

Г

Title	Photoinduced 1,2-Hydro(cyanomethylation) of Alkenes with a Cyanomethylphosphonium Ylide
Author(s)	Miura, Tomoya; Moriyama, Daisuke; Funakoshi, Yuuta; Murakami, Masahiro
Citation	Synlett (2019), 30(04): 511-514
Issue Date	2019-01-01
URL	http://hdl.handle.net/2433/236671
Right	CC BY ND NC 4.0 · Synlett 2019; 30(04): 511-514
Туре	Journal Article
Textversion	publisher

T. Miura et al.

511

Letter

Photoinduced 1,2-Hydro(cyanomethylation) of Alkenes with a Cyanomethylphosphonium Ylide

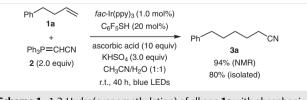
Tomoya Miura *[®] Daisuke Moriyama Yuuta Funakoshi Masahiro Murakami * [®]

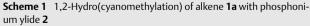
Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan tmiura@sbchem.kyoto-u.ac.jp murakami@sbchem.kyoto-u.ac.jp

Published as part of the 30 Years SYNLETT - Pearl Anniversary Issue

Received: 22.12.2018 Accepted after revision:23.01.2019 Published online: 13.02.2019 DOI: 10.1055/s-0037-1612230; Art ID: st-2018-b0826-l

License terms: cc (i) = (\$

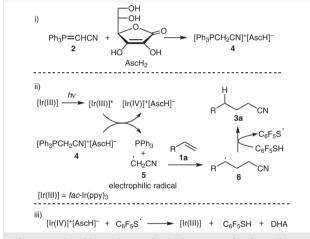

Abstract An efficient method has been developed for the 1,2-hydro(cyanomethylation) of alkenes, in which a cyanomethyl radical species is generated from a cyanomethylphosphonium ylide by irradiation with visible light in the presence of an iridium complex, a thiol, and ascorbic acid. The cyanomethyl radical species then adds across the C=C double bond of an alkene to form an elongated alkyl radical species that accepts a hydrogen atom from the thiol to produce an elongated aliphatic nitrile. The ascorbic acid acts as the reductant to complete the catalytic cycle.


Key words alkenes, nitriles, photocatalysis, radicals, phosphonium ylides, hydro(cyanomethylation)

Radical chemistry has undergone a renaissance since the introduction of photoredox catalysis,¹ and a wide variety of reagents are now available as competent precursors to radical species. We recently reported that an ester-stabilized phosphonium ylide² can act as a precursor to an (alkoxycarbonyl)methyl radical species³ when irradiated with visible light in the presence of an iridium catalyst, a thiol, and ascorbic acid.⁴ The radical species, substituted by an electron-withdrawing alkoxycarbonyl group, adds across the C=C double bond of an alkene to generate an elongated alkyl radical. Subsequently, the thiol delivers a hydrogen atom to the radical,⁵ producing an elongated aliphatic ester.⁶

We also examined the use of a cyanomethylphosphonium ylide instead of an ester-stabilized phosphonium ylide. The former act as the precursor of a cyanomethyl radical species⁷⁻¹⁰ that, due to the electron-withdrawing nature of the cyano group, is sufficiently electrophilic to attach to a C=C double bond of an alkene, as in the case of an (alkoxycarbonyl)methyl radical.^{3,4,6} The appended alkyl radical species is not as electrophilic as the original cyanomethyl radical, and can therefore abstract a hydrogen atom from a sulfanyl group⁵ to form an elongated aliphatic nitrile.

