compact notation with

K0u0 = g0, or equivalently

(
KII

0 KIΓ
0

KΓI
0 KΓΓ

0

)(
uI0
uΓ

0

)
=

(
gI0
gΓ

0

)
, (5.3)

where we have considered a segregation of degrees of freedom (DOFs) at level-0 u0 into
the interface DOFs uΓ

0 , namely the time step values that are also in the level-1 partition,
and the interior DOFs uI0. K0 is a 2-banded lower block-triangular matrix. In order
to define the Schur complement problem, we first consider an interior correction of the
problem at hand,

KII
0 vI0 = gI0, (5.4)

i.e., we solve the system (5.2) in the subspace of vectors that vanish in the level-1 time
values t01, . . . , t

n1
1 . The solution of (5.4) involves n1 independent local ODE problems:

solve for i = 0, . . . , n1 − 1
I

−Φ
m(i)+1
0 I

. . . . . .

−Φ
m(i+1)−1
0 I




v
m(i)
0

v
m(i)+1
0
...

v
m(i+1)−1
0

 =


0

g
m(i)+1
0
...

g
m(i+1)−1
0

 . (5.5)
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After the interior correction, we must solve the problem(
KII

0 KIΓ
0

KΓI
0 KΓΓ

0

)(
δuI0
uΓ

0

)
=

(
0

gΓ
0

)
, and compute uI0 = vI0 + δuI0. (5.6)

In order to solve (5.6), we define the following extension operator (usually denoted as the
harmonic extension operator in the frame of domain decomposition solvers for PDEs):(

KII
0 KIΓ

0

0 IΓ

)(
EI

0

EΓ
0

)
=

(
0

IΓ

)
, thus E0 =

(
−(KII

0 )−1KIΓ
0

IΓ

)
. (5.7)

Thus, using the fact that uΓ
0 = u1, the Schur complement of level-0 reads:

(KΓΓ
0 + KIΓ

0 EI
0)u1 = gΓ

0 −KIΓ
0 vI0, represented by K1u1 = g1. (5.8)

The Schur complement of the level-0 system is the level-1 problem. By construction,
the extension operator solution of (5.7) can be written as a block-diagonal matrix
E0 = diag(e(0), e(1), · · · , e(n1−1),I), which involves n1 ×munk independent local ODE
problems: solve for i = 0, . . . , n1 − 1

I
−Φ

m(i)+1
0 I

. . . . . .

−Φ
m(i+1)−1
0 I




(e(i))
m(i)
0

(e(i))
m(i)+1
0
...

(e(i))
m(i+1)−1
0

 =


I
0
...
0

 . (5.9)

After some manipulation, the Schur complement problem (5.8) can be written as:
I
−Φ1

1 I
. . . . . .

−Φn1
1 I




u0
1

u1
1
...
un1

1

 =


u0

g
m(1)
1
...

g
m(n1)
1

 , (5.10)

where Φi
1
.
= Φ

m(i)
0 e

m(i)−1
(i−1) and gi1

.
= g

m(i)
0 +Φ

m(i)−1
0 v

m(i)−1
0 . Thus, the Schur complement

matrix K1 at the next level has also the same structure as the original problem, i.e., it
is a ODE-type solver over the coarser level-1 time partition. The computation of the
interior correction, the extension operator E0, the Schur complement matrix K1, and the
Schur complement right-hand side g1 can readily be computed in parallel. In Alg. 3 (for
k = 0), all the steps to assemble the Schur complement problem are listed, indicating on
the left-hand side the line task corresponding level.

In a two-level implementation, i.e., ` = 1, the Schur complement problem (5.6)
would be computed in serial. It would finally lead to u0 = v0 + E0u1. This approach
leads to n1 indepedent level-0 problems of size n0

n1
and one coarse level-1 problem of

size n1. Clearly, when n1 increases, the coarse problem becomes the bottleneck of the
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Algorithm 3: Schur complement set-up (level-k)
Data: Kk, gk
Result: vk, Ek, Kk+1,gk+1

1: Compute the interior correction vk solution of (5.4), by solving the nk+1 local ODE
problems (5.5) for i = 0, . . . , nk+1 − 1 k − 1

2: Compute the extension operator Ek solution of (5.7), by solving the nk+1 ×munk problems
(5.9) for i = 0, . . . , nk+1 − 1, and compute KIΓ

k EI
0 and −KIΓ

k uIk in (5.8) k − 1
3: Assemble the Schur complement system (5.10), i.e., Kk+1 and gk+1 (see (5.8)) k − 1→ k

simulations. In order to push forward the scalability limits of this approach, we can
consider a multilevel Schur complement technique. When n1 exceeds n0

n1
, since (5.10)

has the same structure as the original system (5.2), one can consider the same Schur
complement approach for the level-1 system, leading to a three-level algorithm. We can
proceed recursively to include an arbitrary number of levels. In Alg. 4, we state the
multilevel Schur complement ODE solver. We comment on the parallel efficiency and
computational cost of this algorithm in Sect. 5.3.3.

Algorithm 4: Multilevel Schur complement ODE solver
Data: K0, g0

Result: u0 = K−1
0 g0

1: for k = 0, . . . , `− 1 do
2: Call Alg. 3 with (Kk,gk) to get (vk,Ek,Kk+1,gk+1) k, k + 1
3: end
4: Solve K`u` = g` `
5: for k = `− 1, . . . , 0 do
6: Compute uk = vk + Ekuk+1 k
7: end

5.3.1 Application to different time integrators

The previous approach can straightforwardly be used for θ-methods. For DG and RK
methods, we can require multiple intermediate stages to move from ti0 to ti+1

0 . In the
DG case, we have some additional time values per time element. We can consider that
all the element values but the last one are eliminated at the element level, using the
so-called static condensation technique. In this case, the resulting discrete problem can
be stated as in 5.2. The DG method being used only affects the expression of Φi+1

0 and
gi+1

0 . (We note that DG methods do not satisfy time causality at the element level, but
it does not affect the lower 2-banded block-triangular structure after the elimination of
“interior” element values.) We proceed analogously for multi-stage RK methods.

BDF schemes (of second and higher order) slightly differ from the fact that the
computation of the solution at a given time step not only requires value from the previous
time step, but some additional stages. For a BDF(X) scheme, the system matrix in (5.2)
is a (X+1)-banded lower block-triangular matrix. It affects the concept of interface nodes
Γ; to decouple the global problems into local problems, we require to increase the size of
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the interface X times. As a result, the coarse-scale space dimension is X times larger, as
well as the number of coarse space basis functions being computed. In this sense, high
order BDF schemes are be a bad choice when dealing with parallel computations, since
the interface among subdomains increases, with the corresponding computational cost,
due to a loss of locality with respect to the continuous problem. High order RK or DG
methods are better suited for time-parallel computations. In any case, after considering
the modification described above, the techniques proposed in this chapter can be applied
to BDF methods.

5.3.2 Parareal interpretation

The multilevel Schur complement solver defined in Alg. 4 can also be understood as
a (multilevel) parareal scheme. In the parareal scheme, we consider a coarse solver to
provide initial conditions to local fine solvers. Instead, in the Schur complement method,
one first computes the (fine) interior correction, which is required to the assembly of the
right-hand side in the coarse solver. The method above can be stated in a different way,
by defining the restriction operator F0 as follows:

(
FI

0 FΓ
0

)( KII
0 0

KΓI
0 IΓ

)
=

(
0

IΓ

)
, thus F0 =

(
−KΓI

0 (KII
0 )−1 IΓ

)
. (5.11)

Analogously to the extension operator E0, the computation of the restriction operator
is a block-diagonal matrix F0 = diag(I, fT(0), f

T
(1), · · · , f

T
(n1−1)), which involves n1 ×munk

independent local (backwards) ODE problems: solve for i = 0, . . . , n1 − 1
I −(Φ

m(i)+2
0 )T

I . . .
. . . −(Φ

m(i+1)
0 )T

I




f
m(i)+1
(i)

f
m(i)+2
(i)
...

f
m(i+1)
(i)

 =


0

0
...
I

 . (5.12)

The well-posedness of the backward problem is a direct consequence of the well-posedness
of its transpose, the forward problem. Thus, the Schur complement problem reads:

K1u1 = gΓ
0 + FI

0g
I
0 = g1.

The coarse parareal problem in the Schur complement method is of Petrov-Galerkin
type, using as coarse trial space the range of E0 and as coarse test space the range of
FT

0 , i.e,

K1 = F0K0E0, g1 = F0g0. (5.13)

It is easy to check that (5.8) and (5.13) are equivalent. The fine solver is simply the
interior correction (5.4). (We note that fine and coarse corrections are independent,
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since they are K0-orthogonal.). The definition of the coarse space is automatic and
the method is not an iterative but a direct solver. As a result, the method does not
suffer from the low parallel efficiency of parareal methods, which is proportional to the
inverse of parareal iterations [93]. Even though the implementation that involves the
computation of the trial and test coarse spaces is the one being used in non-symmetric
PDE solvers with inexact Schur complement preconditioning (see, e.g., [21]), it is not
convenient for ODE solvers, since it involves an additional fine solver.

Fig. 5.2 depicts forward and backward coarse functions for a test problem. The local
oscillations in the DG(1) and DG(2) schemes are due to the fact that time causality
does not hold inside the element. (We note that the previous developments have been
considered after eliminating (using element-wise solvers) all the element values but the
last one (in time).) Fig. 5.3 shows coarse level-1, fine level-0, and full solution for a
selected simple problem with different coarse DOFs position consideration.
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Figure 5.2: Coarse shape functions e(1) and f(1) (t11 = π/3) for the
simple transport operator du

dt . A partition of an interval [0, π] into three
subdomains is considered. Each subdomain is partitioned into 5 time
elements. Sub-intervals are depicted in consecutive different colour in
order to aid visualization, and dots aid to identify coarse DOFs position

(in the center of the element for DG(0)).

5.3.3 Parallel efficiency

Let us consider the multilevel Schur complement solver in Alg. 4 for a linear ODE. Using
the same approach as in multigrid (MG) methods, we can consider a fixed coarsening
ratio θ between subdomains, and leave free the number of levels ` required for a particular
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Figure 5.3: Decomposition of u0 into fine E0u0 and coarse u1 compo-
nent for the simple problem ∂tu = cos(t), on [0, π]. The time domain is
partitioned into 10 subdomains and each subdomain is an aggregation of

50 elements.

simulation with n0 time step values. The number of processors being used is assumed
to be equal to n1 = n0/θ, i.e., the number of subdomains at level-1, and the number of
time steps per processor at all levels is θ (at the last level it can be smaller). Thus, we
define ` + 1 = ceiling( logn0

log θ ), where ceiling(A) returns the least integer greater than or
equal to A.

Alg. 4 requires at levels 0, . . . , `−1 to solve 1+munk local linear ODE problems with
θ time steps per processor (see Alg. 3), one to compute the interior correction and munk

to compute the extension operator. One linear ODE with at most θ time steps must be
solved at the last level. The different levels must be computed in a sequential way.

Based on the solver described above, we can estimate the order of floating point
operations (FLOPs) required to solve the linear ODE. Sequentially, it is of the order
of FLOP0 ≈ n0(m2

unk + munk), since we require m2
unk + munk operations per time step.

