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Objective: Brain-machine interfaces (BMIs) are useful for inducing plastic changes in

cortical representation. A BMI first decodes hand movements using cortical signals

and then converts the decoded information into movements of a robotic hand. By

using the BMI robotic hand, the cortical representation decoded by the BMI is

modulated to improve decoding accuracy. We developed a BMI based on real-time

magnetoencephalography (MEG) signals to control a robotic hand using decoded hand

movements. Subjects were trained to use the BMI robotic hand freely for 10min to

evaluate plastic changes in the cortical representation due to the training.

Method: We trained nine young healthy subjects with normal motor function. In

open-loop conditions, they were instructed to grasp or open their right hands duringMEG

recording. Time-averaged MEG signals were then used to train a real decoder to control

the robotic arm in real time. Then, subjects were instructed to control the BMI-controlled

robotic hand bymoving their right hands for 10min while watching the robot’s movement.

During this closed-loop session, subjects tried to improve their ability to control the robot.

Finally, subjects performed the same offline task to compare cortical activities related to

the hand movements. As a control, we used a random decoder trained by the MEG

signals with shuffled movement labels. We performed the same experiments with the

random decoder as a crossover trial. To evaluate the cortical representation, cortical

currents were estimated using a source localization technique. Hand movements were

also decoded by a support vector machine using the MEG signals during the offline task.

The classification accuracy of the movements was compared among offline tasks.

Results: During the BMI training with the real decoder, the subjects succeeded in

improving their accuracy in controlling the BMI robotic hand with correct rates of 0.28

± 0.13 to 0.50 ± 0.11 (p = 0.017, n = 8, paired Student’s t-test). Moreover, the

classification accuracy of hand movements during the offline task was significantly

increased after BMI training with the real decoder from 62.7 ± 6.5 to 70.0 ± 11.1%
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(p = 0.022, n = 8, t(7) = 2.93, paired Student’s t-test), whereas accuracy did not

significantly change after BMI training with the random decoder from 63.0 ± 8.8 to 66.4

± 9.0% (p = 0.225, n = 8, t(7) = 1.33).

Conclusion: BMI training is a useful tool to train the cortical activity necessary for BMI

control and to induce some plastic changes in the activity.

Keywords: brain-machine interface, robotic hand, magnetoencephalography, cortical plasticity, neurofeedback,

closed-loop training, online decoding

INTRODUCTION

Brain–machine interfaces (BMIs) can reconstructmotor function
in paralyzed subjects (Hochberg et al., 2006, 2012; Yanagisawa
et al., 2012a; Collinger et al., 2013; Bouton et al., 2016) as well as
induce functional alterations in cortical activity (Ganguly et al.,
2011; Wander et al., 2013; Orsborn et al., 2014; Yanagisawa
et al., 2016). A BMI works by first recording neural activity
and then converting the recorded activity into control of some
machine, such as a robotic hand or computer (Yanagisawa et al.,
2009, 2011, 2012a,b; Nakanishi et al., 2013, 2014; Fukuma et al.,
2015, 2016). Recent studies demonstrated that neurofeedback
training using BMI induces plastic changes in neural activities in
accordance with some functional alterations in the neural system.
The neurofeedback of decoded information using functional
magnetic resonance imaging (fMRI) demonstrated that the
training induced alteration of cortical activities in accordance
with alterations in cognition (Shibata et al., 2011, 2016; Amano
et al., 2016; Ordikhani-Seyedlar et al., 2016). In addition, using
a certain power spectrum of electroencephalographic signals,
motor rehabilitation was improved in stroke patients (Shindo
et al., 2011; Ramos-Murguialday et al., 2013). Moreover, we
recently reported that BMI training to control a robotic hand
induced plastic changes in the motor cortical representation
of phantom limb pain patients and changed their pain in
accordance with the plastic changes (Yanagisawa et al., 2016).

Such plastic changes are attributed to reinforcement learning
with the BMI feedback (Watanabe et al., 2017). The closed-loop
system with decoded information enables subjects to modulate
the decoded information based on the feedback as a reward.
Therefore, we expect that training to use a BMI based on the
decoding information would improve the decoding accuracy
better than training to use a BMI that is not based on the decoding
information.

