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ABSTRACT 

This study presents the preparation of pure, Sr and Mg-doped hydroxyapatite (HAP) by 

precipitation. Sr-doped HAPs (SrHAPs) and Mg-doped HAPs (MgHAPs) were fabricated 

with Sr molar ratio of 2, 4, 6, 8, 12 % and Mg molar ratio of 2, 4 %, respectively. 

Ca(NO3)2, Sr(NO3)2, Mg(NO3)2, (NH4)2HPO4 were used as starting materials, the Ca/P 

molar ratio was kept 1.67 during every synthesis and a 900 °C heat treatment was 

conducted to enhance the crystallinity. All of the products were analyzed by XRD, SEM 

and EDX, moreover lattice parameters and crystallite size calculations were performed to 

prove the ion incorporation into the crystal structure. The HAP structure was maintained 

when 2 and 4 Sr and 2 Mg % were applied and EDX confirmed the Sr and Mg content in 

these samples. In all other cases, various Sr and Mg-containing phases (Sr0.13Ca2.87(PO4)2, 

Ca2P2O7, Mg0.29Ca2.71(PO4)2) were identified while the HAP structure disappeared. It was 

shown that lattice parameters and the unit cell volume of Sr-doped HAPs increased 

slightly compared to pure HAP due to the bigger radius of Sr2+ than Ca2+. As the ionic 

radius of Mg2+ is smaller than Ca2+, we demonstrated the distortion in the unit cell. 

Crystallite sizes increased as the amount of Sr and Mg raised. SEM experiments 

demonstrated that ion incorporation had little influence on the morphology, i.e. pure, Sr 

or Mg-doped HAPs were mostly homogenous, constituted of strongly sintered nanometer 

sized grains. Antimicrobial tests indicated that SrHAP with 4 Sr % and MgHAP with 2 

% Mg had positive effect on cell viability. 
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1. Introduction 

Natural hydroxyapatite (HAP, Ca10(PO4)6OH2) is an essential compound of hard tissues 

in vertebrates, forming the inorganic part of its matrix. In natural bones and teeth the 

inorganic material constitutes mostly of Ca2+, PO4
3– and OH– ions, but others such as 

HPO42–, CO3
2–, Mg2+, Na+, Zn2+ etc. can also be a part of the crystal structure of HAP 

through ion-substitutions [1–3]. 

Due to its physico-chemical similarity to the calcium phosphate based materials in natural 

hard tissues, synthetic HAP has attracted considerable interest in the past few decades. It 

possesses outstanding biocompatibility, non-toxicity and osteoconductivity which 

characteristics make it a potential material for orthopedic, dental and other biomedical 

applications. It can be used as implants or as coating on implants since it is able to form 

chemical bonds with living tissue [4,5]. Furthermore, synthetic HAPs have promising 

applications in drug carrying, protein delivery, growth factor transporter in vitro 

dissolution, apatite forming ability, antibacterial activity or in vitro cytotoxicity [6–11]. 

Numerous studies demonstrated the significance and benefits of ion-substitutions in the 

crystal structure of synthetic HAP. Both cationic (Ag+, Mg2+, Sr2+, Zn2+,) and anionic 

(CO3
2–, F–, silicate) substituents can be incorporated to some degree into HAP to replace 

the calcium or phosphate and hydroxyl groups, respectively. These ion incorporations 

produce modifications in many physical properties due to the different ionic radii, such 

as crystallinity, crystallite size, lattice parameters, morphology or even in thermal stability 



and solubility [2,12–17]. Additionally, these substitutions can develop or enhance certain 

characteristics of HAP which improve its biological response and make it more favorable 

for medical applications. E.g. Ag+-substitution results unique antibacterial activity and 

makes it suitable for bone repair based on in vitro studies [13,17–20]. Besides Ag+, other 

ions, such as Mg2+, Sr2+ and Zn2+-incorporations also evolve the antibacterial activity of 

the substituted HAPs [21–23]. Furthermore, with Mg- or Sr-substitutions the 

biocompatibility and osteoconductivity of HAP can be also improved [2,13,14,17,22]. 

