
Hindawi Publishing Corporation
Neural Plasticity
Volume 2011, Article ID 182602, 11 pages
doi:10.1155/2011/182602

Review Article

Place Cells, Grid Cells, Attractors, and Remapping

Kathryn J. Jeffery

Department of Cognitive, Perceptual and Brain Sciences, University College London, 26 Bedford Way, London WC1H 0AP, UK

Correspondence should be addressed to Kathryn J. Jeffery, k.jeffery@ucl.ac.uk

Received 2 May 2011; Accepted 18 July 2011

Academic Editor: Anja Gundlfinger

Copyright © 2011 Kathryn J. Jeffery. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Place and grid cells are thought to use a mixture of external sensory information and internal attractor dynamics to organize their
activity. Attractor dynamics may explain both why neurons react coherently following sufficiently large changes to the environment
(discrete attractors) and how firing patterns move smoothly from one representation to the next as an animal moves through space
(continuous attractors). However, some features of place cell behavior, such as the sometimes independent responsiveness of place
cells to environmental change (called “remapping”), seem hard to reconcile with attractor dynamics. This paper suggests that the
explanation may be found in an anatomical separation of the two attractor systems coupled with a dynamic contextual modulation
of the connection matrix between the two systems, with new learning being back-propagated into the matrix. Such a scheme could
explain how place cells sometimes behave coherently and sometimes independently.

1. Introduction

The hippocampal place cells are thought to collectively
form a representation of space, known as a “cognitive
map” [1], because of their spatially localized firing, which
occurs in patches known as place fields (Figure 1(a)). One
source of spatial inputs to place cells is the entorhinal
grid cells, one synapse upstream, whose activity forms a
regular array of firing fields [2] suggestive of an intrinsic
odometric (distance-measuring) process, which may convey
metric information to place cells and allow them to position
their place fields accurately in space [3]. The place and
grid cells are an excellent model system with which to
study the formation and architecture of cognitive knowledge
structures.

Place and grid cells use external environmental cues
to anchor their activity to the real world, as evidenced
by the fact that their activity appears bound to the local
environmental walls [2, 4, 5] and reacts to changes in the
environment [6]. However, firing patterns are then stabilized
and maintained by internal network dynamics so that activity
can be self-sustaining and coherent across the network.
These internal dynamics are often considered to arise
from the operation of attractor processes [7–9], which are
processes that arise from mutually interconnected neurons
that collectively have a tendency to find stable states. Two

kinds of attractors have been proposed to explain place cell
behavior: discrete and continuous. The purpose of this paper
is to review the evidence for these two attractor types in the
hippocampal network and then to explore a phenomenon
that cannot be easily accounted for by attractors, known as
partial remapping. Finally, a model will be described that
may be able to explain how both attractor dynamics and
partial remapping can co-exist in the same network.

1.1. Attractors and Place Cell Remapping. One of the earliest
and most striking observations concerning the place cell
representation was the way that the cells can suddenly
and collectively alter their activity from one pattern to
another, a process known as remapping ([6] Figure 1(b)).
This phenomenon led to proposals that the pattern of
activity arises from cooperative activity among all involved
place neurons, perhaps exerted via the recurrent synapses in
the highly interconnected CA3 network [8]. The attractor
hypothesis built upon earlier ideas that the hippocampal
CA3 network functions as an autoassociative memory [10–
12]. Attractor networks are a special case of autoassociative
memory, and an attractor’s defining characteristic is the
existence of stable states, caused by the mutual excitation
of neurons within the network, towards which the system
gravitates when it is sufficiently close.
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Figure 1: (a) Activity of a CA1 place cell, recorded as a rat foraged for rice grains in a 60 cm-square box for four min. The top plot shows
the raw spikes (black squares) superimposed on the path of the rat as it (grey line), and the bottom plot shows a contour plot of firing rate,
shown in 20% gradations (black = the peak 20% region). (b) Examples of remapping from two cells in CA1, as a box was changed from
black to white. Cell 1 remapped by changing the location of its firing field, while Cell 2 remapped by switching its field off. (c) Evidence
for discrete attractors in CA1, adapted from [9]. As an environment was incrementally “morphed” between more circle-like and more
square-like (visible as the slightly lengthening corners as the diagrams go from left to right), the cells abruptly and coherently (all together)
changed their activity. (d) Cross-sectional attractor landscape for a discrete attractor. The stable states of the system are the hollows into
which the system (analogous to a rolling ball) settles and from which it resists perturbation. (e) A continuous attractor which does not resist
perturbations but moves smoothly from one state to an adjacent one.