In this study, we demonstrate that BMIs based on
magnetoencephalography (MEG) signals precisely decode
hand movements in real time (Bradberry et al., 2009; Toda et al.,
2011; Fukuma et al., 2015) and training to use the BMIs induces
plastic changes in cortical activity of healthy subjects (Nishimura
et al., 2013; Clancy et al., 2014; Luu et al., 2017), especially in the
accuracy to decode hand movements.

SUBJECTS AND METHODS

Subjects
Nine young right-handed volunteers with normal neurological
function (2 males and 7 females; mean age, 24.1 years; range,

21–30 years) participated in this study. The study adhered to
the Declaration of Helsinki and was performed in accordance
with protocols approved by the Ethics Committee of Osaka
University Clinical Trial Center (no. 12107, UMIN000010180).
All participants were informed of the purpose and possible
consequences of this study, and written informed consent was
obtained. We recruited subjects aged 20 years and older with
normal neurological functioning. Inclusion criteria did not
consider gender, race or any special experience.

MEG Recording
For the MEG recording, subjects were in the supine position
with the head centered in the gantry. A projection screen
in front of the face provided stimuli using a visual stimulus
presentation system (Presentation; Neurobehavioral Systems,
Albany, CA, USA) and a liquid crystal projector (LVP-HC6800;
Mitsubishi Electric, Tokyo, Japan) (Figure 1). MEG signals were
measured by a 160-channel whole-head MEG equipped with
coaxial-type gradiometers (MEGvision NEO; Yokogawa Electric
Corporation, Kanazawa, Japan) housed in amagnetically shielded
room.

The MEG signals were sampled at 1,000Hz with an online
low-pass filter at 200Hz and acquired online by FPGA DAQ
boards (PXI-7854R; National Instruments, Austin, TX, USA)
after passing through an optical isolation circuit. For the online
control of the robotic hand, signals from 84 selected sensors
(Figure 1) were used, except for one experiment in which 81
sensors were used for technical reasons. The same 84 sensors
were used for offline analysis. Subjects were instructed to not
move the head to avoid motion artifacts. A cushion was placed
under the elbows to reduce motion artifacts.

Five head marker coils were attached to the subject’s face
before beginning the MEG recording, to provide the position
and orientation of MEG sensors relative to the head (Figure 1).
The positions of the five marker coils were measured to evaluate
differences in the head position before and after each MEG
recording. The maximum acceptable difference was 5mm.

We also recorded electromyograms of the face and forearm to
monitor muscle activities. Subjects were monitored by two video
cameras to confirm their arousal.

Experimental Design
A crossover trial consisting of two experiments was performed
with a washout period of more than 2 weeks. Each experiment
consisted of three tasks, an offline task (pre-BMI), BMI training,
and an offline task (post-BMI). For each training task, the
participant controlled the robotic hand using two different
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FIGURE 1 | System overview for training to use a robotic hand. MEG signals

from 84 parietal sensors (shown with red dots) were acquired in real-time to

decode performed movement. The robotic hand was controlled according to

the results of the decoder. The participant received visual feedback of the

robotic hand presented on the screen. Blue dots on the participant’s face

denote head marker coils used to determine position and orientation of MEG

sensors relative to the head. Three marker coils (at the center of the forehead,

above the left eyebrow, and on the left preauricular area) are shown.

decoders: a real decoder and a sham decoder. To balance which
decoder type was selected first, the order for the real and sham
decoders was randomized. Subjects were not informed about
the order. Seven subjects participated in both experiments, one
subject only participated in the experiment with the real decoder,
and another only participated in the experiment with the sham
decoder.

First, in the pre-BMI offline task, the subjects attempted to
move their right hands (grasping and opening) at the presented
times (Yanagisawa et al., 2012a) while MEG signals of the selected
sensors were recorded (Figure 1). The subjects were visually
instructed which movement to perform with the Japanese word
for “grasp” or “open.” After the instruction for movement type,
four execution cues were given to the subject every 5.5 s. The
execution cue was given both visually and aurally, and was
presented 40 times for each movement type. The order of the
requested movement type was randomized. We instructed the
subjects to slightly move the hand once at the cued time, without
moving other body parts.