On the other hand, the number of FLOPs required to compute the same problem in
parallel using Alg. 4 is the one needed to solve (1 + munk) problems of size n0, n0/θ,
. . ., n0/θ

`. Using the geometric sequence sum formula, we get FLOPp ≈ FLOP0(1 +

munk)(1 − 1
θ`+1 )(1 − 1

θ )−1 < FLOP0(1 + munk)(1 − 1
θ )−1, but these operations can be

performed in parallel exploiting distributed memory machines. With regard to time, the
total central processing unit (CPU) time of the multilevel Schur complement in Alg. 4 is
the aggregation of the CPU time of the solution of (1 +munk) linear ODEs with θ time
steps for all levels. Thus, the parallel CPU time is CPUp ≈ `θ(m2

unk +munk)(1 +munk),
whereas the serial CPU time is CPU0 ≈ n0(m2

unk + munk). As a result, the CPU time
linearly depends on the size of the global system in a very mild logarithmic way, i.e., it
increases with log n0 due to the expression of `, and the parallel algorithm will rapidly
lead to a shorter time-to-solution than the serial solver.1 As a result, the speed-up of
the proposed direct solver is S = CPU0/CPUp ≈ P`−1(1 + munk)−1. The speed-up is
quasi-linear (it only increases with log n0), and thus algorithmically strongly scalable.

1We note that the communications are not considered in the previous estimations. In any case, it has
been experimentally observed that the communication time in (incomplete) multilevel Schur complement
methods is small compared to the computation time up to almost half a million tasks in [23].
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Analogously, the method is algorithmically weakly scalable, because the total CPU time
does not depend on the number of processors or global system size (apart from the
logarithmic term).

5.4 Iterative solvers for nonlinear ODEs

In this section, we assume that κ(·, ·) is nonlinear. The nonlinear ODE (5.1) in (0, T ]

can be stated in compact form as A0(u0) = 0, which can also be split into interior and
interface time steps as follows: (

AI
0(u0)

AΓ
0 (u0)

)
= 0. (5.14)

We consider two different types of solvers for the nonlinear problem.

5.4.1 Newton-Schur complement methods

In order to solve the nonlinear ODE, we can use Newton’s method over the global-
in-time problem, and solve at every iteration a linear ODE using the multilevel Schur
complement in Alg. 4. We can compute the Jacobian matrix related to (5.14) around a
point ū0 as:

J 0(ū0)
.
=
∂A0

∂u0
(ū0) =

dū0

dt
+
∂K0

∂u0
(ū0), (5.15)

where we have used the fact that A0 has two terms, one related to the time derivative
and the other one related to κ(t, ·) (see 5.1). Thus, to solve (5.15) involves the solution
of a linear ODE of the form (5.2).

The resulting multilevel Newton-Schur complement solver for nonlinear ODEs is
stated in Alg. 5. Figure 5.4 shows the solution iterates using this algorithm for a
selected nonlinear problem with known analytic solution u = sin(t). Each solution up-
date obtained from a linearized problem is solved with the direct solver in Alg. 4 using
two levels, i.e., ` = 1. The nonlinear iterations of the Newton-Schur complement meth-
ods do not depend on the partition being used, since it is a linearization of the global
problem and a (parallel) direct solver is used at every nonlinear iteration. In any case,
the comparison against the sequential approach is more complicated here, since different
nonlinear iterations (local vs. global) are being used in every case. We note that we can
readily consider other iterative methods, e.g., Picard’s method or Anderson acceleration
techniques. In the case of Picard’s method, the computation of the Jacobian is not re-
quired. Instead, the operator A0 must be written as A0(u0) = Ã0(u0)u0 and use at
every nonlinear iteration the linear operator Ã0(ū0) instead of J 0(ū0). In Sect. 5.5, we
consider a hybrid Picard-Newton nonlinear solver.
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Figure 5.4: Iterations for the solution of the nonlinear equation
∂tu − u2 = cos(t) − sin2(t) on t = [0, 2π] using Newton’s method and
the parallel ODE direct solver. Fine and coarse solutions for the first
nonlinear solution update δu1. The time interval is discretized with 500
time steps divided into 15 subdomains. DG(0) (equivalent to Backward-

Euler) is used.

Algorithm 5: Newton-Schur complement solver
Data: u0

Result: u0 such that A0(u0) = 0
1: z← u0 % Initial guess k
2: while not convergence do
3: Solve problem J 0(z)y = −A0(z) using the multilevel Schur complement Alg. 4 with

(J 0(z),−A0(z)) 0, . . . , `
4: Assign z← z + y k

5: end
6: Return z k, . . . , `

5.4.2 Nonlinear Schur complement-Newton methods

Following the ideas in nonlinear domain decomposition (see, e.g., [49, 87]), one can state
the problem as a nonlinear Schur complement at a given level and next its linearization
using, e.g., Newton’s method. In order to present the problem, we consider the two-level
case. Later, the algorithm will be extended to multiple levels. Let us define the level-1
nonlinear Schur complement problem

A1(u1) = AΓ
0 (E0(u1)), where E0(u1)

.
= [EI0(u1),u1]T ,

is the nonlinear harmonic extension operator, solution of

AI
0(E0(u1))

.
= AI

0([EI0(u1),u1]T ) = 0. (5.16)

We note that the computation of E0(u1) involves n1 independent local nonlinear ODE
solvers, using the same rationale as for the linear case. We denote by [i] the time steps
at level-0 in the time interval (ti1, t

i+1
1 ), i.e., tm(i−1)+1

0 , . . . , t
m(i)−1
0 . Thus, (5.16) can be

computed as:

A[i]
0 (E [i]

0 (ui1)) = 0, for i = 0, . . . , n1 − 1. (5.17)
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Next, we apply linearization over the level-1 nonlinear Schur complement problem, e.g.,
Newton’s method. In this case, using the implicit function theorem (see [87]), we know
that

J 1(ū1)
.
=
∂A1

∂u1
(ū1) (5.18)

= J ΓΓ
0 (E0(ū1))−J IΓ

0 (E0(ū1))J II
0 (E0(ū1))−1J IΓ

0 (E0(ū1)),

i.e., the level-1 Schur complement matrix of J 0(E0(ū1)). The computation of the Schur
complement operator can be done in parallel, as described in Sect. 5.3. As a result,
the only difference between the Newton-Schur complement Alg. 5 and the nonlinear
Schur complement-Newton Alg. 7 (for k = 1) is the nonlinear interior correction being
computed in the second case (stated in Alg. 6). Using recursion, we can extend the
nonlinear Schur complement-Newton algorithm to arbitrary levels. In Alg. 7 we state
the algorithm to solve the nonlinear Schur complement at level-k using Newton’s method
for both the nonlinear extensions in Alg. 6 and the problem itself. Thus, the resulting
method involves nested Newton iterations. Let us describe these algorithms in detail.

We first consider the nonlinear harmonic extension at level-k. Since the values at
the previous level are known, i.e., uΓ

k is fixed, the computation of Ak(uk) = 0 is to be
computed solving local nonlinear ODE problems (5.17) (at level-k). Alg. 6 states the
computation of such nonlinear ODE problem for a given level k and level-k time element
i, i.e., (tik, t

i+1
k ). We can solve the local nonlinear ODE using Newton’s method. In any

case, unless k = 0, we do not have an explicit expression of the nonlinear ODE. Thus,
in order to compute the Jacobian (Eq. (5.18) for level k), we require to compute the
k − 1 level extension in i. It leads to the deployment of card([i]) nonlinear ODEs at the
level k − 1 in elements j ∈ [i]. Again, if the next level is not the level-0, we have to
proceed recursively to solve these local problems. All these tasks are described in Alg.
6.

Once we have defined the nonlinear extension operator, we can state the level-k
nonlinear Schur complement solved with Newton’s method. Using the expression of the
Jacobian in (5.18) (for level k), we require to compute the nonlinear extension at the next
level, using Alg. 6 at all level-k elements. It leads to a level-k linear ODE to be solved,
for which we can use the multilevel Schur complement approach in Alg. 4, exploiting lev-
els k, . . . , ` in its solution. As commented above, the level-1 nonlinear Schur complement
consists in Newton iterations like in Alg. 5, but with the main difference that one per-
forms a nonlinear interior correction of the values at level-0, solving the nonlinear ODE
locally. The level-k nonlinear Schur complement requires nested nonlinear iterations to
perform the nonlinear harmonic extension at that level, but the Jacobian problem to be
solved only involves levels k, . . . , `. As commented above, other linearization techniques
can readily be used.
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Algorithm 6: Nonlinear harmonic extension
Data: k, i, v, v0

Result: E [i]
k (v), J [i]

k (E [i]
k (v)), −A[i]

k (E [i]
k (v))

1: if k = 0 then
2: Solve A[i]

0 (E [i]
0 (v)) = 0 using Newton’s method (local nonlinear ODE), in order to get

E [i]
0 (v) 0

3: Compute J [i]
0 (E [i]

0 (v)), −A[i]
0 (E [i]

0 (v)) 0
4: else
5: % Solve A[i]

k (E [i]
k (v))) = 0 using Newton’s method as follows

6: z[i] = v
[i]
0 % Initial guess k

7: while not convergence do
8: for j ∈ [i] do
9: Solve A[j]

k−1(E [j]
k−1(zj)) = 0 using Alg. 6 with (k − 1, j, zj ,v0) k − 1

10: Compute J [j]
k−1(E [j]

k−1(zj)) and −A[j]
k−1(E [j]

k−1(zj)) k − 1

11: end
12: Assemble J [i]

k (z) and −A[i]
k (z) using the local contributions in l.10 and formula

(5.18) k − 1→ k

13: Solve J [i]
k (z)y = −A[i]

k (z) and assign z← z + y k

14: end
15: Return (z, J [i]

k (z),−A[i]
k (z)) k

16: end

Algorithm 7: level-k nonlinear Schur complement-Newton solver
Data: k, u0, u0

0

Result: u0 such that A0(u0) = 0
1: z0 = u0

0 % Initial guess k
2: while not convergence do
3: for i = 0, . . . , nk do
4: Compute nonlinear harmonic extension E [i]

k−1(zik) and the local contributions
J [i]
k−1(E [i]

k−1(zik)), −A[i]
k−1(E [i]

k−1(zik)) using Alg. 6 with (k − 1, i, zik, z) k − 1, . . . , 0

5: end
6: Assemble the level-k Schur complement around Ek−1(zk) using the local contributions

in l.4 and formula (5.18) k − 1→ k
7: Solve problem J k(zk)y = −Ak(zk) using the multilevel Schur complement Alg. 4 with

(J k(zk),−Ak(zk)) k, . . . , `
8: Assign zk ← zk + y k

9: end
10: Return z0 k, . . . , `
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5.5 Numerical experiments

5.5.1 Experimental set-up

In this section we evaluate the weak scalability of the proposed methods. We consider
the time interval (0, T ], which is divided into n0 time elements. The parallel solver relies
on a level-1 coarser time partition into n1 time elements (time subdomains); thus, every
level-1 time element is defined by aggregation of n0

n1
level-0 time elements. n1 processors

are used for the simulations in all cases. One higher level of coarsening gives a partition
into n2 elements; analogously, every level-2 time element is defined by aggregation of
n1
n2

level-1 time elements. See Fig. 5.1 for a graphical illustration. Only a subset of n2

processors have duties at level-2. Two-level methods involve level-0 and level-1 duties,
whereas the three-level methods also involve level-2 duties. Higher levels have not been
needed at the scales considered below but could be needed at largest scales to keep good
weak scalability.

