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In this study the effects of various anions (SO4
2-, ClO4

- and PO4
3-) were investigated on the 

hydrothermal treatment of WO3 from Na2WO4 and HCl at 180 and 200 °C. The products were 

analyzed by XRD and SEM. With the usage of SO4
2- the obtained product was hexagonal (h-) 

WO3 in the form of nanorods at both temperatures. Applying ClO4
- resulted in a mixture of 

WO3∙0.33 H2O and small amount of m-WO3 at 180 °C and pure WO3∙0.33 H2O at 200 °C. The 

morphology was consisted of cuboid shapes arranged into spherical structures at 180 °C and 

longitudinal ones at 200 °C. By the application of PO4
3- no product formed at either temperature. 

Using the combination of SO4
2-, and ClO4

- the product was h-WO3 at both 180 and 200 °C with 

rod-like crystals; thus, the effect of ClO4
- was overdominated by the SO4

2- ions. Utilization of 

PO4
3- together with SO4

2-, and/or ClO4
- resulted again in no product, meaning that adding PO43- 

to the reaction mixture completely blocks the hydrothermal formation of solid products by 

forming water soluble phosphotungstic acids. 

Keywords Tungtsen oxides, Hydrothermal treatment, Structure, Morphology, SO4
2-, ClO4

-, PO4
3- 

1. Introduction 

Tungsten oxides are one of the most intensively investigated metal oxides due to their 

promising properties in the field of catalysis[1, 2], photocatalysis[3–6], electrochromism[7–9], 

photochromism[10] or gas sensing[3, 11–14]. Tungsten oxides can be prepared in many ways, 

such as wet chemical processes [10], hydro- or solvothermal[6, 15–17] or chemical solution 

routes[5], electrospinning[18], spray pyrolysis[19] or annealing[20]. 

Hydrothermal treatment is a widespread preparation route due to its easy implementation, 

low cost and energy consumption. In a typical synthesis, tungsten trioxide (WO3) is prepared by 

the reaction of sodium tungstate (Na2WO4) and hydrochloric acid, i.e. the precursor solution is 

transferred into an autoclave and maintained at 150-250 °C for several hours. [4, 6, 16, 21–23] 

Using certain additive materials the structure and the morphology of the product can be modified. 

The role of SO4
2- as a capping agent to favor the formation of h-WO3 1D nanostructures probably 

the most studied. E.g. Gu et al. used alkali metal sulfates to influence the morphology of the 
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obtained h-WO3. [16] Urchinlike nanostructures were prepared by the usage of Rb2SO4, ribbons 

with K2SO4 and cylindrical nanowires bundles through the addition of Na2SO4 or Li2SO4. 

Furthermore, when they used (NH4)2SO4 only nanorods were generated. They found that sulfates 

and oxalic acid played a key role in controlling the morphology and enhancing the crystal growth, 

respectively. They suggested the difference is caused by the cation radius. The influence of 

polymers and organic molecules on the reaction of Na2WO4 and HCl were also reported. When 

PEG-1000 is used as structure directing agent, flowerlike WO3 structures can be synthesized.[24] 

The length of the alkyl chain of an organic additive also affects the morphology since sodium 

decyl, dodecyl and tetradecyl sulfate resulted nanofibers, bundles of nanoneedles and individual 

ones.[25] Despite these efforts, there is still much room for research. Beside SO4
2-, other 

inorganic anions (e.g. ClO4
- and PO4

3-) might also influence the reaction; however, to the best of 

our knowledge, their effect of has not been reported yet. 

Hence, in this study, our goal was to investigate the effect of different anions on the 

morphology and structure of the products in the hydrothermal reaction of the two raw materials, 

Na2WO4 and HCl. In particular, we investigated the influence of ClO4
-, PO43-, and as reference 

SO4
2-. In order to eliminate the possible cation effect, all anions had the same cation, i.e. Na+; 

thus, the used materials were NaClO4, Na3PO4 and Na2SO4. They were used under the same 

conditions adding them alone to the solution or more of them at same time. We applied oxalic 

acid as an additive material as well beside the above listed chemicals since it improved the 

crystallinity of the obtained product[26]. We carried out the reactions at 180 and 200 °C to 

analyze the role of the temperature. The reaction products were studied by X-ray diffraction 

(XRD) and scanning electron microscopy (SEM). 

