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This work aims to interpret a family of distances in networks associated with effec-
tive resistances with respect to a parameter and a weight in terms of rooted spanning
trees. Specifically, we consider the effective resistance distance with respect to a pos-
itive parameter and a weight; that is, effective resistance distance associated with an
irreducible and symmetric M–matrix. This concept was introduced by the authors in
relation with the full extension of Fiedler’s characterization of symmetric and diagonal
dominant M–matrices as resistive inverses to the case of symmetric M–matrices. The
main idea is consider the network embedded in a host network with new edges that
reflects the influence of the parameter. Then, we used the all minor tree Theorem to
give an expression for the effective resistances in terms of rooted spanning forest.

This work has been partially supported by the Programa Estatal de I+D+i del Ministerio de Economı́a y Competitividad, Spain, under

the project MTM2014-60450-R.



1 Matrix Tree Theorems in the Host Network

In this section we aim to present the matrix tree–theorem for a Schrödinger operator
with λ > 0 and to get the relation between the number of forest and different pa-
rameters of the network such as Green function and effective resistance among others.
The classical matrix–tree theorem whose first version was proved by G. Kirchhoff in
1847 relates the principal minors of the Laplancian matrix with the total weight of
spanning trees of Γ. Since then, many generalization and different proofs have been
considered (see for instance [1]). In this work we are going to use an extension of
the undirected version of the all–minors theorem by S. Chaiken [9], see also [6] for a
beautiful application.
If T = (V,E, c) is such that for each pair x and y of vertices, there is exactly one
path joining x and y, the T is called a weighted tree. Given Γ = (V,E, c) a connected
network, we say that T is a spanning tree of Γ if both networks have the same set of
vertices and each edge of T is also and edge of Γ with the same weight. A forest is a
non–necessarily connected network without cycles. A rooted forest is a forest with one
vertex marked as a root in each connected component. Moreover a k–rooted forest is a
forest with k components and a vertex marked as a root in each connected component.
The weight of a forest F is defined as the product of all weights of the edges of F

taking into account the weights of the vertices given by ω; i.e.,

w(F ) =

∏
e∈E(F )

w(e)

∏
x∈V (F )

ω2(x)
,

where e = {x, y} ∈ E(F ) and w(e) = c(x, y)ω(x)ω(y) and we take the convention that
empty product equals 1.
We denote by F = F(Γ) the set of rooted spanning forest of Γ and Fk = Fk(Γ) the
set of k–rooted spanning forest of Γ. Moreover, Fx = Fx(Γ) denotes the set of rooted
spanning forest of Γ such that x is a root and Fk,x = Fk,x(Γ) denotes the set of k–
rooted spanning forest of Γ such that x is a root. Finally, we denote by Fx,y = Fx,y(Γ)
the set of rooted spanning forest of Γ such that x is a root and y belong to the same
component that x and Fk,x,y = Fk,x,y(Γ) the set of k–rooted spanning forest of Γ such
that x is a root and y belong to the same component that x. If F ∈ Fk we denote
by r(F ) the set of its roots whereas if F ∈ Fk,x we denote by r∗(F ) the set of roots
different from x.
In order to state the matrix notation we need to label the vertices and the edges of
the network. So, let Γ = (V,E, c) be a network and suppose that V = {1, . . . , n} and
E = {e1, . . . , em}. Assume that each edge of Γ is assigned an orientation, which is
arbitrary but fixed. Then, eℓ = (i, j), for ℓ = 1, . . . , m and i, j = 1, . . . , n, where i

is called the tail and j is called the head of eℓ. We define the weight of and edge as



w(eℓ) = c(i, j)ω(i)ω(j). Then, the incidence matrix B = (bℓi) ∈ Mm×n is defined as

bℓi =





1 if i is the head of eℓ

−1 if i is the tail of eℓ

0 otherwise,

and we denote by W(c, ω) ∈ Mm, the diagonal matrix whose diagonal elements are
given by w(eℓ). Using this notation

Lqω =
(
BD−1

ω

)T

W(c, ω)BD−1
ω , (1)

where D−1
ω ∈ Mn is a diagonal matrix whose diagonal elements are ω(xi). We name

matrix Bω = BD−1
ω ∈ Mm×n the weighted incidence matrix of Γ. Moreover, the matrix

associated with  Lq is given by

Lq = BT
ωW(c, ω)Bω + λI.

The next result, whose proof can be found in [3], establishes the relationship between
the original Schrödinger operator  Lq and a new semidefinite Schrödinger operator on
Γλ,ω. From now on, we label the vertex x̂ as n + 1.

Proposition 1. If q = qω + λ and we define q̂ = −
1

ω̂
Lλ,ω(ω̂), then q̂(n + 1) = λ

(
n−

〈ω, 1〉
)

and q̂ = q − λω on V . Moreover, for any u ∈ C(V ∪ {n + 1}) we get that

Lλ,ω
q̂ (u)(n + 1) = λ

(
nu(n + 1) − 〈ω, u|V 〉

)
and

Lλ,ω
q̂ (u) = Lq(u|V ) − λω u(n + 1) on V .