Three different approaches are considered for solving the Lotka-Volterra system of
nonlinear ODEs: 1) the pure sequential approach (no parallelism is exploited, using lin-
earization at every time step), 2) the Newton-Schur complement approach (that involves
a global linearization) in Alg. 5, and 3) the 1-level nonlinear Schur complement-Newton
approach in Alg. 7. Time integration is performed with the Backward Euler scheme with
a constant time step. The linearization of the nonlinear problems is performed with a
hybrid Picard-Newton technique, where Newton’s method is activated when the discrete
L2-norm of the residual is below 102. (Even though all the algorithms have been stated
using the full Newton’s method for simplicity, its extension to Picard linearization (and
hybrid approaches) is straightforward.) Sequentiality is exploited at the local level in
each processor for all the different approaches (level-0 and higher level systems are lower
block-triangular; see Eqs. 5.2 and 5.6, respectively). The stopping criteria for the se-
quential and Newton-Schur complement solvers is the reduction of the discrete L2-norm
of the nonlinear local/global residual below an absolute value of 10−8. For the third
approach, the global residual tolerance is fixed to 10−8, while local nonlinear problems
and Schur complement solutions converge below 10−10.

The Lotka-Volterra equations are a system of nonlinear ODEs frequently used to
describe the dynamics of biological systems in which two species interact, one as a
predator and the other one as a prey. Our unknown functions, namely (u, v), represent
the evolution in time of the number of units of each one of the species considered. The
system of nonlinear, first order, differential equations reads

du(t)

dt
= αu− βuv (5.19)

dv(t)

dt
= δuv − γv (5.20)

where α, β, γ, δ are positive parameters that model the interaction of the two species.
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Figure 5.5: Solution to the Lotka-Volterra equations when different
scenarios are considered.

The system is solved for t ∈ (0, T ]. Appropriate initial conditions (initial number of
preys and predators) must be provided, i.e., u(0), v(0). Out of these equations, and
graphically illustrated with an example in Fig. 5.5, if no interaction between the species
is modelled (uncoupled linear equations), the preys grow in number while the predators
decrease 5.5a. In the second case, the species interaction leads to the frequency plot
5.5b.

5.5.2 Two-level solvers

In this subsection, weak scalability results are presented for the solution of the Lotka-
Volterra equations with a two-level method. The local problem size at level-0 is fixed
to θ = n0

n1
. We consider a weak scalability analysis in which we keep fixed the local

problem size n0
n1

and increase n1, i.e., the number of subdomains (level-1 time elements).
Thus, we are increasing the global time steps being used to solve the ODE. The Schur
complement at level-1 has size n1. We stop the analysis when n1 ≈ n0

n1
, since we would

require a three-level algorithm (see Sect. (5.3.3)).
Figs. 5.6 and 5.7 show a comparison between the weak scalability of the sequential

solver (1 processor performs sequentially the full computation) and the parallel solvers
for three different local problem sizes n0

n1
. In these plots, the parallel solvers computing

times are an aggregation of the local solvers (level-0) and the coarse solver (level-1) CPU
times. The number of iterations for the sequential approach is an average value for all
nonlinear time step problems. For parallel approaches, it shows the number of global
nonlinear iterations required to meet the convergence requirements.

Out of these plots, we can draw some conclusions. First, parallel approaches reduce
from the very beginning the time-to-solution of the simulations. Second, and most
important, excellent weak scalability is observed for both parallel solvers; we can solve
X times more time steps increasing X times the number of tasks, in approximately the
same CPU time.

Regarding the Newton-Schur complement approach, one can observe that the CPU
time at level-1 is always less than half the CPU time at level-0. It is due to the fact
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Figure 5.6: Weak scalability for local problem size n0/n1 = 50. The
problem is solved with α = 3, β = 0.2, δ = 0.1, γ = 2 and t ∈ (0, 3].

Initial guess u(0) = 10, v(0) = 40.
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Figure 5.7: Weak scalability for n0/n1 = 100. The problem is solved
with α = 3, β = 0.2, δ = 0.1, γ = 2 and t ∈ (0, 3]. Initial guess u(0) = 10,

v(0) = 40

that we stop the scalability analysis before the coarse space is larger than the level-0
local problems and the fact that two local solvers are required at level-0 (see Alg. 3) per
nonlinear iteration. For the nonlinear Schur complement-Newton approach, the number
of global iterations to converge is lower in most cases, but it involves nested nonlinear
iterations. The Newton-Schur complement approach is slightly faster than the nonlinear
Schur complement-Newton one. In any case, it can strongly be affected by the tolerances
being chosen in the nonlinear Schur complement-Newton method. Clearly, increasing the
load per processor (local problem sizes), the benefit of the parallel solvers compared to
the sequential approach becomes more notorious.

Results are presented up to the limit of n1 ≈ n1
n0
, where the coarse problem size grows

above the local problem sizes. Aiming to exploit further concurrency, the next section is
devoted to show numerical results in a multilevel approach.

5.5.3 Multilevel solver

The multilevel (three-level) approach is be activated when the coarse problem size exceeds
the local problem size. The first coarsening leads to a computation with n1 level-0 local
problems of size n0

n1
and a coarse problem of size n1 (level-1 partition), such that n1 >

n0
n1
.
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Figure 5.8: Three-level (` = 2) Schur complement solver with different
local sizes.

At this point, another level of coarsening is introduced to exploit further concurrency.
We consider a coarsening of the level-1 time partition into n2 local problems of size
n1
n2

and a coarse problem of size n2 such that n2 <
n1
n2

(beyond this limit, a four-level
method would be required). In the following plots, the parallel solvers computing times
are an aggregation of the level-0 local solver CPU time (n1 parallel tasks), the level-1
local solver CPU time (n2 parallel tasks) and the level-2 global solver CPU times (Schur
complement sequential solve in one processor).

In Fig. 5.8, CPU times for the three-level (i.e., ` = 2) Schur complement solve
are shown. Out of the plots, it can be observed that local solves computing times for
the level-0 and level-1 tasks are of the same order, since local problem sizes is kept
constant for both levels. The Schur complement computation (level-2) time grows with
the number of processors, as expected. Again, the level-2 the Schur complement CPU
time in Fig. 5.8 does not exceed half the CPU time of level-0 and level-1 local solves
CPU time, due to the same reasons commented above, since n2 <

n1
n2
. Beyond this limit,

i.e., for n2 >
n1
n2
, another level would be needed.

In Fig. 5.9, a comparison between the two-level (` = 1) and the three-level (` = 2)
approaches is presented. In the first part of the plot, results are shown for the two-level
approach only, since the size of the level-1 problem is still below the local sizes of the level-
0 problems. The three-level technique is activated when the size of the coarse problem is
two times the size of the local problems of the finest level, leading to a level-2 partition
into two time elements. Out of the plots, the multilevel approach shows much better
efficiency than the two-level approach. It is important to note that to include additional
levels do not affect nonlinear convergence of Newton-Schur and 1-level nonlinear Schur
complement-Newton methods, but it has benefits in the computation of the linear ODE
systems. As a result, more levels show better computing times in these approaches.

In Fig. 5.10, an adaptive coarsening at level-2 is presented. Since n2 <
n1
n2

in the
plot, we can reduce the coarsening from level-1 to level-2 to better balance the problems
at these levels. It implies to enforce that n2 = n1

n2
. As expected, this choice is more

efficient compared to the fixed size approach, when the size of the level-2 problem is
below level-1 local problem sizes.



120 Chapter 5. Nonlinear parallel-in-time solvers for ordinary differential equations

P

100 200 300 400 500

W
a
ll 

c
lo

c
k
 t
im

e
 (

s
)

0

0.005

0.01

0.015

0.02

0.025

0.03
Two levels, level-0+level-1

Two levels, level-0

Three levels, level-0+level-1+level-2

Three levels, level-0+level-1

(a) n0/n1 = 50, n1/n2 = 50.

P

200 400 600 800 1000

W
a
ll 

c
lo

c
k
 t
im

e
 (

s
)

0

0.01

0.02

0.03

0.04

0.05

0.06
Two levels, level-0+level-1

Two levels, level-0

Three levels, level-0+level-1+level-2

Three levels, level-0+level-1

(b) n0/n1 = 100, n1/n2 = 100.

Figure 5.9: Comparison between the two-level (` = 1) and the three-
level (` = 2) Schur complement solver with different local sizes. Times
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Figure 5.10: Comparison between the fixed coarsening and the adaptive
coarsening between level-1 and level-2 for different level-0 local problem

sizes. The adaptive coarsening uses n2 = n1/n2 =
√
n1.

5.6 Conclusions

In this chapter, we have considered a parallel-in-time multilevel direct method and two
iterative parallel-in-time nonlinear solvers for the numerical approximation of ODEs
using parallel computations. The time-parallel direct method computes explicitly multi-
level Schur complements. It allows for arbitrary high levels of concurrency and has very
good theoretical speed-up ratios compared to traditional parareal methods. The method
can be considered a parareal method with an automatic definition of the coarse solver.
However, such definition makes the method to converge in one iteration, i.e., it is a direct
method, and thus does not suffer from the poor parallel efficiency of parareal schemes.
The proposed scheme can be applied to θ-methods, DG methods, RK methods, and BDF
methods. Next, we consider nonlinear ODEs, and propose two different strategies. First,
we consider a Newton method over the global nonlinear ODE, using the multilevel Schur
complement solver at every nonlinear iteration. Second, we state the global nonlinear
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problem in terms of the nonlinear Schur complement (at an arbitrary level), and perform
nonlinear iterations over it. Such approach leads to nested nonlinear multilevel iterations.

A detailed set of numerical experiments has been considered. Out of these results,
the proposed methodology is observed to exhibit excellent scalability properties. The
methods are weakly scalable in time, i.e., increasing X times the number of MPI tasks
one can solve X times more time steps, in approximately the same amount of time,
which is a key property to reduce time-to-solution in ODE simulations with heavy time
stepping.

In Chapter 6, we will explore the combination of these ideas with space-parallel
highly scalable BDDC implementations [18, 23, 22] to design space-time preconditioners
for transient PDEs.





Chapter 6

Space-Time Balancing Domain
Decomposition by Constraints
preconditioners

In this chapter, we propose two-level space-time domain decomposition preconditioners
for parabolic problems discretized using finite elements. They are motivated as an exten-
sion to space-time of balancing domain decomposition by constraints (BDDC) precondi-
tioners. The key ingredients to be defined are the sub-assembled space and operator, the
coarse degrees of freedom (DOFs) in which we want to enforce continuity among subdo-
mains at the preconditioner level, and the transfer operator from the sub-assembled to
the original finite element space. With regard to the sub-assembled operator, a pertur-
bation of the time derivative is needed to end up with a well-posed preconditioner. The
set of coarse DOFs includes the time average (at the space-time subdomain) of classical
space constraints plus new constraints between consecutive subdomains in time. Numer-
ical experiments show that the proposed schemes are weakly scalable in time, i.e., we
can efficiently exploit increasing computational resources to solve more time steps in the
same total elapsed time. Further, the scheme is also weakly space-time scalable, since it
leads to asymptotically constant iterations when solving larger problems both in space
and time. Excellent wall clock time weak scalability is achieved for space-time parallel
solvers on some thousands of cores.

