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Forestry is a dangerous work environment and collecting data on site to identify and warn about hazardous situations
is challenging. In this paper, we discuss our attempts at creating continuous data-collection methods that are ethical,
sustainable and effective. We explore the difficulties in collecting personal and environmental data from workers and
their work domain. We also draw attention to the specific challenges in designing for sensor-based, wearable rugged IoT
solutions. We present a case-study, comprising of a number of experiments, which exemplifies the work we have been
undertaking in this domain. The case study is based on our approach to developing a robust, trusted Internet of Things
(IoT) solution for dangerous work environments (specifically the forestry environment). We focus the results of this case-
study on both the technical successes and challenges as well as the personal and ethical challenges that have been elicited.

1. INTRODUCTION

New Zealand has around 1.8 million hectares of plantation
forests and the industry contributes roughly 4% of national
GDP to the economy. Forestry also has the highest fatality
and injury rate of any industrial sector in NZ (since 2008
there have been 32 fatalities) and has New Zealand’s
highest rate of workplace injuries with claims to the NZ
accident compensation scheme (ACC) in excess of two
million NZ dollars each year. An independent review
of all involved in the sector (using interviews and self-
reporting) identified potential contributors to the poor
safety record Adams et al. (2014). These included a lack of
training; worker fatigue; poor health and safety processes.
As a result a number of recommendations were made based
around initiatives such as increased codes of practice, wider
participation in training and certification for workers, the
creation of new safety action groups etc. However, there
was no deeper consideration of the wider underlying causes
nor practical proposals for how to identify and prevent
unsafe work practices.

While the specific NZ forestry setting is unique, other
outdoor-based and labour-intensive industries such as
mining, haulage, all-terrain farming and fishing encounter
similarly hazardous situations. Known pressure points
are again fatigue, de-hydration, distraction, isolated work,
remote locations, inexperienced and poorly paid staff, and
time pressures. Our initial interest in this domain was
motivated by finding ways to unobtrusively gather large
amounts of data from forestry workers in order to generate

an actual data set of work and environmental factors
(rather then self-reported data) from which to understand
the working environment and identify worker fatigue (a
known cause of accidents and contributor to risk). There
are well-known, and well-studied techniques for using
biometric data to indicate and measure fatigue (we discuss
these in more detail in section 2) but these are typically
laboratory-based and invasive and therefore not suitable
for in-situ workplace monitoring. We are interested in
finding suitable technological solutions to replicate such
measures in an unobtrusive fashion using technology that
can be easily deployed in an outdoor setting. Ultimately
we would like to use real-time data capture to monitor and
understand worker metrics with a view to being able to
identify hazardous situations as they arise, and intervene
as appropriate. The over-arching aim, therefore, is that of
reducing the high accident rate in NZ forestry.

There are many challenges inherent in collecting
observational data in workplace environments. Human
Work Interaction Workshop (HWID) (2015) specifically
focused on design for challenging work environments
and how to collect relevant data to inform such design.
Common themes emerged from a variety of different work
domains studied, such as safe access to industrial sites,
ethical considerations of monitoring employees (including
use of, and access to, data) and finding unobtrusive study
methods. Our own initial studies, which looked at the use
of lightweight and cheap data gathering tools (such as
activity trackers) encountered similar problems. Early on
in our work it became clear that the technical, ethical and
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sociological challenges of implementing worker tracking
(even on a small scale) required us to find alternative
approaches which better addressed these.

Over the course of subsequent experiments it became
clear that we needed to measure a variety of different
metrics (beyond those offered by basic activity trackers)
and develop a better way of understanding the personalised
implications of fatigue for workers. This has led to our
current approach, which we present in our case study. This
seeks to adopt a new style of IoT (the Rugged Internet of
Things or RIoT) as a possible solution. This in turn creates
additional challenges, which we also discuss.

This paper therefore addresses two problems. The first
is the difficulty in collecting personal and environmental
data from workers and their work domain. We address
this by proposing a specialised sensor-based IoT solution
for outdoor environments. The second is the technical
and ethical issues that arise from this proposed solution.
Our contributions are the insights we provide into the
problems associated with data gathering in hazardous work
environments and our proposal of how to move forward
using a new version of IoT (RIoT), which is not only
suitable for use in rugged and unconnected environments
but also considers new mechanisms for data security and
privacy. The IoT solution we are developing is not only
truly body/person-centric, but is also designed to support
people’s safety on a day-to-day basis.

