
Dynamic Pipeline: An Adaptive Solution for Big Data
Julián Aráoz

Technical University of Catalonia–Barcelona Tech
Edelmira Pasarella

Technical University of Catalonia–Barcelona Tech

Maria-Esther Vidal
Fraunhofer, IAIS, Germany

Cristina Zoltan
Technical University of Catalonia–Barcelona Tech
Universidad Internacional de Ciencia y Tecnología –

Panamá

ABSTRACT
The Dynamic Pipeline is a concurrent programming pattern amena-
ble to be parallelized. Furthermore, the number of processing units
used in the parallelization is adjusted to the size of the problem,
and each processing unit uses a reduced memory footprint. Con-
trary to other approaches, the Dynamic Pipeline can be seen as a
generalization of the (parallel) Divide and Conquer schema, where
systems can be reconfigured depending on the particular instance
of the problem to be solved. We claim that the Dynamic Pipelines is
useful to deal with Big Data related problems. In particular, we have
designed and implemented algorithms for computing graphs param-
eters as number of triangles, connected components, and maximal
cliques, among others. Currently, we are focused on designing and
implementing an efficient algorithm to evaluate conjunctive query.

KEYWORDS
Dynamic Pipeline; Parallelism; Big Data; Concurrency
ACM Reference format:
Julián Aráoz, Edelmira Pasarella, Maria-Esther Vidal, and Cristina Zoltan.
2017. Dynamic Pipeline: An Adaptive Solution for Big Data. In Proceedings
of ACM Celebration of Women in Computing womENcourage 2017, Barcelona,
September 2017 (womENcourage 2017), 1 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Exploiting parallel architecture is a very difficult programing task.
There are three basic models of parallelism: task, data, and pipeline
parallelism [2]. The Dynamic Pipeline (DP) is a programming pat-
tern that implements a concurrent program that can be easily par-
allelized. Informally, DP consists of stages connected by (logical)
channels. Each stage receives values from upstream via inbound
channels and performs some function on that data, usually produc-
ing and sending new values downstream via outbound channels.
This is, stages can be seen as actors or filters. In a DP pattern, each
stage has any number of inbound and outbound channels. The first
stage is sometimes called the source or producer; the last stage is
the sink or consumer.

Most systems that provide pipeline parallelism employ a cons-
truct-and-run model, i.e., programs do not take into account a
particular instance of a problem. This is the case for MapReduce
[3]. There are other approaches that construct a program using a
problem instance, and then run the constructed program to solve
the given problem, e.g., Spark[5]. In particular, Spark uses a syn-
chronous computation model.

womENcourage 2017, September 2017, Barcelona
2017. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

In a DP, the number of stages depends on the input instance and
hence, the pipe construction/destruction takes place at run-time.
All the stages are very similar and are normally parametrized by
input values. In consequence, to use a DP pattern to solve a given
problem stands for defining parameterized actors/filters such that
the desired solution flows towards the final output channel. We
focus on a particular Dynamic Pipeline pattern: a linear pipeline
where each stage receives data from one neighbor and sends data
to a single neighbor. This computation model is asynchronous, and
synchronized by data availability. We conjecture that all problems
solvable using MapReduce can be solved using a linear Dynamic
Pipeline pattern. However, contrary to MapReduce which fixes a
priori a number of processors, a linear DP pattern only exploits the
amount of processors required to solve the problem instance.

A simple example to illustrate the use of a DP pattern is the
elimination of duplicated values from an input stream, i.e., the
output is a duplicated-free stream of values. An actor is a filter in
the pipeline and is associated with a value. Actors receive values as
input and may produce a value as output. If an actor’s associated
value and an input value are different, the value is passed to the
actor’s neighbor; otherwise, the value is eliminated by the actor.
An actor is created whenever a value passes through the whole
pipeline and it is not filtered by any actor, i.e., an actor is created if
and only if an unseen value is received in the input channel.

Given the encouraging results obtained in the implementation
of a DP for solving the problem of counting triangles [4], we are
working on two main research goals: (a) A formal definition of
the DP paradigm. An initial formalization is given in [1]; (b) an
experimental framework for benchmarking the performance of very
well-known graph algorithms implemented as Dynamic Pipelines.
So far, we have implemented pipelines for finding the connected
components and maximal cliques of graphs given as streams of arcs.
Notice that, in the context of Big Data, the latter characterization
of the input graph is an avenue of research worth exploring. Our
on-going work is a DP query engine for conjunctive queries.

REFERENCES
[1] Julián Aráoz and Cristina Zoltan. 2015. Parallel Triangles Counting Using Pipelin-

ing. http://arxiv.org/pdf/1510.03354.pdf.. (2015). http://arxiv.org/abs/1510.03354
[2] Michael I Gordon, William Thies, and Saman Amarasinghe. 2006. Exploiting

coarse-grained task, data, and pipeline parallelism in stream programs. ACM
SIGOPS Operating Systems Review 40, 5 (2006), 151–162.

[3] Matthew Felice Pace. 2012. BSP vs MapReduce. CoRR abs/1203.2081 (2012).
http://arxiv.org/abs/1203.2081

[4] Edelmira Pasarella, Maria-Esther Vidal, and Cristina Zoltan. 2017. Comparing
MapReduce and pipeline implementations for counting triangles. Electronic
proceedings in theoretical computer science 237 (2017), 20–33.

[5] Spark 2017. Apache Spark. (2017). http://spark.apache.org/

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
http://arxiv.org/pdf/1510.03354.pdf.
http://arxiv.org/abs/1510.03354
http://arxiv.org/abs/1203.2081
http://spark.apache.org/

	Abstract
	References