6.1 Introduction

At the beginning of the next decade supercomputers are expected to reach a peak perfor-
mance of one exaflop/s, which implies a 100 times improvement with respect to current
supercomputers. This improvement will not be based on faster processors, but on a
much larger number of processors (in a broad sense). This situation will certainly have
an impact in large scale computational science and engineering. Parallel algorithms
will be required to exhibit much higher levels of concurrency, keeping good scalability
properties.
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In mesh-based implicit simulations, e.g., finite element (FE), finite volume, or finite
difference methods, one ends up with a linear system to be solved. The linear system
solve is a bottleneck of the simulation pipeline and weakly scalable algorithms require
complex mathematical approaches, like algebraic multigrid (AMG) or multilevel domain
decomposition (DD) techniques. When dealing with transient problems, since informa-
tion always moves forward in time, one can exploit sequentiality. At every time step
one has to solve a spatial problem before proceeding to the next step and parallelism
can be exploited at the linear system solve. Although parallel-in-time methods are be-
coming popular, the sequential-in-time approach is the standard procedure in scientific
simulations. However, the tremendous amounts of parallelism to be exploited in the near
future certainly motivates to change this paradigm, since further concurrency opportu-
nities must be sought.

As presented in Chapter 5, in transient simulations, a natural way to go is to exploit
concurrency not only in space but also in time. The idea is to develop space-time
solvers that do not exploit sequentiality (at least at the global level) and thus provide
the solution in space at all time values in one shot. Space-time parallelism is a topic
that is receiving rapidly increasing attention. Different iterative methods have been
considered so far. One approach is to use the Parareal method [93], which is a time-
only parallel algorithm, combined with a parallel space preconditioner (see, e.g., [73]).
Another space-time algorithm is PFASST [63, 100], which combines a spectral deferred
correction time integration with a nonlinear multigrid (MG) spatial solver; the viability
of the PFASST method has been proved in [132] at JUQUEEN. Weakly scalable space-
time AMG methods can be found in [74, 145, 65].

The multilevel (ML) BDDC preconditioner [98, 140] has recently been proved to be
an excellent candidate for extreme scale simulations in [23], where a recursive implemen-
tation that permits overlapping among communication and computation at all levels has
scaled up to almost half a million cores and two million subdomains (MPI tasks), for
both structured and unstructured meshes with tens of billions of elements. The key in-
gredient of these methods relies on the definition of a FE space with relaxed inter-element
continuity. These spaces are defined by choosing the quantities to be continuous among
processors, i.e., the DOFs [57]. As far as we know, scalable DD methods in space-time
have not been considered so far.

In this chapter, we develop weakly scalable space-time preconditioners based on BDDC
methods. In order to do that, we extend the key ingredients in the space-parallel BDDC
framework, namely the sub-assembled space and operator, coarse DOFs, and transfer
operators, to space-time. We prove that the resulting method only involves a set of
well-posed problems, and time causality can still be exploited at the local level. We have
solved a set of linear and nonlinear problems that show the excellent weak scalability of
the proposed preconditioners.

The outline of the chapter is as follows. In Sect. 6.2 we set the problem and introduce
notation. In Sect. 6.3 we introduce the classical space-parallel BDDC preconditioners.
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In Sect. 6.4 we develop space-time (ST) BDDC (STBDDC) preconditioners. In Sect.
6.5 we present a detailed set of numerical experiments showing the scalability properties
of the proposed methods. Finally, in Sect. 6.6 we draw some conclusions.

6.2 Problem setting

In this section, we introduce the problem to be solved, the partition of the domain
in space and time, and the space and time discretization. In the sequel, calligraphic
letters are used for operators. M denotes mass matrix operators related to the time
derivative discretization, K is used for the rest of terms in the PDE operator, and A is
used for the sum of these two operators. Given an operator A, we will use the notation
A(u, v)

.
= 〈Au, v〉. Uppercase letters (V, . . .) are used for (FE-type) functional spaces

whereas functions are represented by lowercase letters (v, . . .). We use classical functional
analysis notation for Sobolev spaces.

6.2.1 Domain partitions

We consider a bounded space-time domain Ω × (0, T ], where Ω is an open polyhedral
domain Ω ⊂ Rd, d being the space dimension. Let us construct two partitions of Ω, a
fine partition into elements and a coarse partition into subdomains. The partition of Ω

into elements is represented by θ. In space, elements e ∈ θ are tetrahedra/hexahedra
for d = 3 or triangles/quadrilaterals for d = 2. The coarse partition Θ of Ω into
subdomains is obtained by aggregation of elements in θ, i.e., there is an element partition
θω

.
= {e ∈ θ : e ⊂ ω} ⊂ θ for any ω ∈ Θ. The interface of the subdomain partition is

Γ
.
= ∪ω∈Θ∂ω \ ∂Ω.
For the time interval (0, T ], we define a time partition {0 = t0, t1, . . . , tK = T} into

K time elements. We denote the k-th element by δk
.
= (tk−1, tk], for k = 1, . . . ,K.

6.2.2 Space-time discretization

Let us consider as a model problem the following transient convection-diffusion-reaction
(CDR) equation: find u ∈ H1(Ω) such that

∂tu−∇ · ν∇u+ β · ∇u+ σu = f on Ω, almost everywhere in (0, T ], (6.1)

u = g in ∂Ω, u(0, x) = u0,

where ν and σ are positive constants, β ∈ Rd, and f ∈ H−1(Ω). We supplement this
system with the initial condition u(0) = u0. Homogeneous Dirichlet data is assumed
for the sake of clarity in the exposition, but its extension to the general case is obvious.
Besides, let us consider β = 0 and σ = 0 for simplicity in the exposition of the algorithm.
In Sect. 6.5 we will take a nonlinear viscosity ν(u) = ν0|∇u|p (with p ≥ 0 and ν0 > 0),
i.e., the transient p-Laplacian problem.
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For the space discretization, we use H1-conforming FE spaces on conforming meshes
with strong imposition of Dirichlet conditions. The discontinuous Galerkin (DG) case
will not be considered in this work, but we refer to [60] for the definition of BDDC
methods for DG discretizations. We define V̄ ⊂ H1

0 (Ω) as the global FE space related
to the FE mesh θ. Further, we define the FE-wise operators:

Me(u, v)
.
=

∫
e
uv, Ke(u, v)

.
=

∫
e
ν∇u · ∇v,

Ae(u, v)
.
=Me(u, v) + |δk|Ke(u, v).

The global FE problem Ā : V̄ → V̄ can be written as the sum of element contributions,
i.e.,

Ā(u, v)
.
=
∑
e∈θ
Ae(u, v), for u, v ∈ V̄ . (Analogously for M̄ and K̄.)

In time, we make use of a collocation-type method of lines. For the sake of clarity,
we will use the Backward-Euler time integration scheme. In any case, the resulting
preconditioner can readily be applied to any θ-method or Runge-Kutta method. We are
interested in solving the following fully discrete system: given u(t0) = 0, find at every
time step k = 1, . . . ,K the solution u(tk) ∈ V̄ of

Āu(tk) = M̄u(tk) + |δk|K̄u(tk) = ḡ(tk), for any v ∈ V̄ , (6.2)

with ḡ(tk)
.
= |δk|f̄(tk) + M̄u(tk−1) ∈ V̄ ′, where V̄ ′ denotes the dual space of V̄ . Non-

homogeneous boundary conditions can be enforced by simply modifying the right-hand
side at t1, i.e., ḡ(t1)

.
= |δk|f̄(t1) + M̄u0 ∈ V̄ ′. Such imposition of boundary conditions,

i.e., by enforcing homogeneous conditions in the FE space plus the modification of the
right-hand side, is better suited for the space-time framework. (We note that this is the
way strong Dirichlet boundary conditions are imposed in FE codes.)

6.3 Space BDDC preconditioning

In this section, we present first a parallel solver for the transient problem Eq. (6.2), which
combines a sequential-in-time approach with a space-parallel BDDC preconditioned
Krylov solver at every time step [57]. It will serve to introduce space-parallel BDDC
methods and related concepts that will be required in the space-time section. BDDC
preconditioners involve the definition of three key ingredients: (1) a sub-assembled prob-
lem that involves independent subdomain corrections, (2) a set of coarse DOFs and the
corresponding subspace of functions with continuous coarse DOFs among subdomains,
and (3) the interior correction and transfer operators. Let us elaborate these ingredients.
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6.3.1 Sub-assembled problem

Non-overlapping DD preconditioners rely on the definition of a sub-assembled FE prob-
lem, in which contributions between subdomains have not been assembled. In order to
do so, at every subdomain ω ∈ Θ, we consider the FE space Vω associated to the element
partition θω with homogeneous boundary conditions on ∂ω ∩ ∂Ω. One can define the
subdomain operator Aω(u, v) =

∑
e∈θω Ae(u, v), for u, v ∈ Vω. (Analogously for Mω

and Kω.)
Subdomain spaces lead to the sub-assembled space of functions V .

= Πω∈ΘVω. For
any u ∈ V , we define its restriction to a subdomain ω ∈ Θ as uω. Any function u ∈ V can
be represented by its unique decomposition into subdomain functions as {uω ∈ Vω}ω∈Θ.
We also define the sub-assembled operator A(u, v)

.
= Πω∈ΘAω(uω, vω). (Analogously for

M and K.)
With these definitions, V̄ can be understood as the subspace of functions in V that

are continuous on the interface Γ, and Ā can be interpreted as the Galerkin projection
of A onto V̄ . We note that θ and the FE type defines V̄ , whereas Θ is also required to
define the local spaces {Vω}ω∈Θ and the sub-assembled space V , respectively.

At this point, we can state the following sub-assembled problem: given g ∈ V ′, find
u ∈ V such that

Aωuω =Mωuω + |δk|Kωuω = gω, ω ∈ Θ. (6.3)

With the previous notation, we can write the sub-assembled problem in a compact
manner as Au = g.

6.3.2 Coarse DOFs

A key ingredient in DD preconditioners is to classify the set of nodes of the FE space
V̄ . The interface ∂e of every FE in the mesh θ can be decomposed into vertices, edges,
and faces. By a simple classification of these entities, based on the set of subdomains
that contain them, one can also split the interface Γ into faces, edges, and vertices (at
the subdomain level), that will be called geometrical objects. We represent the set of
geometrical objects by Λ. In all cases, edges and faces are open sets in their corresponding
dimension. By construction, faces belong to two subdomains and edges belong to more
than two subdomains in three-dimensional problems. This classification of Ω into objects
automatically leads to a partition of interface DOFs into DOF objects, due to the fact
that every DOF in a FE does belong to only one geometrical entity. These definitions
are heavily used in DD preconditioners (see, e.g., [138, p. 88]).

Next, we associate to some (or all) of these geometrical objects a coarse DOF. In
BDDC methods, we usually take as coarse DOFs mean values on a subset of objects ΛO.
Typical choices of ΛO are ΛO

.
= ΛC , when only corners are considered, ΛO

.
= ΛC ∪ ΛE ,

when corners and edges are considered, or ΛO
.
= Λ, when corners, edges, and faces are

considered. These choices lead to three common variants of the BDDC method referred
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as BDDC(c), BDDC(ce) and BDDC(cef), respectively. This classification of DOFs into
objects can be restricted to any subdomain ω ∈ Θ, leading to the set of subdomain
objects ΛO(ω).

With the classification of the interface nodes and the choice of the objects in ΛO,
we can define the coarse DOFs and the corresponding BDDC space. Given an object
λ ∈ ΛO(ω), let us define its restriction operator τωλ on a function u ∈ Vω as follows:
τωλ (u)(ξ) = u(ξ) for a node ξ that belongs to the geometrical object λ, and zero otherwise.
We define the BDDC space Ṽ ⊂ V as the subspace of functions v ∈ V such that the
constraint ∫

λ
τωλ (vω) is identical for all ω ∈ neigh(λ), (6.4)

where neigh(λ) stands for the set of subdomains that contain the object λ. (The integral
on λ is just the value at the vertex, when λ is a vertex.) Thus, every λ ∈ ΛO defines
a coarse DOF value Eq. (6.4) that is continuous among subdomains. Further, we can
define the BDDC operator Ã as the Galerkin projection of A onto Ṽ .