Initially, we applied the conditions optimized for the reaction of an ester-stabilized phosphonium ylide⁴ to the reaction of the cyanomethylphosphonium ylide 2 with 4phenylbut-1-ene (1a), and we obtained 6-phenylhexanenitrile (**3a**) as expected. The yield, however, was moderate (43% by NMR), which led us to adapt the reaction conditions slightly to fit the ylide 2. The elongated nitrile 3a was produced in 94% NMR yield and 80% isolated yield when 1a (0.50 mmol) was treated with 2 (1.0 mmol, 2.0 equiv) in 1:1 CH₃CN/H₂O (0.1 M) under irradiation by blue light-emitting diodes (LEDs; 470 nm, 23 W) in the presence of fac-Ir(ppy)₃ (1.0 mol%; ppy = 2-phenylpyridinato), C_6F_5SH (20 mol%), ascorbic acid (10 equiv), and KHSO₄ (3.0 equiv) at room temperature for 40 hours (Scheme 1). No product resulting from 1,2-addition in the opposite direction was observable within the detection limits of ¹H NMR (400 MHz). A largerscale experiment using 925 mg (7.0 mmol) of 1a also gave a comparable yield of **3a** (83% isolated yield), indicating the scalability of the present reaction.



The formation of the product **3a** can be reasonably explained by assuming the radical mechanism depicted in Scheme 2, which is similar to that proposed in the case of ester-stabilized phosphonium ylides.⁴ First, an acid/base

		512	
		THIEME	
Syn <mark>lett</mark>	T. Miura et al.	OPEN ACCESS	Letter

reaction of **2** $(pK_{aH} = 6.9)^{11}$ with ascorbic acid (AscH₂; $pK_a = 4.0$)¹² generates the phosphonium ascorbate [Ph₃PCH₂CN]⁺[AscH]⁻ (**4**). This has an energetically low-lying σ^* orbital for the C-P linkage. The Ir catalyst [fac-Ir(ppy)₃] [Ir(III)] is photoexcited by visible light to form the excited species [Ir(III)]*. This then transfers a single electron to the σ^* orbital of the phosphonium ascorbate **4**, giving rise to the cyanomethyl radical species 5, along with PPh₃ and [Ir(IV)]⁺[AscH]⁻. Electrophilic addition of 5 to the C=C double bond of alkene **1a** affords the elongated secondary alkyl radical species 6, which is less electrophilic than 5. Hydrogen-atom transfer from $C_c F_s SH$ to **6** produces **3a** and a thivl radical (C₆F₅S[•]).⁵ The [Ir(IV)]⁺ species and C₆F₅S[•] are reduced back to the [Ir(III)] species and C_6F_5SH , respectively, by the action of the ascorbate anion [AscH]⁻,^{13,14} which ultimately becomes dehydroascorbic acid (DHA).¹⁵ The additive KHSO₄ might act by suppressing undesirable formation of a thiolate anion $(C_6F_5S^-)$ from C_6F_5SH .

Scheme 2 Plausible mechanism for the formation of **3a** from alkene **1a** and phosphonium ylide **2**

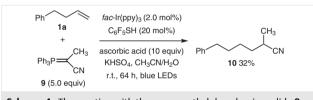
Various alkenes 1 were subjected to the 1,2-hydro(cyanomethylation) reaction with 2 (Table 1). A wide range of functional groups were tolerated to afford the corresponding elongated aliphatic nitriles **3b**-g in yields ranging from 74 to 88% (Table 1, entries 1-6). Not only monosubstituted alkenes, but also polysubstituted alkenes, participated in the reaction. Geminally disubstituted alkenes 1h and 1i were suitable substrates (entries 7 and 8). Cyclic disubstituted alkenes 1j and 1k afforded the corresponding products 3j and 3k in yields of 59 and 79%, respectively (entries 9 and 10). The reaction of the acyclic vicinally disubstituted alkenes (Z)- and (E)-11 was sluggish, and the reason for the low yield of product 31 is unclear (entries 11 and 12). In the case of trisubstituted alkene 1m, a mixture of diastereomers of 3m was formed through nonstereoselective transfer of a hydrogen atom to an intermediate tertiary radical species (entry 13). Even the tetrasubstituted alkene **1n** underwent the reaction (entry 14). The 1,2-adduct **30** was obtained in 18% NMR yield from styrene (**10**), and the final reaction mixture contained various products, probably as a result of the high reactivity of the benzylic radical intermediates (entry 15).¹⁶