In matricial terms, the above relation means that

Lq = L
λ,ω
q̂ (n + 1|n + 1), (2)

where L
λ,ω
q̂ (n + 1|n + 1) is the submatrix of Lλ,ωq̂ obtained by deleting the (n + 1) − th

row and column. Moreover, the relation between weighted incidence matrices is the
following

B
λ,ω

ω̂ =

[
Bω 0

D−1
ω −j

]
and W

λ,ω

(c, ω) =

[
W(c, ω) 0

0 λD2
ω

]
,

where B
λ,ω

ω̂ ∈ M
(m+n)×(n+1)

(R) and W
λ,ω

(c, ω) ∈ M
m+n

(R). Therefore, if B
λ,ω

ω̂ (n + 1)

denotes the submatrix of B
λ,ω

ω̂ obtained by deleting the (n + 1) − th column, we get

Lq = B
λ,ω

ω̂ (n + 1)
T
Wλ,ω(c, ω)B

λ,ω

ω̂ (n + 1)

=
[
BT
ω D−1

ω

]
[
W(c, ω) 0

0 λD2
ω

][
Bω

D−1
ω

]
= BT

ωW(c, ω)Bω + λI.



Note, that the above matrices are similar to the ones introduced in [12] in relation with
the normalized Laplacian. Notice that with our interpretation these matrices acquire
a real meanig.
Observe that if F̂ is an spanning tree on Γλ,ω with n + 1 as a root and k edges of
type {n + 1, i}, the forest generated in Γ, F , has k connected components and each i

belongs to a different component and hence it can be considered as a root of the forest.
With this interpretation of Γ̂, we can estate some generalization of the matrix-tree
Theorem. This extension considers not only weights in the edges, as in the previous
works, but also weights on the vertices. We omit the proof because it is a simple
consequence of the above results.
Call a subset J = {(i1, j1), . . . , (iℓ, jℓ)} ⊂ V × V component–disjoint if ip 6= iq and

jq 6= jq for every p 6= q and i1 < i2 < · · · < iℓ; denote
∑

J =
ℓ∑

p=1

(ip + jp). Denote by τJ

the permutation of {1, 2, . . . , ℓ} defined by the condition jτJ (1) < jτJ (2) < · · · < jτJ (ℓ).
A spanning forest is called J–admisible if it has ℓ connected components, and every
component contains exactly one vertex from the set {i1, . . . , iℓ}, and exactly one, from
{j1, . . . , jℓ} (the two may coincide if the sets intersect). The vertices from i1, . . . , iℓ will
be considered as roots. Denote by σF

J a permutation of V such that ip and jσF
J
(p) lie in

the same component of F , for every p = 1, 2, . . . , ℓ.
For a n–matrix M and a component–disjoint set J , denote by M(J) the submatrix
of M obtained by deletion of the rows i1, . . . , iℓ and the columns j1, . . . , jℓ. For any
permutation ǫ will denote its sign.

Theorem 1. [9] For any component–disjoint subset J ⊂ V × V it is verified

(−1)
∑

Jdet(Lqω)(J) =
∑

F

ǫ(τJ ◦ σF
J )w(F )

ℓ∏

p=1

ω(ip)ω(jp)

where the sum is taken over the set of all J–admissible forest F of Γ.

The cases in which ℓ = 0, 1, 2 have an special meaning.

Proposition 2. Let λ > 0 and ω ∈ Ω(V ). Then, the determinant of the matrix
associated with a positive semi–definite Schrödinger operator,  Lq, is given by

det(Lq) =
n∑

k=1

akλ
k,

with
ak =

∑

F∈Fk

w(F )
∏

ip∈r(F )

ω(ip)
2.

Proof. From Equation (2) and Theorem 1 taking J = {(n + 1, n + 1)} and keeping in
mind that ω(n + 1) = 1, we get that

det(Lq) = det
(
L
λ,ω
q̂ (J)

)
=

∑

F̂

ŵ(F̂ ),



where F̂ is a J–admisible forest in Γλ,ω rooted at n + 1. Notice that in this case
the permutations are the identity. Moreover, if k is the number of edges of the form
ep = {n + 1, ip}, p = 1, . . . , k, in F̂ and F is the induced k–rooted spanning forest in
Γ, k = 1, . . . , n with r(F ) = {i1, . . . , ik} as set of roots, we have that

ŵ(F̂ ) =

∏
ep

λω(ip)
2

∏
e∈E(F )

w(e)

∏
j∈V (F )

ω(j)2
= λkw(F )

k∏

p=1

ω(ip)
2.

Observe that
det(Lq) = det(Lqω + λI),

and hence an must equal 1 and an−1 = tr(Lqω) =
∑

x,y∈V

c(x, y)
ω(x)

ω(y)
. This values can also

be deduced from the fact that there is only one forest with n connected components
and there are 2m rooted forest with n−1 components. Moreover, notice that the above
result is also valid for λ = 0, since in this case det(Lq) = 0.
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