2. BACKGROUND TO NZ FORESTRY

An investigation into the role that rest and recovery
play in accidents and injury of workers was undertaken
by Lilley et al. (2002). This relied on self-reporting and
involved 367 workers responding to a self-administered
questionnaire. The results showed that 78% of workers
reported experiencing fatigue at work at least some of the
time and the study concluded that the combination of slim
margin for error and impairment due to fatigue constituted
a significant risk factor within the industry. In an attempt to
gain more detailed data, Parker (2010) conducted a study
using wearable video cameras to capture forestry worker
behaviours. This work was limited by the small number
of participants (due to equipment costs) and the time and
expertise required to analyse the footage to understand
what was being observed. Adams et al. (2014) conducted
another study using self-reporting specifically focusing on
forestry, with the results outlined in our introduction.

In general, robotic solutions, which are applied elsewhere
in forestry, do not work well in the extreme New Zealand
terrain, although there is ongoing research in this area to try
to adapt equipment or develop new machinery to remove
humans from the work environment. Live observation
and in-situ monitoring are not suitable in many work
conditions and particularly do not work in hazardous work
environments. For example, Parker’s initial observational

studies elicited more about the practice of keeping on-site
visitors safe than it did about typical worker behaviours.
Some of the specific challenges of data gathering in NZ
forestry have been reported in (Bowen et al. 2015b), but
here we describe a case study we have carried out in
order to identify both the practical requirements as well as
the philosophical, ethical and social implications of such
work when we endeavour to introduce novel technological
solutions into industrial environments.

3. RELATED WORK

We focus on related work in three key areas: uses, effects
and ethics of monitoring workers; measuring fatigue,
activity, recovery and response times; using sensors and
IoT solutions in work domains.

3.1. Tracking of Workers

Employee monitoring and tracking is not a new idea.
Different approaches have been used to consider issues
such as productivity, health and safety and security
since the early days of the factory floor-walker (human
observation of worker productivity) and the punch-in time
clock used to ensure workers arrived on time and did
not leave early. As technology has advanced, so too have
the methods used for monitoring and tracking workers.
Any form of monitoring of employees can create tension
between employers and employees.

Botan (1996) reports on a survey of 465 employees
on their attitudes of workplace surveillance. He found
that irrespective of the motivations for the surveillance,
most workers felt untrusted by their employers and that
this was likely to be the first step in other management
interventions that would not be in the employee’s best
interests. Kortuem et al. (2007) discussed the use of worker
tracking specifically for Health and Safety purposes. This
considered the use of a vibration monitoring technique for
industrial workers aimed at reducing a condition called
“Vibration White Finger". They considered whether the use
of (ubiquitous computing in this instance) could play a
role in making industrial workplaces safer. They found that
even in an example where the monitoring was intended to
keep workers safer there was still a perception that such a
system could be used to exert control over employees, for
example by creating accurate logs of worker activities.
Such perceptions existed even when the reality of the
monitoring did not include such aims.

The proliferation of personal activity trackers in recent
years has given rise to a new type of worker tracking.
Firstly there are companies who seek to promote the health
of their workers by encouraging them to be active and
provide trackers for personal employee use to support
this. For example Target in the U.S have offered to give
FitBit trackers to all of their workers to increase awareness
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about healthier lifestyles1 In a similar manner, although
with more focus on rewarding adherence, oil company BP
track step counts of workers and offer lower health care
premiums to those who meet certain criteria2. According
to technology research company Gartner, in 2013 about
2,000 companies offered their employees fitness trackers.
In 2014 this rose to around 10,000, and companies such as
FitBit now have dedicated partnerships with organisations
to provide large numbers of trackers ad personalised data
provision. The collection of such personal data and its use
raises many ethical questions about how such data is used
and who has access to the information - for example what
happens to the employee who does not meet the fitness
criteria defined by their employer? We discuss this later in
the paper as it pertains to our case study and our opinions
as researchers collecting such data, as well as employee
reactions and ‘buy in’ to such initiatives.

3.2. Studies into Causes and Effects of Fatigue

The biometric measures we are proposing to capture, along
with their meanings and effects, have been well studied in
the field of psychology. Here we primarily focus on the
following topics: definitions and effects of fatigue; activity,
fatigue and recovery; fatigue and response times; heart-rate
variability as an indicator of stress and fatigue.

Fatigue is typically classified into two general types, mental
fatigue that affects an individual’s cognitive processes
and physical fatigue that affects an individual’s ability
to maintain physical actions. There is some contention
over this division though with some researchers believing
that fatigue is a single general state that is driven
by physiological responses to energy expenditure of
whichever category (Hockey and Ebrary 2013). Studies of
physical fatigue typically require participants to undertake
physically demanding tasks either for a pre-determined
period of time or until they are unable to continue. A
variety of measurements are compared pre- and post-
task to evaluate the effect of the activity and extent of
the fatigue. For example Kumar et al. (2004) measured
oxygen uptake, ventilation, heart rate, blood oxygenation,
blood volume and took electromyographic readings while
subjects performed a physically demanding exercise, and
reported a steady reduction in force exerted over the
duration of the task.

