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Abstract. A strip of tetrahedra is a tetrahedron-tetrahedron truss where any tetra-

hedron has two neighbors except those in the extremes which have only one. The

problem of finding all the possible lengths for an edge in the strip compatible

with a given distance imposed between the strip end-points has been revealed

of relevance due to the large number of possible applications. In this paper, this

is applied to solve the forward kinematics of 6-6 Gough-Stewart platforms with

planar base and moving platform, a problem which is known to have up to 40

solutions (20 if we do not consider mirror configurations with respect to the base

as different solutions).

Keywords: Position analysis, closed-form solutions, Distance Geometry, Gough-

Stewart platform.

1 Introduction

During the last years, different methods have been developed, based on the use of Dis-

tance Geometry, to solve position analysis problems which includes the inverse kine-

matics and the forward kinematics of serial and parallel robots, respectively. The strat-

egy followed in all these methods is simple: the problem is reduced to find some dis-

tances so that, once known, the problem can be trivially solved by a sequence of trilat-

erations. Position analysis problems are thus essentially reduced to find a set of closure

polynomials whose variables are the unknown distances. Since no arbitrary reference

frames have to be introduced to obtain these polynomials, these methods can be classi-

fied as intrinsic.

Contrarily to what happens when using kinematic loop-closure equations to solve a

position analysis problem [1], the number of generated equations using distance-based

methods does not depend on the number of kinematic loops. Nice examples of this fact

are the planar Watt-Baranov trusses [2] and a remarkable class of spatial variable geom-

etry trusses [3]. Actually, the number of unknown distances that have to be introduced,

which is independent of the number of kinematic loops, is the most relevant factor in

these methods. Obviously, this number has to coincide with the number of generated

equations in well-defined problems.
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Fig. 1. A 6-6 Gough-Stewart platform. If the distances of the dotted blue segments are known, its

forward kinematics can be straightforwardly solved by a sequence of trilaterations.

This paper can be seen as a continuation of the work presented in [4] where a simple

procedure to obtain the distances between the end-points of a strip of tetrahedra is de-

tailed. The resulting formula can be manipulated to obtain any edge length of the strip

as the roots of a polynomial whose coefficients depend on the distance between the strip

end-points and all other edge lengths. This technique was applied to solve the forward

kinematics of a 3-4 and a 4-4 Gough-Stewart platform because in these two cases the

problem can be solved by introducing a single distance or, in other words, the problem

can be reduced to the position analysis of a single strip of tetrahedra.

The algorithm presented in [4] assumes that the tetrahedra in the strip have no ori-

entation constraints. Although the technique can be extended to take into account such

constraints, here we still adhere to this assumption as our main goal is explaining how

the method extends to the case in which we have to consider several strips of tetrahedra

at the same time.

To solve the forward kinematics of the general 6-6 Gough-Stewart platform, using

a sequence of trilaterations, we have to introduce three unknown distances. Indeed, let

us consider the parallel platform in Fig. 1. If the unknown distances d2,7, d3,7, d2,9 are

taken as variables, we can apply a trilateration process to locate P10, P11, and P12. As a

consequence, since the distances d4,10, d5,11, d6,12 are known, three closure conditions

can straightforwardly be obtained. A single univariate condition can then be derived by

elimination. Now, observe that, in the general case, the orientation of the moving plat-

form is constrained with respect to that of the base. Nevertheless, if the moving platform

is planar, its mirror reflection can be described as a rotation in three dimensions. In this

case, no orientation constraints have to be considered and the problem can be entirely

described in terms of distances. In this paper, we study the particular case in which both

base and moving platform are planar.
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Algebraic geometric methods have shown that the forward kinematics of the general

6-6 Gough-Stewart platform has up to 40 solutions [5–9], all of which can be real [10].

Husty [7] obtained a 40th-degree univariate polynomial by finding the greatest common

divisor of the intermediate polynomials of degree 320. Innocenti [8] derived it from

the two 56th-degree univariate polynomials. Dhingra et al. [9] used Gröbner-Sylvester

hybrid method to obtain a 40th-degree polynomial directly from the 64×64 Sylvester’s

matrix formed by the calculated Gröbner basis. Any of these methods can obviously be

applied to solve the particular case in which the base and the platform are planar, but

this case has interest on its own, both from practical and theoretical points of view. This

is why Lee and Shim presented a method adapted to solve its forward kinematics [11],

and Borras et al. studied its singularities [12].

The paper is organized as follows. Section 2 gives some basic facts on the distance

geometry of strips of tetrahedra. These concepts are needed to understand the proce-

dure, detailed in Section 3, to generate the three distance-based closure conditions as-

sociated with a 6-6 Gough-Stewart platform. For comparison purposes, Section 4 solves

the same problem as the one reported in [11] using these three closure conditions. Fi-

nally, Section 5 offers some conclusions and prospects for further research.

2 Background

Let us consider two tetrahedra that share the face defined by points Pi, Pj, and Pk. The

squared distance between their apexes, say Pl and Pm, can be expressed as follows (see

[13, 14] for details):

sl,m =
2

D(i, j,k; i, j,k)

(
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∣
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si, j being the squared distance between Pi and Pj.