6.3.3 Transfer operator

The next step is to define a transfer operator from the sub-assembled space V to the
continuous space V̄ . The transfer operator is the composition of a weighting operator
and a harmonic extension operator.

1. The weighting operator W takes a function u ∈ V and computes mean values on
interface nodes, i.e.,

Wu(ξ)
.
=

∑
ω∈neigh(ξ) uω(ξ)

|neigh(ξ)|
, (6.5)

at every node ξ of the FE mesh θ, where neigh(ξ) stands for the set of subdomains
that contain the node ξ. It leads to a continuous function Wu ∈ V̄ . It is clear
that this operator only modifies the DOFs on the interface. Other choices can be
defined for non-constant physical coefficients.

2. Next, let us define the bubble space V0
.
= {v ∈ V : v = 0 on Γ} and the Galerkin

projection A0 of A onto V0. We also define the trivial injection I0 from V0 to V̄ .
The harmonic extension reads as Ev .

= (I − I0A−1
0 IT0 Ā)v. The computation of

A−1
0 involves to solve problem Eq. (6.3) with homogeneous boundary conditions

on Γ. This operator corrects interior DOFs only.

The transfer operator Q : V → V̄ is defined as Q .
= EW.

6.3.4 Space-parallel preconditioner

With all these ingredients, we are now in position to define the BDDC preconditioner.
This preconditioner is an additive Schwarz preconditioner (see, e.g. [138, chap. 2]), with
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corrections in V0 and the BDDC correction in Ṽ with the transfer Q. As a result, the
BDDC preconditioner reads as:

B .
= I0A−1

0 I
T
0 +QÃ−1QT . (6.6)

6.4 Space-time BDDC preconditioning

As commented in Sect. 6.1, the huge amounts of parallelism of future supercomputers
will require to seek for additional concurrency. In the simulation of Eq. (6.2) using the
space-parallel preconditioner Eq. (6.6), we are using a sequential-in-time approach by
exploiting time causality. The objective of this section is to solve Eq. (6.2) at all time
steps in one shot, by using a space-time-parallel preconditioner and a Krylov subspace
method for non-symmetric problems. In order to do so, we want to extend the BDDC
framework to ST.

In the following, we will use bold symbols, e.g., u, V , or A, for space-time functions,
functional spaces, and operators, respectively. I is the identity matrix, which can have
different dimension in different appearances.

First, we must start with a space-time partition of Ω × (0, T ]. We consider a time
subdomain partition by aggregation of time elements, {0 = T0, T1, . . . , TN = T} into N
time subdomains. We denote the n-th subdomain as ∆n

.
= (Tn−1, Tn], for n = 1, . . . , N .

By definition, ∆n admits a partition into Kn time elements {Tn−1 = t0n, . . . , t
Kn
n = Tn}.

Next, we define the space-time subdomain partition as the Cartesian product of the space
subdomain partition Θ and the time subdomain partition defined above; for every space
subdomain ω and time subdomain ∆n, we have the space-time subdomain ωn

.
= ω×∆n.

The global space of continuous space-time functions in which we want to solve
Eq. (6.2) is the FE space V̄ of spatial functions times K+1 time steps, i.e., V̄ .

= [V̄ ]K+1,
constrained to zero initial condition. Thus, by definition, u ∈ V̄ can be expressed as
u = (u(t0) = 0, u(t1), . . . , u(tK)), and the original problem Eq. (6.2) (for all time step
values) can be stated in a compact manner as

Āu = f̄ , in V̄ . (6.7)

In order to define the STBDDC preconditioner for Eq. (6.7), we will use the same struc-
ture as above, extending the three ingredients in Sect. 6.3 to the space-time case.

6.4.1 Sub-assembled problem

Using the space-time partition above, the trial (and test) space for the local space-
time subdomain ωn is V ωn

.
= [Vω]Kn+1. Thus, by definition, uωn ∈ V ωn can be

expressed as uωn = (uω(t0n), . . . , uω(tKnn )). Analogously, the sub-assembled space is



130
Chapter 6. Space-Time Balancing Domain Decomposition by Constraints

preconditioners

V
.
= ΠN

n=1Πω∈ΘV ωn . Let us note that, using these definitions, functions in V have
duplicated values at Tn, for n = 1, . . . , N −1. The global space of continuous space-time
functions V̄ can be understood as the subspace of functions in V that are continuous
on the space-time interface Γ× Tn, for n = 1, . . . , N − 1.

Now, we propose the following sub-assembled problem in V : find the solution u ∈ V
such that, at every ωn in the space-time partition, it satisfies the space-time problem

Kn∑
k=1

{
Mω(uω(tkn)− uω(tk−1

n ), vω(tkn)) + |δkn|Kω(uω(tkn), vω(tkn))
}

(6.8)

+
(1−Kr1,n)

2
Mω(uω(t0n), vω(t0n))−

(1−KrN,n)

2
Mω(uω(tKnn ), vω(tKnn ))

=

Kn∑
k=1

|δkn|fω(tkn)(vω(tKnn )),

for any v ∈ V , where Kri,j is the Kronecker delta. Note that the perturbation terms
in the second line of Eq. (6.8) are introduced only on time interfaces, i.e., in the first
and last time steps of the time subinterval, as long as the corresponding time step
is not a time domain boundary. For subdomains with n = 1, and thus t0n = 0, the
first stabilization term vanishes. Analogously, the second stabilization term vanishes for
n = N and tKnn = T . We can write Eq. (6.8) in compact manner as

Au = f in V . (6.9)

The motivation of the perturbation terms is to have a positive semi-definite sub-assembled
operator. In any case, the perturbation terms are such that, after inter-subdomain as-
sembly, we recover the original space, i.e., A is in fact a sub-assembled operator with
respect to Ā, since interface perturbations between subdomains cancel out. We prove
that these properties hold.

Proposition 6.4.1. The Galerkin projection of the sub-assembled space-time problem
Eq. (6.9) onto V̄ reduces to the original problem Eq. (6.7). Further, the sub-assembled
operator A is positive definite.

Proof. In order to prove the equivalence, we need to show that Ā is the Galerkin projec-
tion of A onto V̄ , which amounts to say that the perturbation terms vanish for u ∈ V̄ .
First, we note that the following equality

N∑
n=1

(
(1−Kr1,n)

2
uω(t0n)−

(1−KrN,n)

2
uω(tKnn )

)
= 0

holds for functions that are continuous in time, since uω(t
Kn−1

n−1 ) = uω(t0n) for n =

2, . . . , N . On the other hand, multiplying the right-hand of Eq. (6.8) against v = u,
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using the fact that (a− b)a = 1
2(a2 − b2) + 1

2(a− b)2, we get

A(u,u) =
1

2
‖u(T )‖2 +

N∑
n=1

K∑
k=1

(
1

2
‖u(tkn)− u(tk−1

n )‖2 + |δkn|K(u(tkn), u(tkn))

)
. (6.10)

Since K is positive semi-definite, A is positive semi-definite. On the other hand, A is a
lower block triangular matrix. Restricted to one subdomain block, it has diagonal blocks
1
2Mω at the first time step,Mω + |δk|Kω at intermediate time steps, and 1

2Mω + |δk|Kω
at the last time step. Since all these matrices are invertible, A is non-singular. Further,
AT is an upper triangular non-singular matrix. As a result, A is positive-definite.

6.4.2 Coarse DOFs

Let us define the continuity to be enforced among space-time subdomains. Let us consider
a set of space objects ΛO (see Sect. 6.3). We define Ṽ ⊂ V as the subspace of functions
v ∈ V such that the constraint

Kn−1∑
k=1

|δkn|
∫
λ
τωλ (vω(tkn)) is identical for all ω ∈ neigh(λ), (6.11)

holds for every λ ∈ ΛO, and∫
ω
vω(t0n) =

∫
ω
vω(t

Kn−1

n−1 ), for all ω ∈ Θ, n = 2, . . . , N. (6.12)

The first set of constraints are the mean value of the space constraints in Eq. (6.4)
over time sub-intervals ∆n. The second constraint enforces continuity between two
consecutive-in-time subdomains ωn−1 and ωn of the mean value of the function on their
corresponding space subdomain ω. The Galerkin projection of A onto Ṽ is denoted by
Ã.

Additionally, motivated by a space-time definition of objects, i.e., applying the object
generation above to space-time meshes, we could also enforce the continuity of the coarse
DOFs ∫

λ
τωλ (vω(t0n)), n = 2, . . . , N and

∫
λ
τωλ (vω(tKnn )), n = 1, . . . , N − 1, (6.13)

for every λ ∈ ΛO. Thus, we are enforcing pointwise in time (in comparison to the mean
values in Eq. (6.11)) space constraints on time interfaces. Figure 6.1 illustrates the
resulting space-time set of objects where continuity is to be enforced in a sub-assembled
space V .

6.4.3 Transfer operator

Next, we have to define a transfer operator from V to V̄ , and the concept of harmonic
extension in the space-time setting.
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Figure 6.1: Continuity to be enforced among space-time subdomains,
for the 1-dimensional spatial domain case. The sets of nodes in red are
related to the space constraints time averages over time sub-intervals in
Eq. (6.11), the ones in blue are the space mean value constraints on time
interfaces in Eq. (6.12), and the ones in orange are spatial constraints on

time interfaces in Eq. (6.13).

1. In order to define the space-time weighting operator, we make use of the spatial-
only definition in Eq. (6.5). Let us define the subdomain restriction of the weighting
operator asWωu

.
= (Wu)ω. We define the space-time weighting operator restricted

to ωn as
Wωnu

.
= (Wωu(t

Kn−1

n−1 ),Wωu(t1n), . . . ,Wωu(tKnn )), (6.14)

and W .
= ΠN

n=1Πω∈ΘWωnuωn . We can observe that this weighting operator uses
the space-only weighting operator in Eq. (6.5), in order to make the functions con-
tinuous in space. On the other hand, on the time interfaces Tn between subdomains
ωn and ωn+1 (for n = 1, . . . , N − 1, where functions in V can be discontinuous
in time) we take the value at the preceding subdomain, i.e., ωn. This choice is
motivated by the causality of the problem in time.

2. Next, we define the space-time interior correction. In order to do so, we first define
the space-time “bubble” space as V 0, where its local component at ωn is

vωn = (0, vω(t1n), . . . , vω(tKnn )), v(·) ∈ V0.

This definition of V 0 naturally arises from the definition of the weighting operator
Eq. (6.14). The nodes that are enforced to be zero in V 0 are the ones that are
modified by Eq. (6.14). I0 is the trivial injection from V 0 to V̄ and we denote
the Galerkin projection of A as A0. Its inverse involves local subdomain problems
like Eq. (6.8) with zero initial condition and homogeneous boundary conditions
on Γ. Finally, we define the space-time “harmonic” extension operator as Ev .

=

(I−I0A−1
0 IT0 Ā)v. Functions v ∈ V̄ such that Ev = v are denoted as “harmonic”
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functions.

We finally define the transfer operator Q : V → V̄ as Q .
= EW .

6.4.4 Space-time-parallel preconditioner

After extending the previous ingredients to space-time, we can now define the STBDDC
preconditioner as

B .
= I0A−1

0 IT0 + QÃ
−1

QT . (6.15)

In the following section, we will analyse the quality of B as a preconditioner for Ā.
We are particularly interested in the weak scalability properties of the preconditioner.
Again, this preconditioner can be cast in the additive Schwarz theory.