Mental fatigue has been shown to affect task motivation
(v. d. Linden et al. 2003) and high levels of mental fatigue
have been show to result in a loss of efficiency and lower
productivity of workers (Murata et al. 2005). Like physical
fatigue, mental fatigue may be the result of fatiguing
activities (cognitive processes) but it is also linked to
disturbed, or lack of, sleep (Äkerstedt et al. 2002). While
1http://www.cnbc.com/2015/09/16/
targets-fitbit-offer-to-workers-may-miss-its-mark.
html
2http://www.forbes.com/sites/parmyolson/2015/10/
20/fitbit-employers-barclays-godaddy-wellness/
#6170061b3baa

physical fatigue can be measured by way of ability to exert
force or perform activity (as above), measuring the effects
of mental fatigue is less straightforward. One important
(for our work) correlation that has been demonstrated is
the effect on reaction times of individuals who are fatigued.
Galton (1889) developed a simple reaction time (SRT)
test which recorded a participant’s response to a simple
stimulus. This early test still forms the basis for several
variations that have been developed to measure SRT and
it is also used as the basis for the choice reaction time
test (CRT) which records the time it takes a participant to
choose a correct response from a number of alternatives.
Of particular interest is the evidence showing that reaction
time is adversely affected by both physical and mental
fatigue (Brisswalter et al. 1997) suggesting we may see
slower reaction times in physically demanding jobs, such
as those found in forestry.

In addition to fatigue indicators such as SRT and CRT,
there are changes in the autonomic nervous system when
an individual is under stress (again both physical and
mental). One key indicator that can identify this is heart-
rate variability (HRV) which is the change in the inter-
beat interval of the heart. A higher variability indicates
higher levels of stress and corresponding fatigue and has
been shown to be caused by work-induced cognitive stress
(Chandola et al. 2008) as well as physical activity (Kaur
et al. 2014). The increase in wearable technology capable
of recording HRV has led to an increase in its use as a
stress and fatigue measurement tool for athletes as well as
ordinary individuals.

The majority of the studies described above, and many
similar or complementary studies, are conducted in
controlled environments (typically a laboratory setting)
with specialised equipment and involve large-numbers of
participants. This enables specific variables to be measured
and controlled for required circumstances. For example,
simulated driving laboratories can be used to investigate
not just the fatiguing effects of driving in general, but rather
the effects of particular driving conditions over specified
periods for large numbers of test subjects (see for example
Charlton and Baas (2006); Charlton and Starkey (2013)).
Our intention is not try to replicate such studies or re-
investigate known results from literature. Rather we want
to find out if we can replicate the results of such studies
using low-cost and light-weight measurement techniques
in real-world settings. If we can do so, then we can rely
on such technologies for in-situ monitoring of forestry
workers with the confidence that the implications we draw
from the measurements are based upon empirical studies
conducted in controlled environments.

3.3. Using Sensors and IOT for Personal Monitoring

The Internet of Things is predominantly discussed in terms
of a self-configuring network connecting objects in ‘smart’
homes and businesses, with a strong focus on the objects
and environments. Typical applications are smart buildings,
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smart homes, ambient intelligence, and mobile health-
care. These applications assume large-scale and reasonably-
stable computation and sensor constellations.

Even IoT applications that use rather fluid sensor
constellations typically make these assumptions. For
example, participatory sensing or crowd-sensing (Jaimes
et al. 2015) are activities that engage the public to place
sensors in regions of interest to gain large sample sizes.
However, while the sensors, e.g. in the urban surface
project (Kuznetsov and Paulos 2010), may be dynamically
placed by the public, the urban computing environment
itself is well-established and stable.

In contrast, our domain has a strong concern with the
human body. Communication may be established via
a Body Area Network (BAN) in collaboration with
a Personal Area Network (PAN). Some smart home
applications are treated as an extension of a body
area network, e.g., for health-care applications (Gubbi
et al. 2013). Again, most of these can rely on a stable
network environment with which sensors can securely
communicate. Body-centric systems use environmental,
wearable, and implanted sensors. There are already a
number of simple wearable technology applications,
such as a T-shirt that visualises air quality monitoring
results (Kim et al. 2010) or cycling helmets displaying
heart-rate data (Walmink et al. 2014). In these cases,
the sensing is instantly translated into the visualisation,
without recording capability nor any links to the wearer’s
personal activity context. Some projects use RFID
technology and IoT communication for personal health-
care applications (Amendola et al. 2014) and for gathering
information (temperature, humidity, and other gases)
about the user’s living environment. For example, Negi
et al. (2011) and Adams et al. (2009) combine sensors
with GPS to create a wearable personal air monitors.
Wearable systems designed for outdoor use often rely
on Bluetooth communication between GPS, sensors and
smartphones (Honicky et al. 2008), possibly transferring
data to central collection points via GPRS (Dutta et al.
2009). Inside buildings the use of GPS is limited and
other indoor positioning systems are employed for location-
based monitoring (Brown et al. 2016). Some of the
applications focus on real-time monitoring of workers
to protect them from environmental hazards, such as
overexposure to air pollution (Fathallah et al. 2016).