In this study, we prepared pure, Sr- and Mg-substituted HAP samples by precipitation 

method, using molar ratio 1.67 for Ca/P, (Ca+Sr)/P and (Ca+Mg)/P in accordance with 

the HAP stoichiometry. After all the preparations, we conducted a 900 °C annealing to 

improve the crystallinity of the samples. The reaction products were analyzed by XRD, 

SEM and EDX. Since the effective ion incorporation generates changes in the crystal 

structure due to the different ionic radii, we determined the lattice parameters and 

crystallite sizes of the products. As the ionic radius of Ca2+ is 0.99Å, but it is 1.12 Å for 

Sr2+ and 0.72 Å for Mg2+, enlargement or shrinkage of unit cell, respectively, is 

expectable. 

Finally, we tested the antibacterial activity of the pure and substituted HAPs by 

microdilution and tetrazolium reduction assay. 

 

2. Experimental 

2.1. Preparation of pure and Sr-doped HAP 

The synthesis of pure and Sr-doped HAP was carried out by the precipitation method. 0.3 

M calcium nitrate tetrahydrate [Ca(NO3)2∙4H2O, Sigma Aldrich] solution (A) and 0.29 M 

https://environmentalchemistry.com/yogi/chemistry/dictionary/A01.html#%C3%85ngstrom


diammonium hydrogen phosphate [(NH4)2HPO4, Sigma Aldrich] solution (B) were 

prepared separately in such an amount to keep the molar ratio of Ca/P or (Ca+Sr/P at 1.67 

(Table 1). When producing Sr-doped HAP, Sr(NO3)2 (Sigma Aldrich) as Sr source was 

used together with Ca(NO3)2 for A. Subsequently, B was added dropwise to A under 

constant stirring, and white precipitate formed immediately. Then the pH was set by 

NH4OH (25 %) to 11 and the whole mixture was stirred for 24 hours at room temperature. 

Finally, the precipitate was collected by filtering, washed with ion-exchanged water and 

dried at 80 °C for 12 hours. 

For investigating the effect of calcination we calcined the samples for 1 h at 900 °C. 

The performed experiments are summarized in Table 1. First, we studied the effect of 

calcination at 900 °C for 1 h. After that we carried out Sr-doping with 2, 4, 6, 8 and 12 

mol% (SrHAP2, SrHAP4, SrHAP6, SrHAP8, and SrHAP12, respectively). HAPrt means 

at room temperature-prepared HAP while HAPht means annealed HAP at 900 °C. 

2.2. Preparation of pure and Mg-doped HAP 

Ca(NO3)2∙4H2O (C) and (NH4)2HPO4 (D) solutions were made with the concentration of 

0.3 M and 0.29 M, respectively. The Mg source was magnesium nitrate [Mg(NO3)2∙6 

H2O, Sigma Aldrich], which was applied beside Ca(NO3)2 in C. In every case the molar 

ratio of Ca/P or (Ca+Mg)/P was 1.67 (Table 2). After that, D was added gradually to C, 

which was followed by formation of white precipitate. Subsequently, the mixed solution 

was stirred for 5 h at 90 °C and then left for aging for 3 days. Finally, it was filtered, 

washed with ion-exchanged water and dried at 120 °C for 12 h, and calcined at 900 °C 

for 2 h. 

 



All details of the conducted experiments are in Table 2. First, pure HAP was synthetized 

(HAP90) and then Mg-doped HAP with 2 and 4 mol% of Mg/(Ca+Mg) (MgHAP2, 

MgHAP4). 

HAP90 means the pure HAP prepared applying 90 °C strring and 3 days aging. 

2.3. Characterization 

XRD measurements were carried out by a PANanalytical X’Pert Pro MPD diffractometer 

with Cu K radiation (=0.15418 nm). To demonstrate the ion incorporation, we carried 

out lattice parameter calculation using HighScore Plus powder diffraction software. The 

statistically significant difference between the lattice parameters of pure and doped HAPs 

was proved by F t-test. Crystallite sizes of the products was evaluated based on the XRD 

patterns using the Scherrer-formula: 𝐷 =  
𝑘𝜆

𝛽𝑚𝑐𝑜𝑠𝜃
, where D (Å) is the crystallite size, k is 

a unitless form factor (0.9), λ is the wavelength used of the X-ray source (1.5418 Å), β is 

the physical broadening of the line (full width at half maximum), and θ (rad) is the 

diffraction angle. The (002) and (310) HA reflections were chosen for the analysis of line 

broadening along the c-axis and along a direction perpendicular to it, respectively. For 

investigating the morphology of the obtained materials a LEO 1540 XB electron 

microscope while for EDX measurements a JEOL JSM 5500-LV instrument was applied. 