The MEG signals from the selected sensors were recorded
during the task (Figure 1) and then time-averaged using windows
of 500ms from −2,000 to 1,000ms at 100-ms intervals, with
respect to the time of the execution cues. The averaged signals
were converted into z-scores using the mean and standard
deviations estimated from the initial 50 s of the offline task. The
acquired z-scores were used to construct the decoder to control
the robotic hand (Fukuma et al., 2015).

During the BMI training task, the subjects were instructed to
control the prosthetic hand in real time using the trained decoder.
The screen fixed in front of the subject showed a picture of the
robotic hand in real time as visual feedback (Figure 1). Subjects
were instructed to control the robotic hand freely for 10min
to improve their ability to control it by moving their hands
(see Supplementary Video 1). Just before starting the training,
the experimenter changed the threshold for detecting movement
onset, because the threshold estimated from the offline task
was sometimes too low, resulting in the detection of movement
onsets even during the resting state in the online task. The other
parameters estimated from the offline task were not changed
(Fukuma et al., 2016). The selected parameters were fixed for
the 10min of training. The post-BMI offline task was performed
in the same way as the pre-BMI task, after the BMI training
task.

The BMI training to control the robotic hand was performed
as a randomized crossover trial consisting of two training sessions
on different days. Each training session was performed with two
different decoders to control the robotic hand: a real decoder and
a sham decoder. Using the z-scored MEG sensor signals of the
offline tasks to move the right hand, we constructed a decoder to
infer handmovements at an arbitrary time, in order to control the
robotic hand in real time (Fukuma et al., 2015). Each experiment
was performed after more than 2 weeks had passed since the
previous experiment. For the experiments with the real decoder
and sham decoder, the order of the experiments was randomly
assigned to the subjects. The experimenter was not blinded to the
group allocation.

At the time of enrollment in this trial, we instructed the
subjects to use their brain activity to control the robotic hand,
but they were not informed of the decoder they used.

Decoder to Control the Prosthetic Hand
MATLAB R2013a (Mathworks, Natick, MA, USA) was used to
calculate the decoding parameters and for online robotic hand
control. First, MEG signals from the 84 selected sensors during
the offline task were averaged in a 500-ms time window and
converted to the z-score using the mean and standard deviations
estimated from the initial 50 s of data during the offline task.
The time-averaged MEG signals were calculated for the period
from −2,000 to 1,000ms at 100-ms intervals according to the
execution cue.

The z-scored signals from the offline task were used to train
the online decoder, which consisted of an onset detector and
class decoder, to control the robotic hand online in the following
BMI training task. The class decoder was trained at the peak
classification accuracy of the offline task by the support vector
machine (SVM). The onset detector was trained using the z-
scored signals to differentiate time period of the hand movement
from period of resting by SVM and Gaussian process regression
(GPR). The details of the construction of the decoder are available
in our previous reports (Fukuma et al., 2015; Yanagisawa et al.,
2016).

Here, we constructed two types of online decoders depending
on the data used to train the decoder. The real decoder was
trained by the MEG signals of the offline task to move the
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hand. The sham decoder was trained by the MEG signals of the
same offline task with randomized types of movements (grasp or
open).

Evaluation of Online BMI Control
The movements of subject’s hand and robotic hand were
evaluated from the video recording. We counted the subject’s
hand movements. Then, we evaluated the robotic hand
movements within 1 s after each movement of the subject’s
hand. If the robotic hand moved into the same posture (grasp
or open) as the subject’s hand, we counted the movement as
correctly controlled movement. The correct rate of BMI control
was evaluated by the number of correctly controlled movements
divided by the total number of handmovements. The correct rate
was counted for 1min at the beginning and at the end of the
10-min training.