By iterating this operation, it is possible to obtain the distance between the end-

points of a strip of tetrahedra as a function of all edge-lengths in the strip. The result is

an expression with nested square roots. As explained in [3, 4], these squared roots can

be cleared to obtain a polynomial expression in terms of all involved distances.

3 Obtaining Closure Polynomials

We can derive the strip of tetrahedra that appears in Fig. 2 from the 6-6 Gough-Stewart

platform in Fig. 1. The end-points of this strip can either be, on one side, P4, P5, or P6,
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Fig. 2. This strip of five tetrahedra can be derived from the 6-6 Gough-Stewart platform in Fig. 1.

The distances in dotted blue lines are unknown.

and, on the other, either P10, P11, or P12. Then, since only s2,7, s3,7, and s2,9 are unknown

distances, using the procedure mentioned in the previous section and detailed in [3, 4],

we have that:

si, j = fi, j(s2,7,s3,7,s2,9), (3)

where i ∈ {4,5,6} and j ∈ {10,11,12}. Thus, in particular, we have

s4,10 = f4,10(s2,7,s3,7,s2,9), (4)

s5,11 = f5,11(s2,7,s3,7,s2,9), (5)

s6,12 = f6,12(s2,7,s3,7,s2,9). (6)

Since the distances on the left-hand sides of the above three equations are known,

we have three equations in three unknowns. Now, since the right-hand sides contain

radicals, we have to use the procedure mentioned above to clear them [3, 4].

Assuming that we are dealing with a Gough-Stewart platform with coplanar leg

attachments in general position within their planes, we obtain the following system of

three polynomial closure conditions, of degree 12 each, in three variables

p1(s2,7,s3,7,s2,9) = 0

p2(s2,7,s3,7,s2,9) = 0

p3(s2,7,s3,7,s2,9) = 0







(7)

Now, we can eliminate, for example, s3,7 from p1(·) and p2(·), and from p1(·)
and p3(·). Then, we obtain two polynomials in s2,7 and s2,9, say p1,2(s2,7,s2,9) and

p1,3(s2,7,s2,9). These two polynomials, of degree 128 each, factor into four terms of

degree 20, 28, 36 and 44.
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By computing the resultant of pairs of these factors, one from each polynomial, to

eliminate s2,7, we obtain polynomials in one variable: s2,9. These univariate polynomials

also factorize into terms of different degrees as detailed in Table 1:

p1,2(s3,7,s2,9)

20 28 36 44

p
1
,
3
(s

3
,
7
,
s 2

,
9
)

20
20

380

60

500

60

660

100

780

28
60

500

2 (32)

60

628

116

892

2 (32)

116

1020

36
60

660

116

892

2 (16)

60

1108

2 (16)

116

1340

44
100

780

2 (32)

116

1020

2 (16)

116

1340

2 (16)

2 (32)

2(32)

100

1548

Table 1. Degrees of all polynomial factors in s2,9 resulting from computing the resultant of the

four factors of p1,2(s3,7,s2,9) and p1,3(s3,7,s2,9). The multiplicity of each factor appears in paren-

thesis, if not 1.

While some quadratic factors in Table 1 are repeated (actually, there are only three

different quadratic factors), all other factors of higher degree are different.

Since we know that the maximum number of assembly modes of a general Gough-

Stewart platform is 40, all factors of higher degree than this bound necessarily en-

compass extraneous roots. Moreover, the quadratic factors with multiplicity 16 and 32

are neither part of the solution because this would mean that the analyzed platform is

quadratically solvable; in other words, it would be trilaterable [15]. In this context,

trilaterable means that it would be possible to generate a single strip of tetrahedra in-

volving all vertices such that all edge lengths in it are known, which is impossible in

this problem. As a result, only one factor survives: the one of degree 20 which appears

when factorizing the resultant of the factors of degree 20 of both p1,2(·) and p1,3(·).
Alternatively, to conclude that the 20th-degree factor is the only factor containing

the desired solutions, we have also generated a different set of strips of tetrahedra con-

taining three different variable edges, except P2,P9. Then, we have verified that the

sought factor is the common factor resulting from using both sets of strips.

Once the roots of the 20th-degree factor in s2,9 are computed, each of these roots

can be substituted back in any of the two factors of degree 20 of p1,2(·) or p1,3(·) to

obtain the corresponding solutions for s3,7. Then, the results can be substituted in either

p1(·) = 0, p2(·) = 0, or p3(·) = 0, to finally obtain the solutions for s2,7.
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4 Example

To properly compare our results with those reported in [11], we use here the same ex-

ample. Nevertheless, it is important to notice that the length of the sixth leg in this

latter reference is incorrect. Using the same notation as in Fig. 1, instead of s6,12 =
117.805089939638, it should be s6,12 = 119.2390086191201. Then, the considered

Gough-Stewart platform defines the following distance matrix:

S =









































0.0 3844.0 3965.0 3208.0 2545.0 218.0 9889.0 s1,8 s1,9 s1,10 s1,11 s1,12

3844.0 0.0 121.0 1844.0 2421.0 3194.0 s2,7 14977.47 s2,9 s2,10 s2,11 s2,12

3965.0 121.0 0.0 1129.0 1684.0 3029.0 s3,7 s3,8 24340.67 s3,10 s3,11 s3,12

3208.0 1844.0 1129.0 0.0 101.0 1850.0 s4,7 s4,8 s4,9 23700.59 s4,11 s4,12

2545.0 2421.0 1684.0 101.0 0.0 1301.0 s5,7 s5,8 s5,9 s5,10 18569.53 s5,12

218.0 3194.0 3029.0 1850.0 1301.0 0.0 s6,7 s6,8 s6,9 s6,10 s6,11 14217.94

9889.0 s2,7 s3,7 s4,7 s5,7 s6,7 0.0 196.0 2378.0 2845.0 2554.0 2020.0

s1,8 14977.47 s3,8 s4,8 s5,8 s6,8 196.0 0.0 1258.0 1753.0 2106.0 1768.0

s1,9 s2,9 24340.67 s4,9 s5,9 s6,9 2378.0 1258.0 0.0 197.0 1600.0 1802.0

s1,10 s2,10 s3,10 23700.59 s5,10 s6,10 2845.0 1753.0 197.0 0.0 853.0 1125.0

s1,11 s2,11 s3,11 s4,11 18569.53 s6,11 2554.0 2106.0 1600.0 853.0 0.0 58.0

s1,12 s2,12 s3,12 s4,12 s5,12 14217.94 2020.0 1768.0 1802.0 1125.0 58.0 0.0









































,

where S(i, j) = si, j = d2
i, j.

Following the steps detailed in the previous section, the 20th-degree polynomial in
s2,9 is:

s20
2,9 −3.8124×105 s2,9

19 +1.0636×1010 s2,9
18 +1.2896×1016 s2,9

17 −2.7847×1021 s2,9
16+

3.0704×1026 s2,9
15 −2.2140×1031 s2,9

14 +1.1390×1036 s2,9
13 −4.3622×1040 s2,9

12+

1.2726×1045 s2,9
11 −2.8611×1049 s2,9

10 +4.9798×1053 s2,9
9 −6.7075×1057 s2,9

8+

6.9694×1061 s2,9
7 −5.5643×1065 s2,9

6 +3.3970×1069 s2,9
5 −1.5529×1073 s2,9

4+

4.7760×1076 s2,9
3 −5.1150×1079 s2,9

2 −2.6566×1083 s2,9 +8.9169×1086
.

The positive reals roots of this polynomial are: 7451.80, 9587.28, 17271.4, 24044.1,

24511.3, 24579.0, 26132.2, 27680.5, 28332.5, 28809.9, 44848.6, and 251456. Obvi-

ously, complex or negative real squared distances have no physical meaning in our

problem and they can be discarded. Moreover, these ten solutions do not necessarily

lead to real solutions for s2,7 and s3,7. In this case, only the roots 24511.3 and 24579.0

lead to real configurations of the strip of tetrahedra. The corresponding parallel plat-

form configurations appear in Fig.3. They coincide with the two real solutions reported

in [11].

In this example, the quadratic factors appearing in Table 1 are:

s2
2,9 −49578.5s2,9 +598299000.0 = 0, (8)

s2
2,9 −32415.2s2,9 +188224000.0 = 0, (9)

s2
2,9 −48923.3s2,9 +586592000.0 = 0. (10)
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Fig. 3. Forward kinematics solutions of the analyzed 6-6 Gough-Stewart platform. The two mirror

configurations with respect to the fixed base are also solutions but they are not represented.

The last factor is identically equal to D(2,3,9;2,3,9) which vanishes when P2, P3, and

P9 are aligned [16]. For symmetry reasons, some of the other terms of higher degree

should correspond to other alignments. Nevertheless, since they are expressed in terms

of s2,9, instead of a variable edge length connecting two of the three points involved in

an alignment, their expressions are very complicated.

5 Conclusions

It has been shown how to derive three closure polynomials for 6-6 Gough-Stewart plat-

forms with planar base and moving platform in terms of three unknown distances, and

how the solution to this system of equations permits solving the forward kinematics of

the analyzed Gough-Stewart platform by a trivial sequence of trilaterations.

The elimination process to generate the 20th-degree final polynomial in a single

distance from the three closure polynomials leads to extraneous factors. The geometric

meaning of some of them have been identified and that of some others, conjectured.

The analysis of the groups of substitution of finite order associated with the symmetries

of the analyzed strips of tetrahedra could play a fundamental role in the identification

of the geometric meaning of all these factors. They actually seem to be correlated with

the Galois groups of the obtained factors. In the same way that a knot polynomial is

a knot invariant in the form of a polynomial whose coefficients encode some of the

properties of a given knot, the study of all polynomial factors derived from a set of

strips of tetrahedra in terms of invariants opens a fascinating new field in Kinematics.
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