 

2. Experimental 

2.1. Materials 

Na2WO4·2H2O (≥99 %), (COOH)2·2H2O (≥99 %), Na2SO4∙10H2O (≥99 %), NaClO4∙H2O 

(99.99 %), Na3PO4 (96 %) were purchased from Sigma Aldrich as used as received. 3M HCl was 

diluted from 37 % HCl solution (Merck). Distilled water was used throughout the experiments. 

2.2. Hydrothermal synthesis 

During the hydrothermal reactions 4.1 g Na2WO4·2H2O was dissolved in 100 ml water and 

stirred for 15 minutes at room temperature. The pH was set to 1-1.2 by 3 M HCl and a light 

greenish precipitate was obtained. 3.2 g (COOH)2 was added to the mixture, after that the solution 

became translucent. Then it was diluted to 250 ml and stirred for 10 minutes again. Finally, 30 

mL of the solution was transferred into a 45 mL  Parr acid digest autoclave together with the 

certain additive materials. The autoclave was hydrothermally treated at 180 or 200 °C for 24 h. 

The products were filtered, washed first with distilled water and then with ethyl alcohol (96 

V/V%) and dried at 60 °C for 2 h. 

All performed hydrothermal treatments and conditions are summarized in Table 1. At first, 

we examined the influence of the Na2SO4∙10H2O (1-2), NaClO4∙H2O (3-4) and Na3PO4 (5-6) at 



180 and 200 °C on the morphology and crystal structure of the products. Then, we combined 

them and studied their joint effect. We used together Na2SO4 and NaClO4 at 180 and 200 °C (7-

8), while Na2SO4 and Na3PO4 (9) or NaClO4 and Na3PO4 (10) only at 200 °C. Finally, we put all 

the three additives at once in the autoclave at 200 °C (11). 

2.3. Structural and morphological characterization 

X-ray powder diffraction analyses were carried out using a PANanalytical X’Pert Pro MPD 

diffractometer with Cu K radiation (=0.15418 nm). For observing the morphology, the size 

and shape of the obtained nanostructure a LEO 1540 XB scanning electron microscope was 

applied with accelerating voltage of 5 kV. 

 

3. Results and Discussion 

3.1. XRD 

XRD measurements show that the usage of Na2SO4 as an additive resulted pure hexagonal 

h- WO3 (ICDD 033-1387, Fig. 1) both at 180 (1) and 200 °C (2). The temperature difference did 

not have an effect on the crystal phase, but improved the crystallinity of 2. It had narrower and 

sharper peaks referring to higher crystallinity. When instead of Na2SO4, NaClO4 was used alone 

in the reaction solution, the product was composed of WO3∙0.33 H2O (ICDD 04-016-3582) and 

of a small amount of monoclinic (m-)WO3 (13 %) (ICDD 01-075-207) at 180 °C (3), while it 

consisted of only WO3∙0.33 H2O at 200 °C (4). In the case of using only Na3PO4 as an additive, 

no product was obtained at either temperatures. 

Appyling together Na2SO4 and NaClO4 resulted pure h-WO3 at both temperatures (7-8). In 

every other experiment, when we added Na3PO4 as well to the autoclave (9-11), no solid products 

were formed. 

3.2. SEM 

The morphology of 1 and 2 was homogenous, they consisted of nanorods which were 5-10 

μm long and less than 1 μm thick (Fig. 2). In contrast, 3 and 4 were composed of mostly cuboid 

shapes. They are some hundred nm long and wide and form spherical agglomerates in the scale 

of micrometers (Fig. 2). 

Adding Na2SO4 and NaClO4 at the same time (7-8) resulted nanorods, which were similar 

to those prepared with only Na2SO4. These rods were however a bit thicker, they were 300-600 

nm wide at 180 °C and 300-800 nm at 200 °C. In addition, their length was not uniform. They 

contained more than 1 μm long rods, similar to 1-2; however, much shorter ones with only some 

hundred nm length also appeared in samples 7-8. (Fig. 2). 

In SEM images at higher magnification, it can be seen that the nanorods of 1 and 2 were 

composed of thin, only several ten nm thick needles stuck to each other during the hydrothermal 

treatment. Their thickness ranged from 50 to 300 nm at 180 °C (1, Fig. 3), while it increased up 

to 150-500 nm at 200 °C (2, Fig. 3). 3 and 4 were composed of cuboid shapes and sheets. These 

nanocubes have some hundreds of nm thickness and are greatly agglomerated. They are oriented 



longitudinally to each other at 200 °C (4). 7 and 8 had very similar morphology to 1 and 2 as 

rodlike shapes formed at each temperature.  