The process of moving towards and settling into a stable
state is what is meant by “attractor dynamics”. Anatomical
and physiological observations of place cells suggest the
operation of two kinds of attractor dynamics: discrete and
continuous. Discrete attractor dynamics enable the system to
resist small changes in sensory input but respond collectively
and coherently to large ones, while continuous dynamics
enable the system to move smoothly from one state to the
next as the animal moves through space [7]. These two
attractor systems clearly must either be colocalized on the
same neurons or else be separate but interacting, since one
accounts for the population of place cells active at a given
moment and the other for the progression of activity from
one set to the next as the animal moves. One possibility,
discussed later, is that the source of the discrete attractor
dynamics may lie in the place cell network itself [7–9, 14],
and the continuous dynamics may originate upstream in the
entorhinal grid cell network [15].

In a discrete attractor network, the possible states are
clearly separable, and when the system moves from one state
to another, it seems to do so abruptly. The separate states
of a discrete attractor are often conceptualized as hollows
in an undulating energy landscape (Figure 1(d)) into which
the system (represented as a ball) tends to gravitate (i.e., to
be attracted to). The hollows, also called basins, are low-
energy states, but to move from one hollow to the next, the
ball requires a substantial perturbation: a small push will not
cause it to change basins/states. The states are imprinted onto
the network by appropriate modulation of the connection
strengths between the neurons in the network [16]. Place
cell remapping was initially conceptualized as being a sudden
transition of the place cell network from one state to the next
following the large perturbation arising from environmental
change [17], an idea that has been very influential.

Experimental evidence for attractor dynamics in the
place cell network was initially provided by observations of
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remapping, but stronger evidence came from a study by
Wills et al. [9], who showed that incremental changes in
the squareness or circularity of an enclosure would produce
no change in place cell activity until the cumulative changes
became sufficiently great, at which point the whole system
would suddenly switch to the other pattern (Figure 1(c)).
Interestingly, attractor dynamics do not seem to be invariable
observations: for example, they were not seen by Leutgeb et
al. [18], who found, by contrast, that gradual transformation
of environment shape induced gradual transition of firing
patterns from one shape to the other. Such differences in
network behavior may be accounted for by the “attractor
landscape”—the exact distribution of the imaginary hills and
valleys in the attractor state-space—which may have been
sculpted by the past experience of the animal, via processes
described below.

Attractor properties derive from the pattern of recurrent
synaptic connections, and attractor networks can learn new
information, presumably by Hebbian synaptic plasticity
occurring in these connections [16]. In support of this
notion, the place cell network is highly plastic, as evidenced
by the propensity for its synapses to display changes in
strength, either upwards (long-term potentiation; LTP) or
downwards (long-term depression; LTD), in response to
activity patterns in its afferents [19]. Exactly what this
plasticity is for is still unresolved, but one hypothesis has
been that one function is for the system to discover for
itself the different states the environment can take and to
represent this by different states (also called “charts” [7]) in
the discrete attractor landscape [14]. Place cells do indeed
have the capacity to acquire different representations of an
environment that was previously represented by a single state
[20, 21], an observation which is consistent with this idea.

The attractor architecture allows for comparison of
incoming sensory information with stored information in
the network. The incoming information effectively places the
attractor network in a state that is nearer to or further from
an attractor basin. When presented with an altered state of
an environment (e.g., an office with the furniture rearranged
or a familiar field covered in snow), the system compares its
stored representations with the current observed state and
makes a decision about whether the current state is the same
environment after minor changes (pattern completion), or
a different environment requiring a new representation
(pattern separation). The decision comprises movement of
the system to the nearest stable state. Whether or not the
system opts to separate (move to an adjacent basin) or
complete (return to the previous basin) the pattern, the
cells should all act coherently by virtue of the attractor
architecture. Experimental evidence for pattern completion
in the CA3 hippocampal network was provided by Nakazawa
et al. [22] who found that partial presentation of a set
of environmental cues (analogous to placing a ball at the
edge rather than the centre of an attractor basin) triggered
spontaneous retrieval of the full activation pattern.