6.4.5 Implementation aspects

Let us make some comments about the efficient implementation of the STBDDC pre-
conditioner. We want to solve system Eq. (6.2) (or equivalently Eq. (6.7)) for all time
steps in one shot by using a Krylov iterative solver preconditioned with the STBDDC
preconditioner Eq. (6.15). As usual in DD preconditioning, it is common to take as
initial guess for the Krylov solver the interior correction u0 = I0A−1

0 IT0 f . In this case,
it can be proved by induction that applying a Krylov method with B as a preconditioner
will give at each iterate V 0-orthogonal residuals of the original problem Eq. (6.7) and
“harmonic” directions (see, e.g., [96]). Thus, the application of the BDDC preconditioner
applied to r ∈ V ′ such that r ⊥ V 0 can be simplified as:

Br = EWÃ
−1

WTr.

It involves the following steps.

1. Compute s .
= WTr.

By the definition in Eq. (6.14), the restriction of s = WTr to ωn is sωn =

(0,WT
ω r(t

1
n), . . . ,WT

ω r(t
Kn
n )), where Wω = diag(1/|neigh(ξ)|). This operation im-

plies nearest neighbour communications only.

2. Compute Ã
−1
s. In order to compute this problem, we first use the following

decomposition of Ṽ into the subspaces Ṽ F and Ṽ C . Ṽ F is the set of functions
that vanish on the coarse DOFs Eq. (6.11)-Eq. (6.13). Ṽ C is the complement of
Ṽ F , which provides the values on the coarse DOFs. We define Ṽ C as the span of
the columns of Φ, where Φ is the solution of[

Aωn CωnT

Cωn 0

][
Φωn

lωn

]
=

[
0

I

]
, (6.16)

where we have introduced the notation Cωn for the matrix associated to the coarse
DOFs constraints. We can check that (see [42, p. 206] for the symmetric case)
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(1) Ṽ F ⊥A Ṽ C , (2) Ṽ = Ṽ F ⊕ Ṽ C . The local problems in Eq. (6.16) are
indefinite (and couple all time steps in one subdomain). In order to be able to
use sequential-in-time local solvers and sparse direct methods for positive-definite
matrices, we propose the following approach (see [57] for the space-parallel BDDC
preconditioner). Using the fact that Aωn is non-singular (see Proposition 6.4.1),
we can solve Eq. (6.16) using the Schur complement:

−CωnAωn
−1CωnT lωn = I, Φωn = −Aωn

−1CωnT lωn . (6.17)

Further, for non-symmetric problems (as the space-time problem considered herein),
we also require to define Ṽ

∗
C as the span of the columns of Ψ, where Ψ is the so-

lution of [
Aωn

T CωnT

Cωn 0

][
Ψωn

lωn

]
=

[
0

I

]
.

This problem is similar to Eq. (6.16), but replacing Aωn by Aωn
T (Aωn

T is an
upper triangular non-singular matrix from Proposition 6.4.1). Thus, we can use the
Schur complement approach (like in Eq. (6.17)) to exploit sequentiality (backward
in time) for the local problems.

With these spaces, the original problem to be solved, Ãu = s, can be written as:
find u = uF + uC ∈ Ṽ , where uF ∈ Ṽ F and uC ∈ Ṽ C satisfy

A(uF ,vF ) + A(uC ,v
∗
C) = (s,vF ) + (s,v∗C), for any vF ∈ Ṽ F , v

∗
C ∈ Ṽ

∗
C ,

where we have used the orthogonality property

A(uF + uC ,vF + v∗C) = A(uF ,vF ) + A(uC ,v
∗
C).

Thus, it involves a fine problem and a coarse problem that are independent. The
computation of the fine problem has the same structure as Eq. (6.16) (with a different
forcing term), and can be computed using the Schur complement approach in Eq. (6.17).
The Petrov-Galerkin type coarse problem couples all subdomains and is a basis for having
a weakly scalable preconditioner. Its assembly, factorization, and solution is centralised
in one processor or a subset of processors.

Summarising, the STBDDC preconditioner can be implemented in such a way that
standard sequential-in-time solvers can still be applied for the local problems. Due to the
fact that coarse and fine problems are independent, we can exploit an overlapping imple-
mentation, in which computations at fine/coarse levels are performed in parallel. This
implementation has been proved to be very effective at extreme scales for space-parallel
BDDC solvers in [18, 23, 22]. The implementation of the STBDDC preconditioner used
in Sect. 6.5 also exploits this overlapping strategy.
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6.5 Numerical experiments

In this section we evaluate the weak scalability for the CDR problem Eq. (6.1) of the
proposed STBDDC preconditioner, when combined with the right-preconditioned version
of the iterative Krylov-subspace method generalized minimal residual method (GMRES).
The STBDDC-GMRES solver is tested with the 2D convection-diffusion-reaction (CDR)
partial differential equation (PDE) on regular domains. Domains are discretized with
structured Q1 FE meshes and Backward-Euler (BE) time integration is performed with
a constant step size |δk|. As performance metrics, we focus on the number of STBDDC
preconditioned GMRES iterations required for convergence, and the total computation
time. This time will include both preconditioner set-up and the preconditioned iterative
solution of the linear system in all the experiments reported. The nonlinear case is
linearized with a Picard algorithm and a relaxation factor of α = 0.75. The stopping
criteria for the iterative linear solver is the reduction of the initial residual algebraic L2-
norm by a factor 10−6. The nonlinear Picard algorithm stopping criteria is the reduction
of the algebraic L2-norm of the nonlinear residual below 10−3.

The problem to be solved is the CDR problem Eq. (6.1). We may consider the
Poisson problem for β = (0, 0) and σ = 0. Further, we will also tackle the p-Laplacian
problem, by taking the nonlinear viscosity ν(u) = ν0|∇u|p (with p ≥ 0 and ν0 > 0),
β = (0, 0) and σ = 0.

6.5.1 Experimental framework

The novel techniques proposed in this paper for the STBDDC-GMRES solver have been
implemented in FEMPAR (see Chapter 1 for an introduction). The parallel codes in FEMPAR

heavily use standard computational kernels provided by (highly-efficient vendor imple-
mentations of) the BLAS and LAPACK. Besides, through proper interfaces to several
third party libraries, the local constrained Neumann problems and the global coarse-grid
problem can be solved via sparse direct solvers. Here, we use the overlapped BDDC
implementation proposed in [18], with excellent scalability properties. It is based on
the overlapped computation of coarse and fine duties. As long as coarse duties can be
fully overlapped with fine duties, perfect weak scalability can be attained. We refer to
[18] and [23] for more details. Results reported in this section were obtained on two
different distributed-memory platforms: the Gottfried complex of the HLRN-III Cray
system, located in Hannover (Germany) and the MareNostrum III, in the Barcelona
Supercomputing Centre (BSC). In all cases, we consider a one-to-one mapping among
subdomains, cores and MPI tasks, plus one additional core for the coarse problem (see
[21, 18] for details).

6.5.2 Weak scalability setting

In computer science parlance weak scalability is related to how the solution time varies
with the number of processors for a fixed problem size per processor. When the time
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remain asymptotically constant, we say that we have a scalable algorithm. When we
consider problems that are obtained after discretization of differential operators, the
concept of weak scalability is suitable as soon as the relation between the different terms
in the (discretization of the) PDE remains constant in the weak scalability analysis. This
is the case in most scalability analyses of PDE solvers, which usually deal with steady
Poisson or linear elasticity problems. However, the situation becomes more involved
as one faces more complicated problems, that combine multiple differential terms of
different nature. The simplest example is the CDR equation Eq. (6.1). One can consider
a fixed domain Ω and fixed physical properties, and produce a weak scalability analysis
by increasing the number of elements (i.e., reducing h) in FEs, and the number of
subdomains (i.e., reducing H) in the same proportion. However, as we go to larger
scales, the problem to be solved tends to a simple Poisson problem (convective terms are
O(1/h) whereas diffusive terms are O(1/h2)). The same situation happens for space-
only parallelization of transient problems because the CFL changes in the scalability
analysis. This situation has already been identified in [65, 54], leading to what the
authors call CFL-constant scalability. In these simulations, the CFL is constant, but
still, spatial differential terms can change their relative weight in the scalability analysis,
e.g., one keeps the convective CFL, i.e., CFLβ = |β| |δ|h , but not the diffusive CFL, i.e.,
CFLν = ν |δ|

h2 (see [54]).
Weak scalability analysis of PDE solvers should be such that the relative weight of

all the discrete differential operators is kept. To do that, we keep fixed the physical
problem to be solved (boundary conditions, physical properties, etc), the FE mesh size
h, and the subdomain size H, but increase (by scaling) the physical domain Ω → αΩ

and subsequently the number of subdomains and FEs. Let us consider that Ω = [0, 1]d,
a FE mesh of size h = (1/nh)d, and a subdomain size H = (1/nH)d. Now, we consider
Ω′ = αΩ = [0, α]d, α ∈ N+. The FE partition now must involve αnh FE partitions
per dimension (αdndh FEs) and αnH subdomain partitions per dimension (αdndH subdo-
mains). It is also possible to apply this approach to unstructured meshes and space-time
domains. Weak scalability in the sense proposed herein is not only about the capability
to solve larger problems but also more complicated ones. E.g., we keep fixed the local
Reynolds or Péclet number or CFLs, but we increase the global Reynolds or Péclet num-
ber, facing not only a larger problem but also a harder one, in general. We have used
this definition of weak scalability for PDE solvers in the numerical experiments below
for time and space-time parallel solvers.

6.5.3 Weak scalability in Time

In this case, the spatial domain is not partitioned and only the time integration is
distributed through Pt processors. This fact leads to enforced continuity of mean values
of the function on the spatial domain Ω on time interfaces, i.e., constraint Eq. (6.12) with
ω = Ω. In order to maintain a constant CFL number, the original time interval (0, T ]

is scaled with the number of processors, i.e., T ′ = PtT . As a result, using Pt processors
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we solve a Pt times larger time domain (and time steps). Note that with this approach
neither |δk| nor |∆n| are modified through the analysis.

Time-parallel Poisson solver

Consider the transient Poisson equation (Eq. (6.1) with β = (0, 0) and σ = 0) with ν = 1

on the unit square spatial domain Ω = [0, 1]2 and T = 1. The source term f is chosen
such that u(x, t) = sin(πx) sin(πy) sin(πt) is the solution of the problem. Homogeneous
Dirichlet boundary conditions and zero initial condition are imposed. We perform the
weak scalability analysis of the TBDDC-GMRES solver with element size h = 1

30 and
several values of Kn = |∆n|

|δk| = {10, 15, 30, 60}.
Fig. 6.2 reports the weak scalability analysis of the TBDDC-GMRES solver for this

experiment. While h is kept fixed, we evaluate different values of Kn and |∆n|, which
lead to a wide range of diffusive CFLs, shown in 6.2(a), 6.2(b), and 6.2(c) .

Out of these plots, we can draw some conclusions. First, for a fixed local problem
size and physical coefficients, reducing the diffusive CFL by reducing the time step size
results in more iterations. Second, and most salient, the algorithm is in fact weakly
scalable. In fact, for a fixed local problem size and diffusive CFL, as one increases
the number of processors, i.e., computes more time steps, the number of iterations is
asymptotically constant. In this range, the overlapped fine/coarse strategy leads to
perfect weak scalability for time-parallel solvers too. As a result, this analysis shows the
capability of the method to compute X times more time steps with X times more cores
for the same total elapsed time, which is the main motivation of time-parallelism.