Many of these health-related applications use IoT
architectures that are akin to smart-city proposals, which
are used to support people with disabilities (e.g., Domingo
(2012)). Others use stand-alone body-focused systems,
such as the Xbox Kinect. For example, González-Ortega
et al. (2014) use 3D computer vision system for cognitive
assessment and rehabilitation. These systems assume
the support of powerful computing networks, often in a
localised setting. Rohokale et al. (2011) proposed using
a cooperative IoT network for rural health-care, which is

akin to ad-hoc wireless sensor networks in which each node
acts as both sensor and relay. This work predominantly
focuses on establishing communication with no concern
for security or wearability of the equipment.

Scant attention has been paid to the communication
and security of data when the IoT devices interact
autonomously Roman et al. (2013). Secure and trustworthy
computing typically focuses on resource-rich environments
or hard security measures (e.g., encryption, signatures
and certificates) that are typically energy hungry (e.g.,
Kumar and Madria (2015); Kothmayr et al. (2013)). Only
a few studies address the specific challenges of trust in IoT
(e.g., Bao and Chen (2012); Lacuesta et al. (2012)), and
none take into consideration the characteristics of rugged
environments, making their findings not applicable in such
environments. Trust in IoT data collection at user level
has recently received more public attention, with users
becoming aware of the potential for mis-use of information
collected (Brennan 2015). Limiting collection of data is
difficult when safety requires data collection and devices
record very personal data via sensors embedded in clothing
or even implanted.

Interaction design in the IoT space makes it tempting to
merely or overly focus on the objects – the ‘things’ in the
Internet of Things (Jenkins 2015). Our problem domain
has two interaction aspects: sensing of data and feedback
to workers. In this paper, we consider the challenges of
sensing, with a strong focus on the interplay between the
objects and the humans involved.

4. THE RUGGED INTERNET OF THINGS (RIOT)

We believe that the new generation of lightweight, wearable
technology and sensors of the Internet of Things (IoT)
can help in identifying hazardous situations in work
environments such as forestry, ultimately preventing
fatalities. There are, however, many challenges in doing
so. The use of IoT has already been embraced in some
hazardous work environments, such as mining (Pye
2015). However most of these projects focus on specific
environments where infrastructure is not an issue. Such
ideas are built on the assumption of the continuous
availability of computational power (in the form of cloud
computing), high bandwidth (in the form of WiFi and
cellular networks) and energy, since devices can be plugged
in.

Many of those assumptions do not hold in rural,
agricultural and forestry settings. Resources in these places
may only be available intermittently. Such environments
are characterised by lack of available bandwidth,
computation constraints, energy constraints, and very
importantly limited interaction between devices. Existing
IoT technologies, which rely on the aforementioned
assumptions, cannot cope in such rugged environments. For
IoT to work successfully and safely in rugged environments
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we must recognise that the standard assumptions do not
work and provide alternatives. Our current experimental
setup mixes fixed access points with temporary storage
solutions (mobile phones) to ensure sensor data is not lost
as workers move in and out of connectivity.

We therefore set out to explore the following three aspects:

Relevant data: What sort of data might be relevant
in order to determine worker fatigue and unsafe
situations?

Suitable Collection: Considering the data we might wish
to collect, what are appropriate and effective ways of
collecting such required data from forestry workers?

Analysis & use How can we analyse and use the obtained
data (online or off-line) such that it would be of use
in ensuring safety in dangerous work environments?

We present a summary of our analysis of relevant data to
be collected in the next section. We then present in detail a
case study that looks into suitable methods for collecting
data in the forestry environment. Explorations of online
use of the data have already begun and are also part of our
future work.

5. RELEVANT DATA: ANALYSIS

As discussed above, our RIoT targets the problem of a
‘smart landscape’ in which disconnectedness and harsh
operating conditions are the norm. Business and personal
data are highly sensitive and possible interference through
attempted data access or malicious data inserts have to be
prevented. In addition, as it is known that workers may be
suspicious about how any of the collected data is used,
even if they agree to participate they may not comply.
Therefore, spurious or suspicious data may be the result of
either malicious interference from external entities or due
to worker disruption.