The other property characteristic of place cells is the way
that a given activity pattern can smoothly move from one
to the next as an animal moves through space. This smooth
movement has also been ascribed to attractor dynamics

in a recurrent network, but instead of a discrete attractor
in which the state jumps from one pattern to the next,
it is thought instead to comprise a “continuous attractor”
around which the activity moves smoothly [7, 17]. A
continuous attractor can be conceptualized as movement of
the imaginary ball across a smooth surface rather than a hilly
landscape (Figure 1(e)). The “attractors” in this network are
no longer the possible states of the network in the whole
environment, but rather the activity patterns that pertain
across the active cells when the animal is at one single place
in that environment [17]—any neuron that is supposed to
be part of this state, at that place, will tend to be pulled into
it and held there by the activity of the others to which it is
connected. Continuous attractors were originally postulated
in order to explain the dynamics of the upstream head
direction cells [23]. For place cells, the one-dimensional
“ring” attractor of the head direction cell model has been
extended to two dimensions [7].

1.2. Partial Remapping: A Challenge for Attractor Hypotheses.
One problem with the notion of attractors in the hippocam-
pal network is that under some situations, place cells fail to
act coherently. This phenomenon, which is known as partial
remapping [24], occurs when an environmental change
causes some cells to remap and others to maintain their firing
patterns unaltered. It is frequently observed when partial
changes are made to an environment such that some cues
change while others do not [13, 24–26]. Partial remapping is
rarely addressed in models of remapping, perhaps because
it is not seen in the more typical experimental paradigms
involving large environmental changes and also perhaps
because of the theoretical difficulties it introduces. Partial
remapping is difficult for an attractor model to explain [27],
because the defining feature of attractors is the coherence
of the network behavior and partial remapping represents a
degree of incoherence.

It is possible to circumvent this problem by supposing
that under some situations attractors can fragment into
submaps (or “maplets” [28]) so that some of the neurons
(the ones that did not remap, say) belong to one attractor
system and the others (the ones that did remap) to a second
one. However, in a study of bidimensional contextual remap-
ping [13], we found that the attractor could break down
even further. Here, contextual stimuli were varied across two
stimulus dimensions, color and odor, and cells were found to
respond essentially arbitrarily to the different combinations.
This is shown in the examples in Figure 2, in which the
recording environment, a square box, could be varied in
either color (black or white) and odor (lemon or vanilla). The
cells in this example have clearly responded as individuals
to these changes. Even with these limited environmental
changes, the five cells shown here would require five attractor
maplets, since no two cells have remapped in quite the same
way. Once it becomes necessary to propose as many attractors
subsystems as there are neurons, the attractor concept starts
to lose its explanatory power.

One way to rescue the attractor hypothesis is to suppose
that perhaps attractors are normally created in the place cell
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Figure 2: Fragmentation of attractors. The figure shows the firing fields of five simultaneously recorded cells from the experiments described
in [13] that were recorded as rats were exposed to four different contexts comprising pairwise combinations of a color (black or white) and
an odor (lemon or vanilla). The most straightforward version of the attractor hypothesis would predict that when remapping occurs, all cells
should remap together. However, it can be seen here that in the lemon box (top panels), when the color was changed from black to white,
then cell 1 did not remap while the remaining cells did—cell 2 by shifting its field, cell 3 by switching on a field, and cells 4 and 5 by switching
off their fields. When the box was vanilla, however, then cells 1 and 3 responded by remapping, cells 2 and 4 did not fire at all in either vanilla
condition, and cell 5 switched off its field. Thus, each cell seemed to act independently and not as part of an attractor, bound to the others.
Furthermore, each cell reacted to a combination of color and odor—the response to odor change was conditional upon what the color of the
box was, and vice versa.

system, but our experiment created a pathological situation
in which the ability of the network to discover attractor
states was thwarted by the way in which context elements
were explicitly decorrelated so that no two always occurred
together. Perhaps, partial remapping is a reflection of a
broken attractor system—one in which the neurons act
independently because their ability to act cohesively was
disrupted by the fragmented nature of the environments we
created. An alternative possibility is that partial remapping
is a normal reflection of simultaneous encoding of both
similarities and differences in two contexts [29]. However,
regardless of whether partial remapping reflects a pathology
in the discrete attractor network in the hippocampus or is a
normal reflection of configural encoding, its existence poses
an interesting conundrum, because although the discrete
attractors appear to have fragmented, the continuous attrac-
tor dynamics seem intact: activity can still move smoothly
from one set of neurons to the next even though some of
the neurons seem to belong to one subnetwork and some
to another, and partial remapping to a new environmental
configuration may have thrown up a combination of place
fields that has never occurred before. It seems that fragmen-
tation of the discrete attractor networks has not interrupted
the continuous attractor dynamics. The discussion below
reviews evidence that this may be because the continuous
and discrete attractors are in different networks, with the
continuous attractor dynamics residing in the network in

entorhinal cortex [15] and the discrete attractor landscape
resulting from plasticity processes in the dentate-CA3 net-
work in hippocampus. The discrete dynamics—the shift of
a given place cell from one pattern to another—will be
explained as the result of contextually modulated switching
in the entorhinal-hippocampal connections.