Time-parallel CDR solver

Consider now the transient CDR Eq. (6.1) with ν = 10−3 and σ = 10−4 on Ω = [0, 1]2

with homogeneous Dirichlet boundary conditions and null initial solution. We take
T = 1

10 . In order to show results for different convective CFL ranges, two convection
velocity fields are analysed, namely β = (1, 0) and β = (10, 0). The CFL values shown are
those corresponding to the convective term since it is more restrictive than the diffusive
CFL in all the cases being considered. The SUPG stabilization technique is employed
(see [45]).

We perform the study with several values of Kn = |∆n|
|δk| = {10, 30, 60}, which lead to

different convective CFLs. For the first case (Fig. 6.3), the source term is chosen such
that the function u(x, t) = sin(πx) sin(πy) sin(πt) is the solution of the problem. For the
second test (Fig. 6.4), we take f = 1, with a boundary layer formation.
Out of these plots we can extract the same conclusions from Figs. 6.3 and 6.4 as for the
Poisson problem. The method is weakly scalable in time for transient CDR problems.
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(a) Iteration counter and computing time for |∆n| = 8
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(b) Iteration counter and computing time for |∆n| = 1
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(c) Iteration counter and computing time for |∆n| = 1
300 .

Figure 6.2: Weak scalability for the iterations count (left) and total
elapsed time (right) of the TBDDC-GMRES solver in the solution of the
unsteady 2D Poisson problem on HLRN. Fixed element size h = 1/30

while time partition on Pt subdomains.

6.5.4 Weak scalability in space-time

The STBDDC preconditioner is considered here, for the set of constraints Eq. (6.11)-
Eq. (6.13). In this case, the spatial domain Ω is scaled by Px and Py in the corresponding
directions, where Px = Py in all cases. On the other hand, the time interval (0, T ] is scaled
by Pt, leading to a P = Px × Py × Pt partition of the scaled ST domain PxΩ× Pt(0, T ].
Therefore, the relative weight of the operators is kept constant through a weak scalability
analysis. Local problem loads will be given by H

h in space and Kn = |∆n|
|δk| in time, i.e.,
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(a) Iteration counter and computing time with β = (10, 0).
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(b) Iteration counter and computing time with β = (1, 0).

Figure 6.3: Weak scalability for the total elapsed time (right) and num-
ber of GMRES iterations (left) of the TBDDC solver in the solution of
the 2D CDR equation on HLRN (sinusoidal solution). Fixed element size

to h = 1/30.
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Figure 6.4: Weak scalability for the total elapsed time (right) and num-
ber of GMRES iterations (left) of the TBDDC solver in the solution of
the 2D CDR equation (boundary layer) on HLRN. Fixed element size to

h = 1/30.

(Hh )d × |∆n|
|δk| .
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Space-time Poisson solver

Consider the Poisson problem (Eq. (6.1) with β = (0, 0) and σ = 0) with ν = 1, f = 1,
and homogeneous Dirichlet boundary conditions and zero initial condition. The original
spatial domain is Ω = [0, 1]2 while the original time domain is (0, 0.1].
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(c) Iteration counter and wall clock times for Px = 3Pt

Figure 6.5: Weak scalability for the total elapsed time (right) and num-
ber of GMRES iterations (left) of the STBDDC solver in the solution of

the 2D Poisson problem on HLRN.

Fig. 6.5 shows weak scalability results for the STBDDC-GMRES solver. Number
of iterations (left) and total elapsed times (right) have been reported for three different
ratios between spatial and time partitions Px

Pt
in 6.5(a), 6.5(b), and 6.5(c). Also, at every

figure, three different local problem sizes, and thus diffusive CFLs, have been considered.
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Figure 6.6: Weak scalability for the total elapsed time (right) and num-
ber of GMRES iterations (left) of the STBDDC solver in the solution of
the 2D Poisson problem on HLRN. Partition is done equally in time and

space, i.e., Px = Pt.

The most salient information from these figures is the fact that the scheme is also
scalable in space-time simulations. Here, one is not only solving a larger problem in
time (as above) but also in space. This result is not surprising since the spatial BDDC
preconditioner is known to be weakly scalable and the time-parallel version has also
been proved to be weakly scalable in Sect. 6.5.3. The influence of Px

Pt
on the number

of iterations is very mild; also the effect of the diffusive CFL is mild in this case. The
overlapping strategy is fully effective in the range under consideration, because perfect
weak scalability can be observed. The effect of the diffusive CFL for a fixed local problem
size, obtained by multiplying by 10 the viscosity, is reported in Fig. 6.6. In this case, a
larger diffusive CFL leads to more iterations but weak scalability is also achieved.

Next, we want to compare the space-time solver against a sequential-in-time ap-
proach. We fix the time step size to |δk| = 10−3 and H

h = 30. Thus, the time interval
is T = K|δk|, when considering K time steps. The sequential approach makes use of
Ps = Px × Py = 42 processors (space-parallelism only) to solve recursively the spatial
problem for increasing values of K. The space-time approach is using Ps × Pt = 42Pt

processors to solve the same problem, with a local number of time steps Kn = 10. The
motivation for such analysis is to assess the benefit of time-parallelism in linear problems
when spatial parallelism cannot be further exploited efficiently due to very low load per
processor.

Figure 6.7 shows the comparison between the sequential approach and the STBDDC
preconditioned ST solver up to K = 1000 time steps. The theoretical cost of the sequen-
tial approach is proportional to K steps times the elapsed time of the A−1

ω local solve (a
preconditioned GMRES iteration). On the other hand, the theoretical cost of the space-
time solver is proportional to the cost of the A−1

ωn local space-time solves, and in turn,
Kn times spatial A−1

ω local solves (exploiting locally sequentiality in time). The number
of local solves is plotted for both sequential and space-time approaches in Fig. 6.7(a).
The sequential approach shows a linear growth of the computing time, as expected, since
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Figure 6.7: Comparison between the sequential and space-time solvers
for the transient Poisson problem on MareNostrum supercomputer. Spa-
tial partition is fixed to Px = Py = 4. The space-time approach is using

P = 42Pt MPI fine-level tasks.

it is solving K times problems in a sequential fashion. Since the current implementation
of space-time preconditioners in FEMPAR does not exploit local sequentiality in time, we
observe a discrepancy between the intersection of curves in terms of local solves and
elapsed time, due to the quadratic complexity of sparse direct methods. In any case,
the space-time approach starts to be competitive with less than 10 time partitions. Out
of these plots, we are able to reduce the time-to-solution of simulations with the space-
time approach by adding more processors to exploit time-parallelism, both for the linear
and nonlinear problems considered herein. Besides, the method shows excellent weak
scalability properties.

Space-time CDR solver

Consider the CDR equation Eq. (6.1) with σ = 10−4, β = (1, 0), and f = 1, on an original
domain Ω× (0, T ] = [0, 0.3]2 × (0, 0.3], and scaled through the weak scalability analysis
by Px, Pt respectively. Homogeneous Dirichlet and initial conditions are enforced. Local
problem size is fixed with Kn = 30 and H

h = 30. The ratio between spatial and time
partition is Px

Pt
= 3. Several diffusion parameters are considered in order to present

different scenarios: from a diffusive-dominated case (ν = 1.0) to a convection-dominated
one (ν = 10−6). We have the convective CFL equal to 1.0 in all cases. SUPG stabilization
is again used.

Table 6.1 presents the iteration count for different diffusion values that lead to dif-
ferent scenarios. In the diffusive-dominated case the STBDDC preconditioned GMRES
tends to an asymptotically constant number of iterations, thus independent of the num-
ber of subdomains. Moving to the convective case, the number of iterations slightly
grows with the decrease of the diffusive CFL number.
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ν = 1 10−1 10−2 10−3 10−4 10−6

CFLν= 102 10 1 10−1 10−2 10−4

Péclet= 5 · 10−3 5 · 10−2 0.5 5 50 5 · 103

(Px × Py)× Pt #Sbd
(3× 3)× 1 9 18 11 7 5 5 5
(6× 6)× 2 72 28 16 11 11 11 11
(9× 9)× 3 243 35 17 11 12 12 13

(12× 12)× 4 576 37 17 12 13 14 15
(15× 15)× 5 1125 38 17 13 14 15 17
(18× 18)× 6 1944 39 17 13 15 15 18
(21× 21)× 7 3087 40 17 14 16 16 19
(24× 24)× 8 4608 41 18 14 17 17 21
(27× 27)× 9 6561 41 18 15 18 18 22
(30× 30)× 10 9000 42 18 16 19 19 24

Table 6.1: Iteration count for CDR equation. Convective CFL equal to
1.0 in all cases. CFLν represents the diffusive CFL.

6.5.5 Nonlinear space-time p-Laplacian solver

In this experiment we compare the sequential-in-time method (solving the spatial prob-
lem with a BDDC approach for every time step) against the proposed STBDDC solver.
We consider the p-Laplacian problem (with p = 1), i.e., Eq. (6.1) with ν = |∇u|, β(0, 0),
and σ = 0, on Ω = [0, 1]2 × (0, T ] with the initial solution u0 = x + y, Dirichlet data
g = x + y, and the forcing term f = 1. We fix the time step size to |δk| = 10−3 and
H
h = 30.

We consider the same setting as the experiment reported in Fig. 6.7 to compare
the sequential-in-time and space-time parallel solvers for a nonlinear problem. Thus,
we consider an increasing number of time steps, and Ps = Px × Py = 42 processors
for the space-time solver. The sequential solver exploits Ps processors to extract space-
parallelism only. Figure 6.8 shows the comparison between the sequential approach up
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Figure 6.8: Comparison between the sequential and space-time solvers
for the p-Laplacian transient problem on MareNostrum supercomputer.
Spatial partition is fixed to Px = Py = 4. The space-time approach is

using P = 42Pt MPI fine-level tasks.
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to T = 1.5 and K = 1500 time steps. In Fig. 6.8(a) we plot the number of space solves,
which is now proportional to the number of accumulated linear iterations through the
nonlinear iterations. Remarkable algorithmic scalability is also obtained in the nonlinear
setting. Elapsed time plots in 6.8(b) show a similar behaviour in the nonlinear case as
in the linear one. The nonlinear case also exhibits excellent weak scalability properties.
The nonlinear space-time solver is competitive in terms of number of local problems to
be computed at about 20 processors, whereas it requires slightly more than 50 processors
in order to be superior in terms of elapsed time. Discrepancies should be substantially
reduced exploiting causality for the local problems, as commented above. Out of these
plots, we are able to reduce the time-to-solution of simulations with the space-time
approach by adding more processors to exploit time-parallelism for the nonlinear problem
considered herein. In any case, there is still room for improvement when considering
nonlinear problems. In this sense, nonlinear space-time preconditioning [87, 49] and more
elaborated linearization strategies have the potential to lead to better performance.

6.6 Conclusions

In this chapter, we have considered a space-time iterative solver based on DD tech-
niques. In particular, we have considered the GMRES iterative solver with space-time
preconditioning obtained by extending the BDDC framework to space-time for parabolic
problems discretized with FEs. Since the time direction has a very different nature than
the spatial one, i.e., it is a transport-type operator, a particular definition of the coarse
DOFs and transfer operators is considered, taking into account time causality. Further,
perturbation terms must be included to lead to a well-posed system. The exposition has
been carried out for a Backward-Euler time integrator, but the extension to θ-methods
and Runge-Kutta methods is straightforward. Further, the well-posedness of the pro-
posed space-time preconditioner has been checked.

