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Synonyms

Ontology-Based Data Access

Definition

The purpose of an integration-
oriented ontology is to provide a
conceptualization of a domain of
interest for automating the data
integration of an evolving and
heterogeneous set of sources using
Semantic Web technologies. It links
domain concepts to each of the
underlying data sources via schema
mappings. Data analysts, who are
domain experts but not necessarily
have technical data management
skills, pose ontology-mediated
queries over the conceptualization,
which are automatically translated
to the appropriate query language
for the sources at hand. Following

well stablished rules when designing
schema mappings allows to automate
the process of query rewriting and
execution.

Overview

Information integration, or data inte-
gration, has been an active problem
of study for decades. Shortly, it con-
sists on given a single query involving
several data sources get a single an-
swer.

Semantic Web technologies are
well-suited to implement such data
integration settings, where given
the simplicity and flexibility of
ontologies, they constitute an ideal
tool to define a unified interface (i.e.,
global vocabulary or schema) for
such heterogeneous environments.
Indeed, the goal of an ontology is
precisely to conceptualize the knowl-
edge of a domain, see |Gruber| (2009)).
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Ontologies are structured into two
levels, the TBox and the ABox,
where the former represents general
properties of concepts and roles
(namely Terminology), and the latter
represents instances of such concepts
and roles (namely Assertions). Such
knowledge is commonly represented
in terms of the Resource Description
Framework (RDF) in the form of
triples subject-predicate-object (see
[Wood et al (2014)), which enables
to automate its processing, and thus
opens the door to exchange such
information on the Web as Linked
Data, see Bizer et al (2009). There-
fore, a vast number of ontologies,
or vocabularies, have been proposed
to achieve common consensus when
sharing data, such as the RDF
Data Cube Vocabulary or the Data
Catalog Vocabulary.

Data providers make available
their datasets via SPARQL end-
points, that implement a protocol
where given a SPARQL query, a set
of triples is obtained, properly an-
notated with respect to an ontology.
Hence, the data analysts’ queries
must separately fetch the sets of
triples of interest from each endpoint
and integrate the results. Further-
more, such settings assume that both
TBox and ABox are materialized in
the ontology. Figure |l| depicts the
Semantic Web architecture, where
the data analyst is directly respon-
sible of firstly decomposing the
query and issuing the different pieces
into several homogeneous SPARQL
endpoints, and afterwards collecting
all the results and composing the
single required answer.

The alternative architecture for
data integration is that of a feder-

Sergi Nadal, Alberto Abellé

SPARQL Endpoint

Yoo
=

SPARQL Endpoint

SPARQL Endpoint

oo
=

SPARQL Endpoint

SPARQL SPARQL

\ /
L8
)
Data Analyst

e - - Q
SPARQL SPARQL
oo | SN

Fig. 1 Example of query execution in
the Semantic Web

ated schema, that serves as a unique
point of entry, which is responsible
of mediating the queries to the
respective sources. Such federated
information systems are commonly
formalized as a triple (G,S, M),
such that G is the global schema,
S is the source schema and M are
the schema mappings between G
and S, see . With
such definition two major problems
arise, namely how to design map-
pings capable of expressing complex
relationships between G and S,
and how to translate and compose
queries posed over G into queries
over §. The former led to the two
fundamental approaches for schema
mappings, global-as-view (GAV) and
local-as-view (LAV), while the latter
has generically been formulated as
the problem of rewriting queries
using views, see for a
survey.

Still, providing an integrated view
over a heterogeneous set of data
sources is a challenging problem,
commonly referred as the data
variety challenge, that traditional
data integration techniques fail to
address in Big Data contexts given
the heterogeneity of formats in data
sources, see Horrocks et al (2016).
Current attemps, namely ontology-
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based data access (OBDA), adopt
ontologies to represent G, as depicted
in Figure In such case, unlike in
the Semantic Web, the TBox resides
in the ontology as sets of triples, but
the ABox in the data sources, in its
source format. The most prominent
OBDA approaches are based on
generic reasoning in description
logics (DLs) for query rewriting (see
Poggi et al (2008))). They present
data analysts with a virtual knowl-
edge graph (i.e., G), corresponding to
the TBox of the domain of interest,
in an OWL2 QL ontology, see
. Such TBox is built
upon the DL-Lite family of DLs,
which allows to represent conceptual
models with polynomial cost for
reasoning in the TBox, see
. This rewritings remain
tractable as schema mappings follow
a GAV approach, that characterize
concepts in G in terms of queries over
S, providing simplicity in the query
answering methods, consisting just of
unfolding the queries to express them
in terms of the sources. More pre-
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cisely, given a SPARQL query over
g, it is rewritten by generic reasoning
mechanisms into a first-order logic
expression, and further translated
into a union of conjunctive queries
over S. Nevertheless, despite the
flexibility on querying, the manage-
ment of the sources is still a problem
(magnified in Big Data settings), as
the variability in their content and
structure would potentially entail
reconsidering all existing mappings
(a well known drawback in GAV).
Alternatively to generic reasoning-
based approaches, we have
vocabulary-based approaches, which
are not necessarily limited by the
expressiveness of a concrete DL, as
they do not rely on generic reasoning
algorithms. In such settings, tailored
metadata models for specific inte-
gration tasks have been proposed,
focusing on linking data sources by
means of simple annotations with
external vocabularies, see
. With such simplistic
approach, it is possible to define LAV
mappings, that characterize elements
of the source schemata in terms of
a query over the common ontology
(facilitating the management of evo-
lution in the sources). However, in
the case of LAV, the trade-off comes
at the expense of query answering,
which now becomes a computa-
tionally complex task. Different
proposals of specific algorithms exist
in the literature for query rewriting
under LAV mappings, such as the
Bucket algorithm (see Levy et al
(1996)), or MiniCon (see [Pottinger
land Halevy| (2001)). In the context of
integration-oriented ontologies, new
specific algorithms must be devised
that leverage the information of the
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metamodel and the annotations to
automatically rewrite queries over G
in terms of S.