Based on these experiments, it is confirmed that SO4
2- acts as a structure directing capping 

agent, favoring the growth of 1D h-WO3 nanostructures. We suggest that ClO4
- ions do not lead 

to h-WO3 but to WO3∙0.33 H2O. The preferred morphology in this case is built up by 200-300 

nm large cuboid nanocrystals aligned to each other. When SO4
2- ions are used together with ClO4

- 

ions, the nanorod morphology remains unvaried, meaning that the effect of ClO4
- is 

overdominated by the SO4
2- ions. Utilization of PO4

3- alone or together with SO4
2- and/or ClO4

- 

results in no solid product, meaning that adding PO4
3- to the reaction mixture completely blocks 

the hydrothermal formation of products most probably by forming water soluble phosphotungstic 

acids[1]. 

 

4. Conclusion 

In summary, we investigated the effect of ClO4
- and PO4

3- anions in the hydrothermal 

reactions of Na2WO4 and HCl. As reference, the influence of SO4
2- was also investigated. To 

eliminate the cation affect, we used sodium containg salts, i.e. Na2SO4, NaClO4 and Na3PO4. The 

products were studied by XRD and SEM. 

The addition of Na2SO4 alone resulted pure h-WO3 at both temperatures which appeared as 

nanorods with 5-10 μm length and had 50 to 300 nm and 150-500 nm thickness at 180 °C and at 

200 °C, respectively. Applying only NaClO4 resulted WO3∙0.33 H2O and small amount of m-

WO3 at 180 °C and pure WO3∙0.33 H2O at 200 °C. The products were homogenous in 

morphology containing some hundreds of nm thick cuboid shapes arranged into spheres at 180 

°C and aligned longitudinally at 200 °C. The usage of Na3PO4 is not beneficial to the reaction 

since nothing formed at either temperatures. 

With adding both Na2SO4 and NaClO4 we prepared h-WO3 at both temperatures. The 

products had a bit more robust nanorod feature with thickness ranging from 300 to 600 nm at 

180 °C and 300-800 nm at 200 °C, respectively. In addition, beside longer nanorods, shorter ones 

also appeared. We found that ClO4
- ions did not have critical role in influencing the morphology, 

when the SO4
2- ions were also present, as the nanorod morphology and the h-WO3 structure 

formed again which is characteristic of the SO4
2- additive. The combination of Na3PO4 with 

Na2SO4 and/or NaClO4 yielded no products due to that water soluble phosphotungstic acids could 

form. 
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Figure captions 
Table 1. Experimental conditions (additives, temperature) and products of hydrothermal reactions 1-11 

Figure 1. XRD patterns of the products 1-4 and 7-8 

Figure 2. SEM images of the products 1-4 and 7-8 at lower magnification 

Figure 3. SEM images of the products 1-4 and 7-8 at higher magnification 

 

Product 

Nr. 

Additive material T (°C) 

Crystalline phases 

of the product 

1 2 g (0.0062 mol) Na2SO4∙10H2O 180 h-WO3 

2 2 g (0.0062 mol) Na2SO4∙10H2O 200 h-WO3 

3 2 g (0.0143 mol) NaClO4∙H2O 180 WO3∙0.33 H2O, m-

WO3 

4 2 g (0.0143 mol) NaClO4∙H2O 200 WO3∙0.33 H2O 

5 2 g (0.0122 mol) Na3PO4 180 - 

6 2 g (0.0122 mol) Na3PO4 200 - 

7 

1 g (0.0031 mol) Na2SO4∙10H2O + 

1 g (0.0072 mol) NaClO4∙H2O 

180 h-WO3 

8 

1 g (0.0031 mol) Na2SO4∙10H2O + 

1 g (0.0072 mol) NaClO4∙H2O 

200 h-WO3 

9 

1 g (0.0031 mol) Na2SO4∙10H2O + 

1 g (0.0061 mol) Na3PO4 

200 - 

10 

1 g (0.0072 mol) NaClO4∙H2O + 

1 g (0.0061 mol) Na3PO4 

200 - 

11 

0.66 g (0.0020 mol) Na2SO4∙10H2O + 

0.66 g (0.0047 mol) NaClO4∙H2O + 

0.66 g (0.0040 mol) Na3PO4 

200 - 

Table 1. T. Nagyné-Kovács et al. 

  



 

Figure 1. T. Nagyné-Kovács et al. 

  



 

Figure 2. T. Nagyné-Kovács et al. 

  



 

 

Figure 3. T. Nagyné-Kovács et al.  