Cortical Current Estimation by VBMEG
A polygonal model of the cortical surface was constructed
based on structural MRI (T1-weighted; Signa HDxt Excite
3.0T; GE Healthcare UK Ltd., Buckinghamshire, UK) using the
Freesurfer software (Martinos Center Software) (Dale et al.,
1999). To align MEG data with individual MRI data, we
scanned the three-dimensional facial surface and 50 points
on the scalp of each participant (FastSCAN Cobra; Polhemus,
Colchester, VT, USA). Three-dimensional facial surface data
were superimposed on the anatomical facial surface provided
by the MRI data. The positions of five marker coils before
each recording were used to estimate cortical current with
variational Bayesian multimodal encephalography (VBMEG)
(Sato et al., 2004). VBMEG is free software for estimating
cortical currents from MEG data (ATR Neural Information
Analysis Laboratories, Kyoto, Japan; Cohen et al., 1991; Yoshioka
et al., 2008). VBMEG estimated 4004 single current dipoles
that were equidistantly distributed on and perpendicular to the
cortical surface. An inverse filter was calculated to estimate
the cortical current of each dipole from the selected 84 MEG
sensor signals. The hyperparameters m0 and γ0 were set to
100 and 10, respectively. The inverse filter was estimated by
using MEG signals in all trials from 0 to 1000ms in the
offline task, with the baseline of the current variance estimated
from the signals from −1,500 to −500ms. The filter was then
applied to sensor signals in each trial to calculate cortical
currents.

Evaluation of Cortical Representation
We evaluated the cortical representation during the offline task
using cortical current source estimation. First, VBMEG was
used to estimate the cortical currents from the obtained MEG
signals. Next, the estimated cortical currents were averaged using
a 500-ms window starting from the execution cue and compared
between two types of movements with a one-way analysis of
variance (ANOVA) for each vertex. The F-value of the ANOVA
was averaged for all subjects and color-coded on the normalized
brain surface.

Evaluation of Classification Accuracy of
Movement Types in the Offline Task
A nested cross-validation (Quian Quiroga and Panzeri, 2009)
was performed with a linear support vector machine using the
z-scores of the MEG signals from selected sensors (Fukuma
et al., 2015) to evaluate the accuracy of classifying the performed
movement types. The z-scores from 11 time windows (ranging
from −500 to 500ms at 100-ms intervals, with respect to
the timing of the instruction to move) were concatenated
to form a decoding feature. To calculate the classification
accuracy, 10-fold cross-validation was applied. For each fold, the
testing data set was classified with a decoder that was trained
completely independently from the testing data set. To optimize
hyperparameters of the decoder independently from the testing
data set, another 10-fold cross-validation was applied to the
training data set so that hyperparameters that achieved the
highest classification accuracy within the training data set were
selected. Finally, classification accuracies during the two offline
tasks before and after the BMI training session were compared
using a paired Student’s t-test. Significance threshold for this t-
test was set to 0.025, because this study employs two t-tests: one
for training with a real decoder and another with a sham decoder
(Bonferroni correction).

RESULTS

BMI Training With a Robotic Hand
During the 10-min BMI training, the accuracy in controlling the
robotic hand was improved. The handmovements at an arbitrary
timing were successfully detected and classified, with a correct
rate of 0.28 ± 0.13 during the first 1min of the BMI training
with the real decoder. The correct rate increased significantly to
0.50 ± 0.11 for the final 1min of the BMI training (p = 0.017,
n = 8, paired Student’s t-test). On the other hand, the correct
rates during the BMI training with the random decoder were not
significantly changed among the first 1min and the last 1min
(0.51 ± 0.13 to 0.52 ± 0.10, p = 0.92, n = 8, paired Student’s
t-test). Notably, the increase of the correct rate during the BMI
training with the real decoder was significantly larger than that
during the BMI training with the random decoder (Figure 2).
Also, it should be noted that correct rates during the first 1min
of the BMI training were not significantly different between the
BMI trainings with the real decoder and the random decoder
(p= 0.11, n= 7, paired Student’s t-test).

BMI Training Changed the Cortical
Representation of Hand Movements
After BMI training with the real decoder, the F-values increased
in the contralateral sensorimotor cortex (Figure 3A), although
the difference of the F-values (Figure 3B) between pre-BMI and
post-BMI offline tasks was not statistically significant (p > 0.05,
paired t-test, FDR corrected). After training with the random
decoder, the F-value of the contralateral sensorimotor cortex did
not increase (Figures 3A,B), although the subject was instructed
in the same way as during the experiment with real decoder.
These findings suggest that the BMI training with the real
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decoder increased the discriminability of the cortical activity
representing the hand movements.