1.3. The Grid Cells. The entorhinal grid cells, upstream
of the place cells in dorsomedial entorhinal cortex, were
discovered by Hafting et al. in the Moser lab [2]. The
firing of grid cells is spatially localized, but firing fields
from a given cell are multiple and occur in evenly spaced
arrays of circular fields arranged in a hexagonal close-packed
configuration (which happens to be the most efficient way
of tiling a plane with circles). Grid cells have a number of
interesting features which make them plausible candidates
for the long-postulated continuous attractor system that
underlies place cell activity and the ability of place cells
to update their activity in response to movement [31]. To
begin with, they are always active in any environment, like
head direction cells but unlike place cells. Also, as far as we
know, closely colocalized (and possibly also more distant)
cells having the same grid scale maintain the same relative
firing field locations, regardless of the absolute location with
respect to the world outside. This suggests the operation of
intrinsic network dynamics, in which activity is modulated
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by movement of the animal in any direction but reinforced
by intrinsic connections in the grid cell network itself.

How is this network activity conveyed to place cells? The
spatial nature of grid cell firing makes these cells natural
candidates to underlie place field formation, but the issue
of how the grid cell activity patterns are converted into
place fields is not yet resolved. Evidence suggests that there
is a high convergence from grid cells to dentate granule
cells, CA3 cells, and CA1 cells: for example, de Almeida et
al. estimated that each granule cell receives around 1200
synapses from grid cells [32]. Importantly, grid fields occur
at different spacings at different dorsoventral levels, and a
place cell receives inputs from a variety of different scales
[33]. However, modeling shows that even when multiple
grid scales converge, this number of grids impinging on
a single neuron results in a cell being activated uniformly
across the whole environment. Even when the gain of the
inputs is turned down so that the place cell only becomes
active at the peaks of this drive, the resulting activity hotspots
occur in a highly regular, multipeaked symmetrical array that
does not resemble real place fields [34]. One way around
this problem is to produce some kind of inhomogeneity
or chunking of the grid cell inputs so that the resulting
pattern becomes lumpy and more likely to produce a small
number of fields [32]. This can be done by increasing the
sparseness of the network [35], varying orientation and
spatial phase [34], adding phase precession [36], grouping
the inputs according to spatial phase [37], or adding feedback
inhibition and varying synaptic strengths [32]. The resulting
patterns have something of a resemblance to dentate granule
cell place fields, which are multipeaked, like grid fields,
but irregular like place fields, and intermediate in sparsity
between grid and place fields [38]. Such schemes do not,
however, account for some features of place cell activity, such
as why fields tend to be elongated near walls [39], and so
clearly, some additional factor is needed to fully account for
place field morphology. This will not be addressed further
here, however.

Having established a basic possible connectivity between
grid and place cells and also that the grid cells are the
likeliest source of the continuous attractor dynamics in the
system, the question now is how the continuous attractor
dynamics of the place cells can be explained as the animal
moves around. This is relatively straightforward: because
the activity of place cells derives from the grids, then as
the grid cell activity rises and falls with locomotion, so too
should the drive onto the place cells, with the irregularity
resulting from a combination of the multiple scales and
(perhaps) the chunked inputs. Because the place cells inherit
the attractor dynamics from the grid cells and not from each
other, it therefore does not matter if the place cell network is
disrupted by partial remapping.

1.4. “Remapping” in Grid Cells. Like place cells, grid cells
change their firing patterns following environmental change
[2, 30], but the exact nature of the remapping is different.
As mentioned above, grid cells are always active, so they
do not switch fields on and off as place cells do. Nor do
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Figure 3: (a) Data adapted from Fyhn et al. [30] showing how
grid fields remap (translate and rotate) following movement of
the rat from one room to another. (b) Schematic illustration of
remapping following environmental change, in grid cells and place
cells. EC: entorhinal cortex, HPC: hippocampus. Sets of grid cells
(represented here by two offset grid arrays, with one grid dark grey
and the other light grey) project to place cells and generate a set of
place fields. When the environment changes, the grid cells remap (in
this case, with a translation and a rotation). Note that the two grid
cells, although they have altered their absolute firing positions, have
maintained the same relative positions with respect to each other.
The place cells also remap, with, in this example, two cells switching
fields off, two switching them on and one shifting its field to a new
location in the enclosure.