Data we wish to collect can be categorised across several
different dimensions. First, we consider the privacy
considerations for the data and whether it should be
considered as:

• personal [P] – only the owner should have access
to the unconsolidated and unanonymised data,
identification should only be possible in specified
emergency scenarios

• business-sensitive [B] – needs to be concealed
from external entities as it may reveal properties
of the work environment that can be considered
commercially sensitive

Secondly we consider the requirement for when data
should be available for collection (frequency and
availability) which can also be divided into two groups:

• continuous [C] – where it is essential that data is
collected in an uninterrupted manner

• infrequent [I] – data may be provided at varying
intervals throughout the day

Table 1 gives an overview of the proposed data
to be collected and its categorisations. These data
categories were developed based on prior work with high-
performance athletes Tavares et al. (2016) and industry
engagement with forestry workers Bowen et al. (2015a,b);
Griffiths (2016), as well as analysis of relevant literature.

Data P B C I
Activity X X
Ambient temperature X
Breathing X X X
Calorific burn X X
Core body temperature X X X
Heart-rate variability X X X
Hill climbing X X
Location X
Reaction times X X X
Sleep data X X X
Vibration X X X

Table 1: Data Categories

6. SUITABLE COLLECTION: CASE STUDY

In order to explore suitable data collection methods
for worker-related fatigue data in the outdoor forestry
environment, we designed a case study that comprises
three phases (see Table 2). The table provides an overview
of collected data for each phase, participants and length
of the study. So far, we have conducted Phases I and II
of our case study, and are currently undertaking Phase III.
We here first describe the case study setup and report on
results of Phases I and II; it is too early to report results
on Phase III – it is shown here only for completeness. We
then discuss our observations, the challenges encountered
and lessons learnt from the case study.

We begin by summarising each of the phases wrt. their
goals, aims and participants. We then discuss the
challenges and problems that were identified by the studies
and how they relate to our initial problem statement. We
conclude this section with a discussion of the insights
obtained from our results and how they contribute to our
proposed solution.

6.1. Case Study Methodology

We started by looking at how we might predict hazards by
harnessing the power of a new generation of lightweight,
wearable technology (such as activity trackers). We
subsequently investigated different types of sensors (and
wearable sensors such as those found within the LifeBEAM
Smart Hat3 for example) within an IoT.

Phase 1. This phase started with a number of experiments
performed by the research team over varying periods of
time to investigate the properties of activity tracker usage.

3http://life-beam.com/shop/smart-hat/
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Phase Description Length #Participants
I Activity, steps and sleep patterns 16 + 5 weeks 4 + 2
II Activity, steps and response times 3 + 3.5 weeks 1 + 15
III Heart-rate variation, physical and mental fatigue activities ongoing

Table 2: Case Study Phases (data on external participants participants + forestry workers)

The aim of this initial research was to discover any usability
issues that might occur when using activity trackers for
long-term studies (so requiring them to be worn 24/7)
as well as investigating the effects of domain-specific
activities (such as operating a chain-saw, driving long
distances on bumpy roads, walking in forestry environment
etc.) Three researchers wore devices (sometimes more than
one at a time for comparison purposes) to track both daily
activity and sleep for periods of 6–14 weeks. In addition
one researcher kept a diary throughout the same period
to enable consideration of particular data points. We then
replicated this data collection with two forestry workers
over a five week period. The participants were asked to
wear an activity tracker (each had a different brand) 24
hours a day, initially for a period of two weeks, and then
subsequently for another two weeks, then for one final
week. The extensions were due to ongoing problems with
the participants use of the trackers (discussed shortly).

Phase 2. The second phase began by one of the researchers
undergoing a period of self-monitoring on activity and
fatigue levels. Activity was measured based on step-
counting, heart-rate and calorific burn (using a Fitbit
HR), sleep was measured in terms of quantity and quality
(again using the Fitbit HR) and the effects of fatigue were
measured based on reaction times. Reaction time testing
used two methods, simple-reaction time testing (SRT)
and choice-reaction time testing (CRT). For this study,
reaction time was measured using the ‘Reaction Time’
application4 designed to measure the time taken to respond
to visual stimulus (colour change) and screen touch
(response). These experiments ran for a three week period
and encompassed activities undertaken by a researcher,
covering a mixture of workplace and study activity.