On the other hand, we have carried out a detailed set of numerical experiments
on parallel platforms. Out of these results, the proposed methodology is observed to
exhibit excellent scalability properties. The methods are weakly scalable in time, i.e.,
increasing X times the number of MPI tasks one can solve X times more time steps,
in approximately the same amount of time, which is a key property to reduce time-to-
solution in transient simulations with heavy time stepping. We have also shown weak
scalability in space-time, where one is not only facing larger problems in time but also
in space. Further, we have applied the STBDDC preconditioner to nonlinear problems,
by considering a linearization of the full space-time system, and applying the proposed
space-time solver at every nonlinear iteration. The use of the space-time solvers proposed
becomes faster than a sequential-in-time approach for a modest number of processors.

Future work will include the development of nonlinear space-time BDDC precondi-
tioners, extending the concept of nonlinear preconditioning (see, e.g., the recent work
in [87] for nonlinear finite element tearing and interconnect (FETI) preconditioners in
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space) to space-time. As it has already been observed in space [49], the use of nonlin-
ear preconditioning should make space-time preconditioning more effective for nonlinear
problems. Further extensions of this work will involve the extension to multilevel space-
time algorithms (to keep perfect weak scalability at larger scales), and their application
to solid mechanics and incompressible fluid dynamics simulations.





Chapter 7

Conclusions and future work

7.1 Conclusions

The development of balancing domain decomposition by constraints (BDDC) methods
for the linear systems arising from the finite element (FE) discretization of complex
electromagnetic and transient problems has been explored in this dissertation. Due to
the structure of the thesis, each chapter contains its own detailed conclusions restricted
to the scope of the same, therefore the author aims to provide here a more general
overview. In order to present a summary of the major contributions of the present
thesis, the complete list of established objectives in Chapter 1 is recovered.

• Arbitrary order edge FEs. In Chapter 2, the edge FE of arbitrary order
is theoretically defined both for tetrahedra and hexahedra. The implementation
is based on the definition of heterogeneous polynomial pre-bases that span local
FE spaces, which combined with a change of basis provide the bases of shape
functions for arbitrary order edge FEs. The author believes that the comprehensive
description of the nontrivial implementation issues behind the edge FE may be
of high value for other researchers and developers aiming to work in similar FE
frameworks. The most salient conclusion out of Chapter 2 is the agreement between
theoretical and experimental convergence rates in the solution of manufactured
solutions, hence the availability of the implementation in FEMPAR to solve problems
posed in curl-conforming spaces, discretized with tetrahedral/hexahedral edge FEs
of arbitrary order.

• h-adaptive edge FE framework. An original implementation strategy of
p− and h-adaptive edge (Nédélec) FEs on hierarchically refined octree-based non-
conforming meshes is carefully presented in Chapter 2. The implementation, which
is grounded on the current interface of FEMPAR with the p4est library, is satisfac-
torily tested against analytical solutions. The method, which is implemented and
tested for arbitrary order hexahedral FE in both 2D and 3D problems, allows to
reduce significantly the number of unknowns for a goal precision.

• Highly scalable BDDC solvers for problems in H(curl). One of the
major topics of the present thesis is the development and implementation of highly

147
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scalable solvers for problems in curl-conforming spaces. Firstly, the problem is
faced with existing approaches for arbitrary order discretizations of homogeneous
problems. Indeed, in Chapter 3 an implementation of the BDDC solver is described,
putting emphasis on delicate implementation details. Then, the implementation
of the BDDC preconditioned solver is shown to have excellent weak scalability
properties in terms of both iterations and computing times for core counts above
16K when applied to homogeneous problems discretized with hexahedral FE of
order up to 4.

• Robust BDDC solvers for heterogeneous problems in H(curl). In Chap-
ter 3 we define the physics-based (PB)-BDDC preconditioner for problems in curl-
conforming spaces. It leverages the implementation of the standard BDDC pre-
conditioner for problems posed in curl-conforming spaces, which includes a crucial
change of basis, and the PB partition definition proposed in [16]. The PB-BDDC
solver is also shown to have excellent weak scalability properties in terms of both
iterations and computing times for core counts above 16K for multi-material prob-
lems discretized using hexahedral FE of order up to 4. On the other hand, the
proposed preconditioner is shown to be robust with regard to coefficient jumps
for arbitrary domain shapes and tetrahedral/hexahedral edge FEs. Chapter 3 also
includes satisfactory weak scalability results in the application of the PBBDDC pre-
conditioner to heterogeneous problems with prescribed heterogeneous coefficients
and the High Temperature Superconductors (HTS) problem.

• Build a complete FE parallel framework for the simulation of realistic
3D HTS problems. In Chapter 4 a fully-parallel FE framework suitable for
the solution of (nonlinear) 3D problems modelling the electromagnetic behaviour
of HTS is presented. The H-formulation, which is widely used in the HTS mod-
elling community, is selected as a demonstrator of the potential of the scheme.
Basic building blocks of the parallel scheme leverage the presented developments
in Chapters 2 and 3: We successfully combine a mesh generation with an ad-
vanced adaptive mesh refinement (AMR) technique, which allows to efficiently
reduce the size of the global problem whilst providing an accurate solution on the
superconducting device, with robust PB-BDDC solvers for arbitrary order edge
FE discretizations of the problem. Besides, a tailored nonlinear parallel solver
based on Newton-Raphson (NR) methods is used. Two outstanding results arise
in the numerical experiments section Sect. 4.5. First, the implementation is vali-
dated against experimental data for HTS tapes, which shows the availability of the
numerical tool to model the phenomena. Secondly, the reduction of the time-to-
solution of a selected 3D benchmark by a factor of 50 by using our computational
tool in High Performance Computing (HPC) platforms with respect to serial (i.e.,
not parallel) computations. All the developments are available in the open source
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software project FEMPAR, which can become a powerful tool for the HTS modelling
community.

• Design parallel-in-time nonlinear ordinary differential equation (ODE)
solvers. In Chapter 5 different direct solvers have been proposed for both linear
and nonlinear ODEs. The methods allowed to identify key ideas for the latter
combination with space-parallel scalable BDDC implementations to design space-
time preconditioners. All the presented implementations showed excellent weak
scalability results. In short, increasing X times the number of MPI tasks (e.g.
time subintervals in a one-to-one mapping between tasks and subintervals) one can
solve X times more time steps in approximately the same amount of time.

• Develop a time-extension of the BDDC preconditioner. In Chapter
6 a highly scalable space-time (ST) preconditioner based on BDDC methods is
provided. In particular, and due to the causality of the time direction, a particular
definition for the continuity across interfaces and averaging operators is defined.
The implementation in FEMPAR does not exploit the classical sequentiality of the
discretizations (at least at the global level) and exhibits excellent weak scalability
properties with regard to the time direction, i.e., for a fixed problem in space,
increasing X times the number of MPI tasks one can solve X times more steps.
Further, the methods also exhibit outstanding weak scalability properties in space-
time, i.e., one can solve not only larger problems in time but also in space.

7.2 Open lines of research

The present thesis addressed the development of highly scalable BDDC methods in a
broad sense. Research in any field never truly ends, it is just delimited by a period of
time. In this sense, some ideas that arise as a natural continuation path of the present
work are still to be explored. In the other hand, other tangent ideas that emerged during
the development of the present thesis are also shortly described.

• Full hp-adaptive code. In Chapter 2, an implementation of h-adaptive methods
and arbitrary order edge FEs has been presented and tested. In the simulations, one
of the two parameters (i.e., the mesh or the elements order) is fixed. The presented
h-adaptive methods are based on the construction of a restriction operator to
enforce the conformity of the FE. Its construction in order to enforce continuity
between adjacent, conforming FEs of different order (see, e.g., [55]) would lead to
the case where also the element order may vary among elements, i.e., p-adaptivity,
but it is not presented in this thesis.

• Multilevel BDDC methods for problems in H(curl). The coarse problem
is the bottleneck of all BDDC methods where the original domain is partitioned
into a large number of subdomains. Besides, the PB approach has been shown
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to be robust, but the price to pay is a larger coarse problem size. FEMPAR pro-
vides a multilevel implementation of the BDDC preconditioner [23] that can be
straightforwardly defined for a PB approach. However, as pointed out in [149],
the situation is more involved for problems in H(curl) since the Nédélec definition
of degrees of freedom (DOFs) does not lead to weakly scalable BDDC algorithms.
Instead, for the multilevel case one must employ an analogous change of variables
(see Chapter 3) for the Nédélec-like DOFs in coarser levels to obtain multilevel
scalable algorithms.

• Explore BDDC methods on non-conforming meshes. In Chapter 4 a
fully-parallel FE framework for the solution of HTS problems is built. In the
solver part, the physics-based BDDC (PB-BDDC) solver is employed. However,
the non-conformity of the mesh is not exploited at the solver level, which contains
an implementation of the most conservative coarse space proposed in [137], called
Alg. C. There is room for improvement in this direction, since significantly smaller
coarse problems could be obtained with tailored definitions of the non-conforming
geometrical entities that conform the coarse triangulation.

• Time integration with alternative methods. In the current work numerical
results are shown for Backward-Euler (BE) time integrator, perhaps one of the
most simple (and useful) schemes for the time discretization of a transient partial
differential equation (PDE). Although exposed, no numerical results are provided
for other time integrators such as Runge-Kutta (RK) or Backward differentiation
formula (BDF), which would allow to increase the order of the approximation in
time.

• Methods with space-time FEs. In space-time formulations, the usual ap-
proach is to first discretize the spatial problem with a FE method, leading to a
problem discretized in space but not yet in time. Secondly, by means of time in-
tegrators one is able to express the approximation of the transient solution. The
idea of space-time FE discretizations is to break with this two-step process and
integrate the problem in one shot with space-time FEs. In short, D+ 1 space-time
FEs can be composed as a tensor product of a regular FE in the spatial (2D or
3D) direction and a time FE in the (1D) time direction. Note that the definition
allows for heterogeneous FEs, where the user can select different sort of FE and/or
approximation orders for both space and time dimensions.

• Implementation of a transient 3D time-parallel scheme. Transient PDEs
pose the problem in a space of D + 1 dimensions, where D = {2, 3}. That implies
a 4D space in the case of transient 3D simulations. Although theoretically defined
in Chapter 6, no numerical results are shown for such simulations, restricting our
implementation to 2D plus time dimensional problems.
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• Nonlinear (Space-)Time BDDC methods. In Chapter 4 the BDDC pre-
conditioner is applied to the HTS problem, which is governed by a nonlinear PDE.
In this case, the preconditioner is applied for the solution of linearized problems,
which are obtained by means of a NR method over the global problem. Therefore,
the preconditioner is not aware of the nonlinear nature of the problem. On the
other hand, the concept of nonlinear preconditioning is presented in this thesis in
Chapter 5 for ODEs, but not extended to PDEs. The combination of the intro-
duced ideas with BDDC preconditioners would lead to nonlinear preconditioning
techniques, see, e.g., [87].

• Space-Time BDDC preconditioners for the HTS problem. On one
hand, robust and scalable parallel BDDC solvers are presented for a wide range
of heterogeneous problems in Chapters 3 and 4, including the HTS problem. On
the other hand, STBDDC methods are defined, implemented and satisfactorily
tested in Chapter 6 for elliptic problems discretized with standard Lagrangian
FEs. Therefore, in the present thesis all the basic algorithms are set towards the
complete STBDDC approach for curl-conforming problems, but an implementation
in FEMPAR is still to be explored.
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