they, as far as is known, modulate their rates in a rate-
remapping fashion, like place cells do in some situations
[21, 40]. Rather, their “remapping” consists of translation
and/or rotation of fields (Figure 3). In the first systematic
study of grid cell remapping by Fyhn et al. [30], large changes
to the environment, such as moving the animal to a new
room, caused both translation and rotation, while small
changes (changing the enclosure but not the room) did not
cause remapping at all. Interestingly, the large changes were
accompanied by place cell “global” remapping (reshuffling
of the map), while small changes were associated only with
rate remapping. Rate remapping occurs when the response
of a place cell to a change in context is to increase or decrease
the intensity of the place field without switching on or off
completely [21, 40].

Following environmental change, the grid cells seem to
act coherently, inasmuch as any sufficiently large change
seems to cause the firing fields to shift en masse [2, 30]. This
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poses some problems for models of place field generation:
if the grid cells are, as popularly supposed, the basis for place
field generation, then how can the heterogeneity of place field
remapping be accounted for by the apparent homogeneity of
grid cell remapping?

Place field heterogeneity takes two forms. The first is
that during complete remapping, some cells switch their
fields on or off and some cells shift their fields (Figure 3(b)).
The resulting pattern has, as far as we can determine, no
relationship to the original and the map looks to have been
randomly regenerated. Thus, the fields alter their position,
or their very existence, with respect to each other. Since
attractor dynamics arise from the connections between the
neurons in the map, this means the original attractor, if
it were located in the intrahippocampal connections, must
have been disrupted. As discussed above, the solution to
this problem may be that the continuous attractor dynamics
reside in the grid cell network and not the place cell network.

While this could explain the continuity of continuous
attractor dynamics across a change in environment, it still
does not explain the place field response of rearrangement
of fields, because mere rotation and translation of a grid
array should cause simple rotation and translation of the
place field array, which clearly does not happen. Fyhn et al.
[30] suggested two ways around this problem: first, perhaps
there is modularity in the grid cell population such that
the whole population does shift, or second, perhaps the
grid pattern shifts to a point far away on an imaginary,
infinite grid field array, which would result in the place fields
effectively shifting and rotating by such a large amount that
the resulting place field pattern is one that did not previously
occur in the enclosure. We have put forward an alternative
explanation, outlined in the next section.

The other kind of heterogeneity is the partial remapping
discussed above, where some cells respond to a particular
environmental change, while others do not (Figure 2). This
seems harder to explain by grids, because if the grid cells
are the drivers of place cell activity, then how can partial
remapping occur? Do grid cells remap partially? There are
no published data to support this yet, but evidence so far
suggests that the grid cells mostly tend to act coherently
[2, 30]. It may be, however, that grids are not really as
homogeneous as has been assumed and that they can in
fact remap independently, and thus become dislocated with
respect to each other. This seems unlikely however.

The other, perhaps more plausible possibility is that
the mapping between the grid cells and place cells can be
dynamically modulated so that following an environmental
change, the population of grid cells that drives a particular
place cell becomes altered. We have previously proposed
that such modulation could occur by means of concurrently
active contextual inputs-the inputs that tell the system that
the environment has changed [13, 37, 41, 42]. This model
is described, below, and an outline provided of how it may
explain how the homogeneous and always-present pattern
of grid cell activity can translate to the heterogeneous and
sometimes-present activity of place cells.

2. The Contextual Gating Model

In 2008 we presented a “contextual gating” model of
grid-cell/place-cell connectivity that may explain how the
heterogeneous and seemingly individualistic behavior of
place cells might arise from the relatively homogeneous and
coherent activity of grid cells [37]. Figure 4 illustrates the
basic model, comprising a set of grid cells projecting to place
cells in hippocampus in order to drive the formation of place
fields. Converging onto these same cells are a set of inputs
conveying information about context, such as whether the
box is black/white or lemon/vanilla as in the example given
earlier. The function of these context inputs is to interact
with the spatial inputs from the grid cells and decide which
of the spatial inputs “get through” and can drive the granule
cell. Figure 4(a) shows a schematic of the synaptic matrix
arising from the intersection of the context inputs and spatial
inputs. This matrix transforms the uniform and coherent
pattern of grid cell activity into the discrete and cell-specific
patterns seen in dentate gyrus. Thus, the contextual inputs
have “gated” the spatial inputs.