Again we then moved our data collection to in-situ forestry
workers. This involved the collection of physiological
data by means of a Fitbit Charge HR wrist worn
monitoring device and testing of SRT and CRT. Simple
and choice reaction time measurements were undertaken
at commencement of the participants’ work period,
during their break time and on completion of the
participants’ work day. The Deary-Liewald Reaction Time
Task application developed by the Centre for Cognitive
Ageing and Cognitive Epidemology at the University of
Edinburgh Deary et al. (2011) was used for this purpose.
SRT testing was completed first with each participant
undertaking 15 individual tests. CRT testing was performed

4available from Google Play https://play.google.
com/store/apps/details?id=com.chingy1788.
reactiontime

secondly with participants undertaking 20 individual tests.
Participants were selected from three work crews based
at three separate locations (all members of a crew were
included where possible) who were each monitored for two
periods of 3–5 days. In total there were fifteen participants
who were all male, with ages between 17 and 62. Five
participants were loader operators, three worked in quality
control, three were manual tree fellers, two were process
operators and two were log makers.

Crew 1 was a fully mechanised crew with most operations
being carried out using plant and machinery. Crew 2
was a primarily manual crew with most operations being
performed by workers on the ground (using chainsaws etc.)
Crew 3 was a hauler crew who operate in steep terrain
using cabling techniques to drag felled trees to the skid
site for processing. The working day for all three crews
(apart from loader operators who typically started the day
2 hours earlier and then broke for the morning meeting)
starts with a meeting where tasks are assigned. Directly
after this meeting we issued each participant with a Fitbit
HR to wear for the day and performed the first of the
reaction time tests. Work then commences for around four
hours, at which point a 45 minute break occurs when we
performed the second reaction time test. Work then re-
commences until the end of the day when we performed the
final reaction time test and collected the activity trackers
for data synchronising and charging.

6.2. Summary of Results

We here summarise the case study results wrt. the data
quality and suitability of the data collection method.

Phase 1. While the full results from Phase I were reported
in Bowen et al. (2015a), here we discuss the key findings
from both phases and show how they relate to the aims of
the work described. Our experiences of Phase I showed
that context-free data can be misleading (high activity
levels may not be due to steps but other actions such
as driving or even drinking). There were large variances
in sleep-tracking accuracy (when compared with diary
reports as well as measured against state of the art devices
like the Readiband5) and devices can get in the way of
some activities (uncomfortable when typing on a keyboard
for long periods or irritating to the skin overnight). This
suggests that choice of technology needs to be based on a
number of factors and that data needs to be correlated with
other variables in order to obtain a clearer picture of its
meaning. While different types of tracker reported different

5www.fatiguescience.com/Readiband/sleep_tracker
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values for activity tracking the differences remained
consistent (so trends seemed accurate) which means that
factors such as comfort and utility in the environment can
be used as the dominant choice factor.

The most significant finding from the forestry worker
engagement in Phase I is the level of technical difficulties
that occurred—participants could not change the mode
of the devices to track sleep; devices were lost; mode
changes occurred frequently so that data collection was
compromised; participants never charged the devices;
connectors for uploading data were lost. Of course, it is
possible (and indeed likely) that not all of these problems
were actually technical but that there were also elements
of resistance from the participants to being monitored in
this fashion. As we have discussed earlier, in some sense
this is not surprising, the monitoring of workers during
their private time is potentially controversial. Even though
our participants were volunteers and keen to take part,
during the initial meeting to set up the study it was clear
that there were reservations about some aspects of the
monitoring (particularly the sleep monitoring) and what
could be identified from the data).

Workers were assured that only anonymous and aggregated
data would be available to their boss; however, the fact that
their boss might be able to see any data caused considerable
concern and might have been the reason for the subtle
disruptions and signs of non-compliance we observed. A
similar observation was made by Kortuem et al. Kortuem
et al. (2007), as they explored organisational issues of
industrial health and safety monitoring system. They had
also observed “both a perceived lack of trust and a lack of
effective two-way communication between management
and operatives".

Phase 2. As the first part of Phase II involved self-
monitoring, and because we had already learnt some of the
lessons relating to equipment choice from Phase I, there
were overall fewer issues. Our focus for Phase 2 was on
identifying correlations between activity and reaction times.
Specifically we wanted to see if the data we could collect
would correlate with known properties of activity and
fatigue (as discussed earlier). Speed of mental processing
(SMP) is a means to aggregate data from simple and choice
reaction time (SMP = CRT − SRT ). A summary of the
collected data for Crew 3 is shown in Figure 3. We found
that the effect of activity on reaction time varied between
participants. SRT showed no common pattern other than a
tendency towards being slightly slower at the end of the day
than at the start of the day but between those points there
was no consistent effect. CRT similarly had no common
pattern. The data is personalised but may also depend on
role types. For example, the loader drivers 3E and 3D both
show improved mental processing times as well as CRT
and SRT throughout the day. People were typically found to
be consistent within each day but very different from each