Table 11,2-Hydro(cyanomethylation) of Various Alkenes 1 with Phosphorus Ylide 2^a

Entry	Alkene 1	Product 3	Yield ^b (%)
1	0 1b	O M CN 3b	76
2	HO ₂ C 4 1c	HO ₂ C CN 3c	82
3	NC 3 1d	NC CN 3d	74
4	HO 4 1e	HO CN 3e	88
5	Ph O G A If	Ph O O A A CN 3f	77
6	Cl 1g	Cl CN 3g	88
7	1h	CN 3h	73
8	H ₃ C CH ₃	CN 3i H ₃ C CH ₃ dr = 10:1	77
9	1j	CN 3j	59
10	1k	CN 3k	79
11	<i>n</i> -Pr <i>n</i> -Pr (<i>Z</i>)-11	n-Pr CN 31	28
12	<i>n</i> -Pr (<i>E</i>)-11	n-Pr CN 3I	29°
13	CH ₃	CN 3m CH ₃ dr = 7:3	45
14	$H_3C \xrightarrow{CH_3}{CH_3} 1n$	$H_{3C} \xrightarrow{CH_{3}}_{H_{3}C} CH_{3} $	56°
15	Ph 10	Ph CN 30	18 ^c

^a Reaction conditions: **1** (0.50 mmol), **2** (1.0 mmol), *fac*-Ir(ppy)₃ (1.0 mol%), C₆F₅SH (20 mol%), ascorbic acid (5.0 mmol), KHSO₄ (1.5 mmol), 1:1 CH₃CN/H₂O (5.0 mL), r.t., 40 h, blue LEDs (470 nm, 23 W). ^b Isolated vield.

V


^c NMR yield with 1,1,2,2-tetrachloroethane as internal standard.

		0.0
		THIEME
Synlett	T. Miura et al.	OPEN ACCESS

In the case of 1-benzofuran (**7**), the cyanomethyl radical species added regioselectively to form a benzylic radical species, giving the 2-substituted 2,3-dihydro-1-benzofuran **8** (Scheme 3).

Notably, even a branched α -cyanoethyl group was attached to the C=C double bond of **1a** when α -cyanoethylphophorus ylide **9** was employed (Scheme 4).

Scheme 4 The reaction with the α -cyanoethylphosphonium ylide 9

A similar reaction to form elongated aliphatic nitriles from alkenes has been reported,⁸ in which a cyanomethyl radical species is generated from CH₃CN by using an excess of dicumyl peroxide at a high temperature; these potentially hazardous conditions significantly limit the synthetic value of the method. The present reaction uses cyanomethylphosphonium ylide, which is stable and easily accessible, as the radical source, thereby providing a convenient method for synthesizing elongated aliphatic nitriles from alkenes.¹⁷

Funding Information

This work was supported by JSPS KAKENHI [Scientific Research (S) (15H05756) and (C) (16K05694)]

Acknowledgment

We thank Mr. H. Nikishima (Kyoto University) for his experimental contribution at a preliminary stage.

Supporting Information

Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1612230.

References and Notes

513

 For reviews, see: (a) Narayanam, J. M. R.; Stephenson, C. R. J. *Chem. Soc. Rev.* 2011, 40, 102. (b) Skubi, K. L.; Blum, T. R.; Yoon, T. P. *Chem. Rev.* 2016, 116, 10035. (c) Romero, N. A.; Nicewicz, D. A. *Chem. Rev.* 2016, 116, 10075. (d) Twilton, J.; Le, C.; Zhang, P.; Shaw, M. H.; Evans, R. W.; MacMillan, D. W. C. *Nat. Rev. Chem.* 2017, 1, 0052. (e) Lee, K. N.; Ngai, M.-Y. *Chem. Commun.* 2017, 53, 13093. (f) Marzo, L.; Pagire, S. K.; Reiser, O.; König, B. *Angew. Chem. Int. Ed.* 2018, 57, 10034.