Figure 4(b) shows the model at the single neuron level.
The figure shows a hypothetical hippocampal neuron, in
this case a dentate granule cell, which integrates convergent
spatial and contextual information in its dendrites. The
schematic illustrates how inputs from medial and lateral
entorhinal cortex converge, in the dentate gyrus, onto the
same set of granule cells, with the grid cell inputs arriving
from medial entorhinal cortex (MEC) and terminating
on the middle portion of the dendritic tree, and inputs
carrying contextual information arriving from the lateral
entorhinal cortex (LEC) and terminating in the outer part
of the dendritic tree. (There are also feedback inputs from
the dentate-CA3 network arriving via the commissural-
associational network, which terminate in the proximal
dendrites, as discussed later.) In our model, the basic unit of
computation is a branch of the dendritic tree, which receives
both spatial and contextual inputs and is able to integrate
these. Interestingly, the idea that a dendritic branch could be
a unit of processing is one that is gaining increasing support
in the experimental literature [43].

The figure illustrates how, using this model, complete
remapping can be explained as follows: when the context
changes, now a different set of context inputs is active and
these gate a different set of spatial inputs, driving a different
branch of the granule cell dendritic tree, and thus generating
a different spatial pattern of activity. If the change to the
environment is large, then there is a massive change in the
pattern of context inputs which would affect all the grid cell
inputs to all the place cells, causing a complete remapping.
For smaller changes, some of the inputs to the place cell
would alter, and some would stay the same—depending on
how big these changes were the cell might retain its original
place field. Similarly, rate remapping can be explained by
a change of the facilitation level of the context inputs to
the grid cell ones. This change could be either up or down,
consistent with real data. Importantly, different cells are able
to be modulated independently, also consistent with real data
[38].
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Figure 4: The contextual gating model of place field generation. (a) Place cells receive inputs from grid cells of varying scales (shown by
the small versus large circles in the units). The connections are intercepted by convergent contextual inputs which facilitate (or perhaps
inhibit) the grid cell inputs and thus determine which grid cells actually drive the place field. In this way, constant activity from the grid
cells is converted into context-specific activity in the place cells. When the context is changed, the matrix of activated synaptic connections
alters—if this is sufficiently large then a new pattern of grid cells will drive the place cell to fire differently (completely remap); if it is small,
the cell will still fire in the same place, but perhaps with a different rate (rate remap). (b) A schematic of the context gating model at the
single-cell level, showing how the contextual inputs in the distal dendrites terminate on the same branch of the dendritic tree as some of the
spatial (grid cell) inputs. In the black box (left), the context inputs signalling that the box is black interact synergistically with a subset of the
spatial inputs, producing the field seen in the black box below; when the box is white (right), a different branch of the dendrite is depolarised
and a different set of spatial inputs facilitated.

The most important feature of the contextual gating
model is that it can explain partial remapping. Even if activity
in the grid cell sheet continues at the same level (with or
without translation/rotation remapping), and with the same
spatial relationship between the field arrays of individual
cells, the model allows for independent tuning of individual
cells, meaning that an environmental change is able to affect
some cells but not others.

We have modeled this contextual gating proposal [37]
by simulating networks of grids of varying scales which
project to granule cells, and then altering the connection to
each granule cell in a context-dependent manner. The model
possesses a number of important features. First, in order

to generate realistic-looking dentate granule fields, which
could, in turn, produce realistic CA3 fields, we needed to
introduce some kind of chunking of the inputs, for reasons
discussed earlier. We accomplished this by grouping the
inputs according to spatial phase (“offset”) so that grid
cells having overlapping grid fields would be more likely to
coterminate on a particular branch of a granule cell dendrite,
in “offset clusters”. Each dendritic branch, possessing grid cell
inputs with an above-average tendency to overlap in a region
of the environment, formed the computational unit of the
network. The clustering of the grid cell inputs in this way
helped to avoid uniform activation across the environment,
and with appropriate choice of grouping parameter, we were
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Figure 5: (a) Schematic of the proposed clustering of grid cell inputs to a granule cell dendritic tree, together with convergence of clusters
of contextual inputs (in this case, the context elements from the experiments described in [13]). Some of the context elements (in this
case, white and vanilla) coterminate on the same dendritic branch, and thus gate the same set of grid cells, accounting for the configural
behaviour of place cells that are able to respond by, for example, generating a different place field for white-vanilla than for any of the
other environments, like cell 1 in Figure 2. ((b)—(d)) Dentate gyrus subfield remapping, obtained both via modelling ((b); [37]) and from
experimental data ((c); [38]). The modelling data in (b) reflect the effects of progressively changing the contextual inputs that facilitate the
drive from grid cells to place cells and reveal that this has the effect of progressively shifting activation from some subfields to others. The
plots in (c) show that this effect is also seen in the real data. (d) Modelling data showing production of partial remapping in simulated CA3
neurons following the contextual dentate remapping shown in (b). Cells whose fields shifted location are shown by the rectangular outlines.

able to produce granule cell activation that occurred in
only a few places in the environment, consistent with the
multipeaked irregular place fields in the data from Leutgeb
et al. [38].