Table 3: Crew 3 Mean reaction times in msec

Period Participant Role CRT SRT SMP
Start 3A Quality Control 662 701 -39
Break 649 382 267
End 525 390 135
Start 3B Quality Control 624 445 179
Break 544 363 181
End 534 396 148
Start 3C Manual Feller 566 392 174
Break 566 386 180
End 569 357 212
Start 3D Loader Operator 520 311 209
Break 456 321 135
End 458 277 181
Start 3E Loader Operator 1067 1016 51
Break 820 569 251
End 742 424 318

other. We also observed that not only physical exhaustion
may contribute to fatigue but also mental activity.

Implications for data collection As a result of Phase I we
made a decision that we would not continue with sleep-
tracking of the workers; instead it was decided to focus
on measuring the effects that fatigue (based on activity)
might have. It may be that including some type of self-
reporting question regarding sleep quality at the start of the
electronic reaction time test may be useful, although we
should be mindful that the same ethical issues that could
lead to non-compliance with the sleep monitoring may
similarly affect the answers given. If workers believe they
may be penalised (e.g. sent home as unfit to work) if they
select an answer indicating they have slept poorly several
nights in a row then they may be reluctant to provide such
an answer.

The need for the researcher to be on site several times a day
to facilitate the testing also meant that they were able to
observe some aspects of the environment which proved to
be informative, despite not being part of the overall study
plan. The effect of temperature appears to have a bigger
impact on reaction time (both SRT and CRT) than activity
alone. The biggest effect was seen at temperatures less
than 4°C with the mean differential across all participants
between 2°C and 4°C on CRT being over 100 milliseconds
and on SRT being around 50 milliseconds. However, this
needs to be considered in conjunction with the activity
data as typically the coldest part of the day is when work
commences and as the temperature rises the amount of
activity having been performed also increases.

The remote working conditions for each of the forestry
crews and lack of facilities contributed to the effect of
ambient temperature as an important variable. Work sites
are at remote locations with the only welfare facilities
available to the crew being the vehicles they travel to work
in. There are no fresh water or toilet facilities at any of the
locations. Crew 1 had access to a metal shipping container
that is used as both the site office and lunch room. This
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container travels with the crew from production site to
production site as the crew moves around. This has an
effect on workers’ choice of hydration and food throughout
the day. In addition the lack of a comfortable, warm, area
to take breaks in, and no running water or power meant
that breaks were taken as required in a perfunctory manner,
rather than being used as an opportunity for workers to
relax, make tea/coffee, heat up food, socialise etc. as might
be seen in indoor working environments. Power is not
supplied to the container and as such no heating is available
and crews protect themselves from adverse temperatures
by use of clothing layers. Machine operators who spend
large parts of the day sitting in unheated machine cabs
are particularly affected by cold temperatures, whereas
the workers on the ground report finding the summer
months where they are unprotected from the heat more
physically challenging. Our results also indicated that
mental fatigue (again seen by machine operators) appears
to have a stronger effect than that of physical activity. It
is clear, therefore, that all of these need to be carefully
measured and considered in larger scale data-gathering
activities.

Finally the individual nature of the results seen (particularly
the differences in reaction time across workers) indicates
that there can be no overall general benchmark applied
to determine whether or not a worker is fatigued or has
reduced reaction time. Rather we need individual data
collected over time to act as a personal benchmark, so
deviation from an individual’s normal pattern of data is
what is important. Again this emphasises the need to build
personal data histories as a mechanism for predicting
future behaviours. The requirements for collecting, storing
and analysing this type of personal data, as well as
incorporating environmental and business data leads to
a number of further considerations that we discuss next.

7. DISCUSSION

The personal stories we uncovered and the insights
gathered while doing these studies suggest that the design
considerations are not those we traditionally prioritise.
Any system used for monitoring workers, even when their
safety is our primary concern, must be focussed on their
privacy as much as anything else. It may be that we will not
create the most effective IoT solution or will not include
the most optimal data inputs but rather we aim to find
the most ethical, robust and secure solution that can do
the required job. There are many philosophical, ethical
& social implications of collecting and using this data.
Workers already do hard jobs for minimum wage, if we
collect data that deems them not fit to work then what
happens? There are two distinct parts to our focus, the first
is that any data collected is shared (or hidden) appropriately.
The second is that workers are kept safe and well.