Letter

- (2) For photoinduced reactions using phosphonium salts as the radical source, see: (a) Lin, Q.-Y.; Xu, X.-H.; Zhang, K.; Qing, F.-L. *Angew. Chem. Int. Ed.* **2016**, 55, 1479. (b) Panferova, L. I.; Tsymbal, A. V.; Levin, V. V.; Struchkova, M. I.; Dilman, A. D. Org. *Lett.* **2016**, *18*, 996.
- (3) For 1,2-bromo[(ethoxycarbonyl)methylation] of alkenes with BrCH(R)CO₂Et as the radical source, see: (a) Nguyen, J. D.; Tucker, J. W.; Konieczynska, M. D.; Stephenson, C. R. J. J. Am. Chem. Soc. 2011, 133, 4160. (b) Arceo, E.; Montroni, E.; Melchiorre, P. Angew. Chem. Int. Ed. 2014, 53, 12064. (c) Cheng, J.; Cheng, Y.; Xie, J.; Zhu, C. Org. Lett. 2017, 19, 6452. (d) Magagnano, G.; Gualandi, A.; Marchini, M.; Mengozzi, L.; Ceroni, P.; Cozzi, P. G. Chem. Commun. 2017, 53, 1591. For a recent review, see: (e) Courant, T.; Masson, G. J. Org. Chem. 2016, 81, 6945.
- (4) Miura, T.; Funakoshi, Y.; Nakahashi, J.; Moriyama, D.; Murakami, M. Angew. Chem. Int. Ed. 2018, 57, 15455.
- (5) For the use of thiols as sources of electrophilic hydrogen atoms and the subsequent reactions between the resulting thiyl radicals and ascorbate anions, see: Guo, X.; Wenger, O. S. Angew. Chem. Int. Ed. 2018, 57, 2469.
- (6) For a similar photoinduced elongation of alkenes using BrCH₂-CO₂Et as the radical source, see: Sumino, S.; Fusano, A.; Ryu, I. Org. Lett. **2013**, *15*, 2826.
- (7) For a review on 1,2-addition reactions with alkanenitriles as radical sources, see: Chu, X.-Q.; Ge, D.; Shen, Z.-L.; Loh, T.-P. ACS *Catal.* **2018**, 8, 258.
- (8) For 1,2-hydro(cyanomethylation) of alkenes by using CH₃CN as the radical source, see: (a) Li, Z.; Xiao, Y.; Liu, Z.-Q. *Chem. Commun.* 2015, *51*, 9969. See also: (b) Bruno, J. W.; Marks, T. J.; Lewis, F. D. *J. Am. Chem. Soc.* 1981, *103*, 3608. (c) Sonawane, H. R.; Bellur, N. S.; Shah, V. G. *J. Chem. Soc., Chem. Commun.* 1990, 1603.
- (9) For 1,2-difunctionalization of alkenes by using CH₃CN as the radical source, see: (a) Bunescu, A.; Wang, Q.; Zhu, J. Angew. Chem. Int. Ed. 2015, 54, 3132. (b) Chatalova-Sazepin, C.; Wang, Q.; Sammis, G. M.; Zhu, J. Angew. Chem. Int. Ed. 2015, 54, 5443. (c) Lan, X.-W.; Wang, N.-X.; Bai, C.-B.; Lan, C.-L.; Zhang, T.; Chen, S.-L.; Xing, Y. Org. Lett. 2016, 18, 5986. (d) Wu, X.; Riedel, J.; Dong, V. M. Angew. Chem. Int. Ed. 2017, 56, 11589. (e) Liu, Y.-Y.; Yang, X.-H.; Song, R.-J.; Luo, S.; Li, J.-H. Nat. Commun. 2017, 8, 14720.
- (10) For 1,2-bromo(cyanomethylation) of alkenes by using BrCH₂CN as the radical source, see: (a) Voutyritsa, E.; Triandafillidi, I.; Kokotos, C. G. *ChemCatChem* **2018**, *10*, 2466. (b) Voutyritsa, E.; Nikitas, N. F.; Apostolopoulou, M. K.; Gerogiannopoulou, A. D. D.; Kokotos, C. G. *Synthesis* **2018**, *50*, 3395; See also refs. 3 (b) and 3 (d).
- (11) Zhang, X.-M.; Bordwell, F. G. J. Am. Chem. Soc. 1994, 116, 968.
- (12) Creutz, C. Inorg. Chem. 1981, 20, 4449.
- (13) Warren, J. J.; Mayer, J. M. J. Am. Chem. Soc. 2010, 132, 7784.