2.4. Antibacterial activity and in vitro cytotoxicity testing 

The antibacterial activity and in vitro cytotoxicity of pure and Sr-, Mg-doped HAP 

samples were determined by microdilution method and tetrazolium reduction assay. 

Antibacterial tests were carried out against two Gram-negative (Escherichia coli ATCC 

25922 (American Type Culture Collection) and Klebsiella pneumoniae ATCC 49619) 



and three Gram-positive bacteria species (Enterococcus faecalis ATCC 29212, 

Staphylococcus aureus ATCC 25923, S. epidermidis ATCC 29212). The bacteria were 

prepared in MH (Mueller-Hinton; VWR) broth and were incubated at 37 °C overnight. 

The assays were performed in 96-well microtiter plates, using a two-fold serial dilution 

of the HAP samples starting from 200 µg/ml. 10-4 dilution of an overnight bacterial 

culture in 100 μL of MH were then added to each well with the exception of the medium 

control wells. Then, the plates were incubated at 37 °C for 18 h and at the end of the 

incubation period the MIC values of tested compounds were determined by naked eyes. 

In order to investigate whether the different types of pure and substituted HAPs affect the 

cell viability, the tetrazolium reduction assay was applied using 2-(p-iodophenyl)-3(p-

nitrophenyl)-5-phenyl tetrazolium chloride (INT). In the presence of bacteria, the 

tetrazolium salt (INT) is reduced to red formazan, which is directly proportional to the 

viable active cells.  

The antibacterial activity test on Escherichia coli ATCC 25922 was carried out by direct 

contact method in shaken tubes with 10 mL of volume Luria-Bertani Broth inoculated 

with 100-100 µL overnight E. coli suspension. The antimicrobial activity of HAP samples 

was determined at 500 µg/mL and 1 500 µg/mL concentrations in 3-3 parallels after 24 

and 48 h incubation time. Control samples without HAPs were also applied in 5 parallels. 

After 24 and 48 h contact time 200-200 µL of sample was taken out from each tubes and 

pipetted into 96-well microtiter plate. The optical density (OD) was registered and 

quantity of formazan was measured after addition of 30 µL sterile INT solution to each 

cells by recording changes in absorbance at 490 nm using a DIALAB ELx800 ELISA 

microplate reader. One-way analysis of variance (ANOVA) was performed by 

STATISTICA 13.1® software identifying significant effects (p<0.05). 



 

3. Results and discussion 

3.1. XRD 

3.1.1. Effect of calcination 

For investigating the role of calcination we applied a 1 h treatment at 900 °C after the 

precipitation procedure using the undoped sample. HAPrt prepared without calcination 

and HAPht calcined at 900 °C were both composed of pure HAP (ICDD: 04-016-1647) 

but with different crystallinity (Fig. 1). HAPht has much sharper and narrower peaks, 

which refers to that HAPht has a more considerably crystallized structure due to the 

calcination at 900 °C. Since this annealing step does not change the crystalline phase of 

the prepared samples but improves their crystallinity, at every further preparation it was 

employed. 

3.1.2. Sr-doped HAPs 

Sr-doping of HAP was carried out with different Sr/(Ca+Sr) molar ratios. SrHAP2, 

SrHAP4 were indicated as pure HAP (ICDD: 04-016-1647) without any new peaks 

referring to the Sr-content (Fig.2). The peak positions of SrHAP2 and SrHAP4 slightly 

shifted towards lower diffraction angles from 31.848 2θ (HAPht) to 31.784 2θ and 31.705 

2θ, respectively, in the case of the most intensive peak (310). Based on the results, it was 

assumed that Sr ions incorporated into the unit cell of HAP substituting Ca ions. In the 

case of SrHAP6, SrHAP8 and SrHAP12 Sr-containing tricalcium phosphate 

(Sr0.13Ca2.87(PO4)2, ICDD: 04-015-9751) and calcium pyrophosphate (Ca2P2O7, ICDD: 

04-009-3876) phases were determined. The lack of HAP is due to the distortion effect of 

Sr on the phosphate environment, which promotes the decomposition of HAP at high 



temperatures [24,25] and the transformation of HAP to β-TCP (tricalcium phosphate) 

above 700 °C. [26,27] 

The HAPht results are in good agreement with the ones in the reference pattern (ICDD: 

01-082-2956), which are a, b (Å) = 9.4154, c (Å): 6.8792 and V (Å3) = 528.14. The 

calculated lattice parameters obtained from the XRD patterns for the pure and Sr-doped 