Next, we introduced contextual modulation of the kind
discussed above so that a given cluster of entorhinal inputs—
that is, those terminating on one branch of the cell’s dendritic
tree—could only drive the granule cell if the appropriate
contextual inputs were also active and terminating on that
same dendritic branch. By switching context inputs (and
hence dendritic branches and their associated inputs) on
and off, we mimicked the effect of placing a rat in different
environments. By steadily (rather than abruptly) varying the
degree of contextual variation, we were able to cause the
simulated granule cells to progressively change their firing
patterns (Figure 5). Interestingly, both the model data from
our simulation and the real data from Leutgeb et al. show

the same effect, which is that rather than producing on-off
remapping as is typical with place cells, we saw a gradual
refocusing of the subfields of a set of granule cells. Thus,
as the context was progressively altered (by varying the
contextual drive in the simulation, or by slowly “morphing”
the environment in the real experiment), it was possible to
slowly shift activity from one subfield to another within the
granule cell field cluster. A similar effect has subsequently
also been reported by Rennó-Costa et al. who explored the
effect quantitatively [44]. These gradual changes translated
into place field remapping in a simulated downstream CA3
network (Figure 5(c)).

Our model can explain other features of place cell
activity. One example is rate remapping, which could be
accounted for in the contextual gating model by supposing
that rather than altering the contextual inputs completely,
and switching in a new set of grids, the environmental
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change merely decreases the intensity of the inputs coming
in, and thus weakens the synergistic interaction between the
contextual and spatial inputs.

The model can also explain partial remapping in the
place cells, downstream from the granule cells. By generating
simulated CA3 fields from the granule cells, we found a
predominance of unitary fields, which closely resemble real
place fields (although, as mentioned earlier, they lack some
notable features such as conformation to wall contours). By
changing the contextual inputs, we showed that some CA3
fields did not change while others remapped (Figure 5(c)).

2.1. Conditional Remapping. There is one other phenom-
enon which the contextual gating model can potentially
explain, although we have yet to model it with our simulated
grid cells, and that is conditional remapping, which is remap-
ping to changes in one contextual stimulus that depends on
what other(s) may also be present. An example of conditional
remapping was given earlier in the discussion of the two-
element context experiments ([13] and Figure 2), in which
the response to a change in (say) color depended on the
odor that was present, and vice versa. In this experiment, not
only did the place cells act independently, they also acted as
though they “knew” which color and odor belonged together
in order to produce a given field. Theoretical considerations
show that this could not occur if the context elements
terminated independently on the place cell: they must be
integrated somewhere upstream of the cell, possibly in its
dendrites. The contextual gating model that we originally
formulated [42] suggested a convergence, upstream of the
place cells, between spatial inputs and contextual inputs,
which is where the integration could occur, forming a
combined associative input that could be thought of as
“configural” (i.e., combining stimulus elements together).
With the subsequent discovery of grid cells, this model was
able to be given more specific detail [37]: in the updated
version, the integration can occur at the place where the
context elements converge, which in our model is in the
dendritic tree of a dentate granule cell. By this view, context
elements converging in entorhinal cortex from different
sensory modalities come to coterminate on the same part of
the dendritic tree (Figure 5(a)) and are able to act together to
gate the same set of grid cell inputs. An illustration of how
this might occur is shown in Figure 6.