In Phase I, one of the workers was off sick for a day
and at the same time problems were encountered with

his monitoring device. This again suggests that there is a
fine line between what is acceptable and what is not when
it comes to such personal monitoring. It is also clear that
it may not always be obvious where a problem lies and if
a technology error really is that or if something else is at
play. As computer scientists it is tempting to focus on the
things we can do rather than the things we should do. If one
could market such monitoring solutions as being beneficial
to workers, or the elderly or the disabled (as we see with
many similar monitoring approach rationales) then we may
stray into dangerous areas. Risk assessment for poorly paid
workers in dangerous environments is clearly a good thing,
but if the data is used to send home, or lay off, workers who
do not meet the new risk criteria then we must consider
the responsibilities we have in this. This is especially true
when it is not as simple as saying “worker X is fatigued
and will cause a serious accident if he stays at work"; the
interplay of various factors is much more subtle than that.
While high-performance athletes seem to accept the “lab-
rat" lifestyle where all aspects of their performance may be
monitored both in and out of work this comes with benefits
for them which allow them to improve and attain higher
standards. However most research in this area focusses on
the different metrics or studies that can be used to fine-
tune athletic performance rather than consider the effect
this has on those being studied—particularly when under-
performance or lack of adherence to training and nutrition
schedules is suggested.

Similarly the choice of the components we include in our
RIoT solution must be carefully considered. Off-the-shelf
sensors and tracking equipment is appealing because of its
availability and low cost (easy to deploy quickly to large
numbers of people), but much of this is not designed to
be secure or private. We have been experimenting with a
hat that includes a built-in heart rate monitor which just
broadcasts its data via Bluetooth continually and which
can potentially be captured by anyone or anything in
close enough proximity. Developers of such artefacts for
personal use are not typically concerned with such data
leakage which may not seem concerning when geared
towards lifestyle and fitness. Even presuming we do collect
data in a secure and private manner (see Table 1), we
still need to ask the questions about who then has access
to this data (the workers themselves, their bosses, health
and safety bodies etc.) and how it is presented and used.
We must be clear about our proposed use of this data
and ensure that it cannot be accessed and used for other
purposes (performance management of employees for
example). This again requires us to treat the data in ways
that may not necessarily be the most optimal in terms of
the technological solution but which ensures the ethical
dimension is acknowledged.

8. SUMMARY AND FUTURE WORK

In this paper we have discussed our attempts at creating
continuous data-collection methods that are ethical,
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sustainable and effective. We explore the difficulties
in collecting personal and environmental data from
workers and their work domain and discuss both the
technical and ethical issues that arise. We have also
presented a case-study that explores data collection
methods as part of a robust, trusted Internet of Things (IoT)
solution for dangerous work environments. We described
considerations for relevant data and suitable collection
methods, while exploring the use of lightweight sensors
to monitor worker activity levels and response times as
fatigue indicators.

As we discussed earlier, the nature of the data we
wish to observe and gather includes highly sensitive
personal data as well as business-sensitive information.
This naturally requires safe methods for storage and
communication among trusted partners. However, the very
nature of the rugged environments we are working in
means that connected devices may be transient due to
power limitations, movement in and out of connectivity
etc. This means that security and trust must be dealt
with dynamically, and the IoT includes small lightweight
sensors that do not have the capacity for on-board security.
Not only does this add a layer of overhead that does not
exist in typical IoT in terms of management of connectivity,
it also means that trust cannot develop over time as in
established IoT networks. Another element of our research,
therefore, is in developing a trust model that can support
this type of dynamic connectivity and can react accordingly
if devices disappear or newly enter. The model should also
be able to differentiate between anomalous and maliciously
inserted false data. Reliance on redundancy to partially
solve this problem is not necessarily suitable in a rugged
environment where the infrastructure to support just the
minimum required connectivity is already challenging.

We propose to protect the data through the use of a
trust management system. Typically trust amongst IoT
components is either confirmed by third parties (which
are not available in our setting) or is developed over time
(which is not suitable in our dynamic outdoor environment).
We use data aggregation and composition to derive valuable
safety-related information from the collected sensor data.
Our trust model will analyse the data from neighbouring
nodes in the IoT and classify the data as acceptable or
malicious. We started with wearable technologies as a
proof-of-concept for our data collection but want to go
beyond just collecting data so propose to develop a sensor-
based IoT which also provides feedback to workers via
wearable technology such as a smart vest.

The next stage for our work is completing Phase III of
our case study in which we experiment with monitoring
heart-rate variability data and recognition of mental and
physical fatigue activities. This will be incorporated into
sensors that will be part of our RIoT network setup. This
will then be employed in field tests to see how well the
RIoT network performs and to identify potential areas of

weakness in the security aspects. We can then move on
to analysing the data itself and consider how we will use
them in-situ in useful ways to help reduce risk.
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