		514	
Synlett	T. Miura et al.		

- (14) For photocatalytic reactions using ascorbic acid as the reductant, see: (a) Maji, T.; Karmakar, A.; Reiser, O. J. Org. Chem. 2011, 76, 736. (b) Wallentin, C.-J.; Nguyen, J. D.; Finkbeiner, P.; Stephenson, C. R. J. J. Am. Chem. Soc. 2012, 134, 8875. (c) Supranovich, V. I.; Levin, V. V.; Struchkova, M. I.; Dilman, A. D. Org. Lett. 2018, 20, 840; See also ref. 5.
- (15) Kerber, R. C. J. Chem. Educ. 2008, 85, 1237.
- (16) The reactions of terminal alkynes such as 4-phenylbut-1-yne gave complex mixtures of products, in which the corresponding 1,2-hydro(cyanomethylation) product (a β , γ -unsaturated nitrile) was present in ~10% yield as a 1:1 mixture of *E* and *Z* isomers.

(17) 6-Phenylhexanenitrile (3a); Typical Procedure

A vial (2–5 mL; Biotage, Fisher Scientific) equipped with a stirrer bar was charged with the phosphorus ylide **2** (302 mg, 1.00 mmol), *fac*-Ir(ppy)₃ (3.30 mg, 0.005 mmol, 1.0 mol%), ascorbic acid (882 mg, 5.00 mmol), and KHSO₄ (207 mg, 1.52 mmol). The vial was then flushed with argon gas and quickly

capped with a Teflon septum. 4-Phenylbut-1-ene (**1a**, 67.6 mg, 0.51 mmol), C₆F₅SH (20.0 mg, 0.100 mmol, 20 mol%), distilled CH₃CN (2.5 mL), and H₂O (2.5 mL; degassed with argon gas for 30 min) were added from a syringe, and the mixture was stirred vigorously for 40 h under blue LED lights (470 nm, 23 W) while the vial was cooled with a fan. The mixture was then diluted with brine (25 mL) and extracted with CH₂Cl₂ (3 × 25 mL). The organic phase was dried (Na₂SO₄), filtered, and concentrated under reduced pressure to give a residue that was purified by column chromatography [silica gel, hexane/EtOAc (9:1)] to give a colorless oil; yield: 70.7 mg (0.41 mmol, 80%).

Letter

IR (ATR): 2936, 2245, 1454 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 1.45–1.53 (m, 2 H), 1.63–1.73 (m, 4 H), 2.33 (t, *J* = 7.2 Hz, 2 H), 2.63 (t, *J* = 7.6 Hz, 2 H), 7.16–7.21 (m, 3 H), 7.26–7.31 (m, 2 H). ¹³C NMR (100 MHz, CDCl₃): δ = 17.1, 25.3, 28.3, 30.5, 35.5, 119.7, 125.8, 128.3, 141.9. HRMS (EI⁺): *m/z* [M]⁺ calcd for C₁₂H₁₅N: 173.1204; found: 173.1205.