2.2. Learning Discrete Attractor States. From the foregoing,
we can see how it is that the continuous attractor dynamics
in the place cell population can survive partial remapping—
the attractor dynamics are actually generated in the upstream
grid cells, which do not fragment when contexts are frag-
mented. Thus, although new place fields occur in the hybrid
context states, the underlying generators—the grids—are
unchanged. It is worth noting that although this scheme
does not require grid cells to have remapped, they likely do
also remap to even nonspatial contextual changes [45]—but
whether or not they remap, the attractor hypothesis supposes
that grids having the same scale will maintain their relative

Black

White

Field no.1

Field no.2

Lemon

LTPLTD

Commissural
associational 

inputs

Figure 6: Extension of the context gating model to account
for the learning of new combinations of contextual inputs and
new attractor states. As well as the contextual and spatial inputs
shown in Figure 4, there are also feedback connections from
the commissural associational fibre system, which retrogradely
depolarise the dendritic tree (shading). In those dendritic branches
that also are receiving anterograde contextual depolarisation (solid
black dendrite), the depolarisation reaches a level that allows
synaptic plasticity to take place. In the example shown here, a
weak context input (lemon) is paired with a strong context element
(“white”) together with back-propagating dendritic depolarisation
(shown by arrows). This level of depolarisation drives two kinds of
plasticity—LTP at the weak, conjunctively active “lemon” synapse,
and homeostatically scaling LTD at the other active context inputs
(including “white”). Now, that dendritic branch will depolarise
only following the conjunction of white and lemon. The collective
processing of the context elements by the granule cell population
will shape the feedback patterns from the commissural association
system and allow refinement of the granule cell responsiveness to
future contextual situations.

firing locations, thus preserving the continuous attractor
dynamics.

The situation with the discrete attractors requires one
more level of explanation. We have proposed that the discrete
attractor states arise as a result of switching in and out
of combinations of grids, but we have also noted that
evidence suggests that these attractor states are learned by the
dentate-CA3 network, and indeed that one function of the
hippocampus might be to discover the set of attractor states
that best corresponds to the states the environment can exist
in.

How can attractor states, discovered by the dentate-
CA3 autoassociative network as a result of experience, act
to shape the switching profiles upstream in the entorhinal-
hippocampal connections? The implication is that there
must be some kind of back-propagation from the dentate-
CA3 system to the dendritic tree in which the proposed
contextual gating occurs. It is suggested here that this back-
propagation could occur within the granule cells themselves,
since depolarization can travel retrogradely into the den-
drites [43, 46]. Dentate gyrus neurons receive substantial
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back-projections from the CA3 autoassociative network via a
rich set of commissural associational inputs which terminate
on the proximal branches of the granule cell dendrites ([47],
Figure 4(a)). Also, spikes that have been generated in granule
cells are able to back-propagate into the dendrites and thus
alter both the degree of depolarization and also the likelihood
of synaptic plasticity there [43, 46]. An illustration of how
this back-propagation might occur at the single-cell level is
shown in Figure 6, in which retrograde depolarization from
the commissural associational network facilitates LTP of a
weak context input onto a branch of the dendritic tree, and
compensating homeostatic LTD in other synapses so as to
keep drive onto the cell constant. This also illustrates the
process of configural context formation discussed earlier.

The injection of network information, via the commis-
sural-associational pathway, means that attractor states that
have been formed and learned by the dentate-CA3 network
can feed back into the entorhinal hippocampal connections,
where the switch between patterns occurs. Thus, the attractor
basins that have been formed by the dentate-CA3 network
can act, in principle, to shape themselves by enhancing the
connections from active incoming context inputs back in the
dendrites of those same cells.

3. Conclusion

This paper has described continuous and discrete attractor
dynamics in the hippocampal formation and proposed a
mechanism for the interaction between the two attractor
systems. The continuous attractor may be located in the
entorhinal grid cell network, and it allows the smooth
transition from one set of active place cells to the next as the
animal moves around. The location of this attractor outside
of the place cell network itself allows an explanation for
why the continuous dynamics are preserved even when the
place cells partially remap. The discrete attractor landscape
arises initially from the mapping between entorhinal cortex
and hippocampus, by virtue of context-mediated selection
of a unique subset of grid cell afferents onto each place
cell. Contextual gating can explain a number of phenomena
such as rate remapping, partial remapping of place cells
even when grid cells do not remap, and also conditional
remapping in which the response to one contextual stimulus
depends on the presence of another. By this view, the discrete
attractor landscape is sculpted within the hippocampal place
cell network, but the jump in state that occurs following
large environmental changes arises upstream of the place
cells, in the entorhinal hippocampal connections and (in
situations where grid cells themselves remap) beyond. New
basins in the place cell attractor landscape feed into this
connectivity matrix via back-propagation of depolarization
into the dendritic tree. In this way, incoming contextual
inputs help the place cell network discover and learn the
appropriate attractor landscape, and the resultant plasticity,
in turn, shapes how the contextual inputs modulate the
grid-cell/place-cell connections, and thus the place field
remapping dynamics.
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