BMI Training Altered Classification
Accuracy of Hand Movements
We compared the accuracies for classifying the hand movements
using the z-scored MEG signals at the selected sensors. Figure 4

FIGURE 2 | Improved accuracy of controlling the robotic hand during online

BMI training. The correct rate for robotic hand control was calculated for the

first 1min of the training and the last 1min of the 10-min training. Each bar

shows the averaged improvement of the correct rate for the training with real

and sham decoder. Error bars are 95% confidence intervals of the improved

correct rate. *p < 0.05 significant difference between two different decoders

(unpaired Student’s t-test).

shows the classification accuracies of hand movements in
the offline task before and after training task. The accuracy
significantly increased after BMI training with the real decoder
from 62.7 ± 6.5 to 70.0 ± 11.1% (p = 0.022, n = 8, t(7) = 2.93,
paired Student’s t-test). In contrast, the BMI training with the
random decoder did not increase the accuracy from 63.0 ± 8.8
to 66.4 ± 9.0% (p = 0.225, n = 8, t(7) = 1.33). The BMI training
with the real decoder significantly improved the cortical activity
to decode the hand movements.

DISCUSSION

Our findings demonstrated that MEG-based BMI training to
control a robotic hand significantly improved the accuracy
to control the robotic hand and induced significant changes
of the cortical representation of hand movements in terms
of classification accuracy. These results suggest that the BMI
training will be useful for two important applications.

First, the non-invasive BMI training will be beneficial
in training patients before applying invasive BMI. Previous
studies demonstrated that the ability to control the BMI varies
among patients (Yanagisawa et al., 2012a; Fukuma et al., 2016;
Pandarinath et al., 2017). Before applying an invasive BMI for
paralyzed patients, we need to evaluate their ability to control
the BMI and to train them when the ability is poor. Our BMI
training succeeded in improving the accuracy of controlling the
BMI with improved cortical activities, which are also used for
invasive BMI. Therefore, the proposed MEG-based BMI training
will be beneficial for preoperative evaluation of the invasive BMI.

FIGURE 3 | Difference in cortical activation evoked by two types of movements during the offline task. (A) The averaged F-values of one-way ANOVA between

500-ms time-averaged cortical currents estimated during hand grasping or opening were color-coded and plotted on the normalized brain surface. (B) The differences

of F-values shown in plot (A) were color-coded on the normalized brain surface.
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FIGURE 4 | Classification accuracy of hand movements before and after

training. Each bar shows the averaged classification accuracy of hand

movements during the offline task. Error bars are 95% confidence intervals of

classification accuracy. Dotted line denotes chance level. *p < 0.05 significant

difference between offline tasks before and after 10-min BMI training with

feedback (paired Student’s t-test with Bonferroni correction).

Second, the BMI training will be useful for inducing plastic
changes in the cortical representation. Even for these subjects
with normal motor function, the BMI training succeeded in
improving the classification accuracy of the hand movements
using the MEG signals. Our findings suggest that the BMI
training did not induce the changes by normalizing the cortical
activity but by modulating the activity depending on the decoder.
The BMI training could be applied in clinical therapy to
change maladapted cortical representation (Kuner and Flor,
2016).

Recent studies have revealed that BMI training in a
closed-loop condition improves BMI performance. It has been
demonstrated that closed-loop training improves the control of a
neuroprosthetic device using multi-unit activities in accordance
with some network plasticity and reorganization (Orsborn et al.,
2014; Balasubramanian et al., 2017). Similarly, the performance
of non-invasive BMI can be predicted by cortical activities and
improved by closed-loop neurofeedback training (Hwang et al.,
2009; Blankertz et al., 2010; Sugata et al., 2016; Wan et al., 2016).
On the other hand, performance improvement depends on the
properties of the cortical activities used by the BMI (Sadtler et al.,
2014). Further studies are necessary to optimize the improvement
of BMI performance for some clinical uses.

It should be noted that BMI training was effective to induce
significant differences even with a limited number of subjects.
Although the correct rate of robotic control varied among
subjects, our BMI training induced a consistent effect on the
correct rates. Indeed, our results successfully demonstrated
that BMI training significantly improved classification accuracy
during the offline task and the correct rates during the
online BMI training even among a limited number of
subjects.

In summary, neurofeedback training using MEG-based BMI
provides a novel method to directly change the information
content of motor representations by induced plasticity in the
sensorimotor cortex.
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