Key Research Findings

In the line of OBDA, DL-Lite set the
cornerstone for research, and many
extensions have been proposed in or-
der to increase the expressivity of
the ontology while maintaining the
cost of reasoning for query answering
tractable. Some examples of such ap-
proaches are the families of descrip-
tion logics ELHT (see [Pérez-Urbina
et al (2009)), Datalog® (see |Gottlob
et all (2011))) or ALC (see [Feier et al
(2017))). Attention has also been paid
to change management in this con-
text, and the definition of a logic able
to represent temporal changes in the
ontology, see Lutz et all (2008). Rele-
vant examples include TQL that pro-
vides a temporal extension of OWL2
QL and enables temporal conceptual
modeling (see |Artale et al (2013))),
and a logic that delves on how to pro-
vide such temporal aspects for spe-
cific attributes (see Keet and Ongoma
(2015)).

Regarding vocabulary-based
approaches purely in the context
of data integration, R2RML has
been proposed as a standard vo-
cabulary to define mappings from
relational databases to RDF (see
Cyganiak et al| (2012)), and different
techniques ad-hoc appeared to auto-
matically extract such mappings, see
Jiménez-Ruiz et all (2015)).
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Examples of Application

Prominent results of generic reason-
ing OBDA systems are Ontop (see
Calvanese et al (2017)), Grind (see
Hansen and Lutz (2017)) or Clipper
(see |Eiter et al (2012)). Ontop
provides an end-to-end solution for
OBDA, which is integrated with
existing Semantic Web tools such
as Protégé or Sesame. It assumes a
DL-Lite ontology for G and while
processing an ontology-mediated
query it applies several optimization
steps. Oppositely, Grind assumes
that G is formulated using the £L
DL, which has more expressivity
than DL-Lite, but does not guaran-
tee that a first-order logic rewriting
exists for the queries. Clipper, relies
on Horn-SHZQ ontologies, a DL
that extends DL-Lite and £L. All
works assume relational sources, and
translate first-order logic expressions
into SQL queries. Nonetheless, recent
works present approaches to adopt
NOSQL stores as underlying sources,
such as MongoDB, see |Botoeva et al
(2016).

Regarding vocabulary-based
approaches, we can find an RDF
metamodel to be instantiated into
G and S for the purpose of accom-
modating schema evolution in the
sources, and use RDF named graphs
to implement LAV mappings, see
Nadal et all (2017). Such approach
simplifies the definition of LAV
mappings, for non-technical users,
which has been commonly charac-
terized as a difficult task. Query
answering, however, is restricted
to only traversals over G. Another
proposal is GEMMS, a metadata
management system for data lakes,
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that automatically extracts meta-
data from the sources to annotate
them with respect to the proposed
metamodel, see |Quix et all (2016).

Future Directions for
Research

Despite that much work has been
done in the foundations of OBDA
and description logics, there are two
factors that complicate the problem
in the context of Big Data, namely
size and lack of control over the data
sources. Given this lack of control
and the heterogeneous nature of data
sources, it is needed to further study
the kind of mappings and query
languages that can be devised for
different data models. Nevertheless,
this is not enough, new governance
mechanisms must be put in place
giving rise to Semantic Data Lakes,
understood as huge repositories of
disparate files that require advanced
techniques to annotate their content
and efficiently facilitate querying.
Related to this efficiency, more
attention must be paid to query
optimization and execution, spe-
cially when combining independent
sources and data streams. Finally,
from another point of view, given
that the goal of integration-oriented
ontologies is to enable access to
non-technical users, it is necessary
to empower them by providing clear
and traceable query plans that,
for example, trace provenance and
data quality metrics throughout the
process.
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