HAPs (HAPht-SrHAP2-SrHAP4) altered slightly due to the larger ionic radius of Sr2+ 

(1.12 Å) compared to Ca2+ (0.99 Å, Table 3). Paramters a and b changed from 9.4100 to 

9.4266 Å, c from 6.8753 to 6.8925 Å, while the volume of unit cell expanded from 527.22 

to 530.41 Å3. In the case of the doped samples (SrHAP2 and SrHAP4) it is clearly seen 

that all the parameters (a, b, c) and volume of the unit cell increased. This effect is 

attributed to the Sr incorporation into the structure of HAP which substitutes Ca ions and 

thus expands the unit cell. In the terms of the crystallite sizes calculated by the Scherrer-

formula, a significant increase is present. The FWHM values used for the calculation 

decreased meaning the growth of the crystallite size, which can occur to some Sr content 

[28,29]. The lattice parameters of SrHAP2 and SrHAP4 differed significantly compared 

to pure HAP based on statistical calculation (F and t probes). 

3.1.3. Mg-doped HAPs 

Based on the XRD patterns, HAP90 and MgHAP2 were identified as pure HAP (ICDD: 

04-016-1647) and no other Mg-containing phase obtained (Fig.3). The peaks were 

supposed to be at higher diffraction angles indicating the shrinkage of unit cell, however, 

the positions for the most intensive peak were 31.776 2θ and 31.761 2θ in HAP90 and 

MgHAP2, respectively. When applying 4 % Mg, Mg and Ca-containing phase of 

triphosphate was also identified (Ca2.71Mg0.29(PO4)2, ICDD: 04-010-2972). The results 



show that starting from 4 % concentration Mg was not able to build into the crystal 

structure of HAP owing to the destabilizing influence of Mg. [30,31] 

Table 4 shows the calculated lattice parameters of HAP90 and MgHAP2. The obtained 

values for HAP90 correspond the ones from the reference HAP pattern (ICDD: 01-082-

2956), which are a, b (Å) = 9.4154, c (Å): 6.8792 and V (Å3) = 528.14. We expected a 

slight decrease in the values as the ionic radius of Mg2+ is smaller (0.72 Å) than Ca2+ 

(0.99 Å). Parameter a and b were 9.4137 Å and 9.4124 Å for HAP90 and MgHAP2, 

respectively. Even the volume of unit cell decreased from 527.73 Å3 to 527.63 Å3. 

However, parameter c was 6.8764 Å for HAP90 and 6.8771 Å for MgHAP2, which means 

some distortion of the unit cell. The crystallite sizes got larger in the presence of 2 % Mg, 

which was obvious due to the narrower FWHM values used for the calculation. The 

difference between a, b lattice parameters of MgHAP2 was significant compared to 

HAP90 based on statistical calculation (F and t probes). 

3.2. EDX 

Our main purpose with the EDX was to directly detect the presence of the doping ions. 

The lattice parameter calculations revealed changes in the unit cells referring to the 

incorporation but the ions are expected to be detected by EDX as well.  

3.2.1. Sr-doped HAPs 

Ca, Sr, P and O elements were the main components in each sample. This indicates that 

the washing process after filtering was sufficient as N was not observed during the 

measurements. Table 5 presents that the Ca/P or (Ca+Sr)/P molar ratios are 

approximately 1.67 in the case of HAPht and SrHAP4 but only 1.42 for SrHAP2. This 

small ratio would mean the formation of Ca-deficient HAP which decomposes above 700 



°C to β-TCP [26,27,32]. As the samples were pure HAP without any other phases, we 

assume the real value is close to the theoretical 1.67. For the same reason, the 

discrepancies in Sr/(Ca+Sr) ratios (1.71 for SrHAP2, 2.71 for SrHAP4) is attributed to 

the non-accuracy of EDX for quantitative analysis. In the case of SrHAP6, SrHAP8 and 

SrHAP12 the decrease of measured Sr % is according to the formation of new phases 

(SrxCa3-x(PO4)2, Ca2P2O7, Table 5, Fig.S1). 

3.2.2. Mg-doped HAPs 

HAP90, MgHAP2 and MgHAP4 consisted of only Ca, Mg, P and O (Table 6, Fig. S2). 

N was not detectable, which is in good agreement with the XRD results, where pure HAP 

(HAP90, MgHAP2) and Mg0.29Ca2.71(PO4)2 (MgHAP4) were identified. We conclude 

that the Ca/P and (Ca+Mg)/P atomic ratios were 1.67 at each sample, since according to 

the XRD results MgHAP2 has composed of only HAP. The measured Mg/(Ca+Mg) ratios 

is considered closing the planned 2 and 4 %. In the case of MgHAP4 the difference is 

attributed to formation not only HAP but a new phase. 

3.3. Morphology 

In the SEM image of HAPht nanometer sized grains are observable, which are highly 

sintered (Fig.4). In the case of SrHAP2 and SrHAP4 formation of elongated shapes, 

similar to HAPht, can be seen. The sintered forms have dimensions of 100-200 nm and 

are strongly stacked to each other. According to them, the incorporation of Sr-ion into the 

crystal structure of HAP does not change the morphology significantly. 

In the case of SrHAP6, SrHAP8, SrHAP12 the samples were composed of larger crystals 

with various shapes and sizes (more than 500 nm, Fig.4). This effect is due to the fact 



that in these experiments not HAP but other phases (Sr0.13Ca2.87(PO4)2, (Ca2P2O7)) were 

formed. 

In the SEM images of HAP90, MgHAP2 and MgHAP4 (Fig.5) it can be detected that the 

morphology of the samples are homogenous and consist of mostly some roundish forms, 

however, with different sizes. In the case of MgHAP2 these forms are in the range of 400-

500 nm while in MgHAP4 they are 100-200 nm compared to HAP90. HAP90 is 

composed of mostly 300 nm rounded grains. 

3.4. Antibacterial activity and in vitro cytotoxicity testing 

Testing of the antibacterial activity and in vitro cytotoxicity of the pure, Sr- and Mg-

doped HAP samples was carried out by determination MIC values using microdilution 

and INT reduction method. 

Based on the results of the microdilution method, MgHAP2 had effect on inhibiting the 

growth of both Gram-positive and negative strains compared to pure HAP (Table 7). In 

the case of SrHAP2 and SrHAP4 this effect can occur at more than 200 µg/ml 

concentrations. 

According to the results of INT reduction, SrHAP4 was effective against E. coli as the 

absorbance was decreased at both applied concentration. Statistically significant decrease 

(~26% inhibition) was observed at 1500 µg/ml SrHAP4. Slight but not significant 

antibacterial activity (~10% inhibition) was found in the case of MgHAP2 compared to 

control (Fig. 6). 

 

4. Conclusion 



In this study we synthetized pure HAP by precipitation method and incorporated Sr and 

Mg-ions into its crystal lattice. We applied different molar ratios: 2, 4, 6, 8 and 12 

Sr/(Ca+Sr) mol% and 2, 4 Mg/ (Ca+Mg) mol%. Based on the XRD measurements we 

found that SrHAP2 and SrHAP4 had pure crystalline HAP structure and the EDX 

experiments definitely showed Sr content. The same happened at in MgHAP2 which was 

identified pure HAP and EDX detected Mg presence. The other samples, prepared with 

different molar ratios of Sr and Mg, consisted of Sr0.13Ca2.87(PO4)2, Ca2P2O7, 

Mg0.29Ca2.71(PO4)2. The ion incorporation into the crystalline hexagonal structure of HAP 

induced changes in the parameters and volume of the unit cell, moreover in the crystallite 

size. Since the bigger ionic radius of Sr2+ to Ca2+ in SrHAP2 and SrHAP4 the unit cell of 

HAP expanded confirmed by the increasing of parameter a (b), c and the volume of unit 

cell. As the ionic radius of Mg2+ is smaller than Ca2+, we demonstrated that a (b) 

parameters and unit cell volume decreased. Parameter c was however increased, which 

refers unit cell distortion. Crystallite sizes increased when the amount of Sr and Mg was 

higher as a consequence of the narrower XRD reflections compared to the pure HAPs. 

SEM images showed that every sample had homogenous morphology, with elongated 

and roundish shapes strongly stacked to each other. These forms were 100-200 nm wide 

in the case of 2 and 4 % Sr but at higher amounts of Sr they were larger (400-500 nm). 2 

% Mg HAP resulted larger roundish crystals than in the case of 4 % Mg. Results of 

antimicrobial experiments showed that in the case of MgHAP2 sample the MIC value 

was 100 µg/ml, however, more than 200 µg/ml for the Sr-doped HAPs on the tested 

strains. For in vitro cytotoxicity tests only SrHAP4 had influence on the reduction of INT 

compared to the pure sample at 1500 µg/ml, MgHAP2 revealed slight differences. 

5. Associated content 



Supporting Information. EDX spectra of HAPht, SrHAP2, SrHAP4, SrHAP6, 

SrHAP8 and SrHAP12 (Fig.S1) and EDX spectra of HAP90, MgHAP2 and MgHAP4 

(Fig.S2). 
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Figure 2 XRD patterns of pure and Sr-doped HAPs 

Figure 3 XRD patterns of pure and Mg-doped HAPs 
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Figure 6 Tetrazolium (INT) reduction results for pure and doped HAP samples 

  



Table 7 

 HAPrt HAPht SrHAP2 SrHAP4 SrHAP6 SrHAP8 SrHAP12 

Sr/(Ca+Sr) [mol%] 0 0 2 4 6 8 12 

(Sr+Ca)/P 1.67 1.67 1.67 1.67 1.67 1.67 1.67 

Ca(NO3)2∙4H2O 

(mol) 
0.02030 0.02030 0.01994 0.01953 0.01912 0.01871 0.01790 

Sr(NO3)2 (mmol) 0 0 0.407 0.814 1.220 1.627 2.440 

cA (M) 0.30 0.30 0.30 0.30 0.30 0.30 0.30 

(NH4)2HPO4 (mol) 0.012 0.012 0.012 0.012 0.012 0.012 0.012 

cB (M) 0.29 0.29 0.29 0.29 0.29 0.29 0.29 

Calcination (900 °C) no yes yes yes yes yes yes 

 

  



Table 8 

 HAP90 MgHAP2 MgHAP4 

Mg/(Ca+Mg) [mol%] 0 2 4 

(Mg+Ca)/P 1.67 1.67 1.67 

Ca(NO3)2∙4H2O (mol) 0.02 0.0196 0.0192 

Mg(NO3)2∙6 H2O (mmol) 0 0.4 0.8 

cC (M) 0.2 0.2 0.2 

(NH4)2HPO4 (mol) 0.012 0.012 0.012 

cD (M) 0.12 0.12 0.12 

Calcination (900 °C) yes yes yes 

 

  



Table 9 

 Lattice parameters Crystallite size (nm) 

 a (Å) b (Å) c (Å) V (Å3) 002 310 

HAPht 9.4100 9.4100 6.8753 527.22 48.27 38.26 

SrHAP2 9.4189 9.4189 6.8851 528.99 70.94 67.11 

SrHAP4 9.4266 9.4266 6.8925 530.41 95.90 62.62 

 

  



Table 10 

 Lattice parameters Crystallite size (nm) 

 a (Å) b (Å) c (Å) V (Å3) 002 310 

HAP90 9.4137 9.4137 6.8764 527.73 113.37 100.70 

MgHAP2 9.4124 9.4124 6.8771 527.63 151.22 176.38 

 

  



Table 11 

 HAPht SrHAP2 SrHAP4 SrHAP6 SrHAP8 SrHAP12 

Ca (atom %) 21.48 14.92 18.34 16.35 13.89 24.92 

Sr (atom %) - 0.26 0.51 0.49 0.78 0.94 

P (atom %) 12.93 10.70 11.73 13.31 12.04 14.86 

O (atom %) 65.59 74.13 69.41 69.85 73.28 59.28 

Ca/P or (Ca+Sr)/P 1.66 1.42 1.61 1.27 1.22 1.74 

Sr/(Ca+Sr) - 1.71 2.71 2.91 5.32 3.63 

 

  



Table 12 

 HAP90 MgHAP2 MgHAP4 

Ca (atom %) 22.63 19.92 19.59 

Mg (atom %) - 0.33 0.63 

P (atom %) 12.58 12.06 13.26 

O (atom %) 64.79 67.68 66.52 

Ca/P or (Ca+Mg)/P 1.80 1.68 1.52 

Mg/(Ca+Mg) - 1.63 3.12 

 

  



Table 7 

 HAPht SrHAP2 SrHAP4 HAP90 MgHAP2 

S. aureus 

ATCC 25923 
>200 >200 >200 >200 100 

S. epidermidis 

ATCC 12228 
>200 >200 >200 >200 100 

E. faecalis 

ATCC 29212 
>200 >200 >200 >200 100 

K. pneumoniae 

ATCC 49619 
>200 >200 >200 >200 100 

E. coli 

ATCC 25922 
>200 >200 >200 >200 100 
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