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Abstract: The use of blockchains and smart contracts is currently explored in various fields of science 

and engineering due to their potential of radically changing the ways of doing business and 

the assumed elimination of traditional legal entities. Thereby, the complexity of the underlying 

technical relationships and mechanisms typically hampers the understanding by non-technical 

experts. In this paper we review approaches for visualizing blockchains and smart contracts. 

The investigation focuses on design and analysis approaches, concluding with requirements 

for a visual modelling language. 

1. Introduction 

While any individual or other legal entity, or software, may engage in blockchain transactions and smart con-
tract applications, the legal implications are typically not well understood. An analysis of the involved contract 
law and a design of appropriate legal contracts demand a high degree of expertise in the field of law and the 
underlying technology. Therefore, the analysis and design process usually depends on programmers with little 
understanding of the legal foundations they operate on. For involving non-technical domain experts in the 
analysis and design of blockchains and smart contracts, we review in the following according information 
visualization and modelling methods (Fill, 2006). While traditional contract visualization approaches focus on 
innovative ways of expressing contracts (Haapio et al., 2018), we review here visualization approaches and 
practical tools for the purposes of providing technical insight and for the analysis and design of blockchains 
and smart contracts. After reviewing and discussing these approaches, this paper concludes with requirements 
for a domain specific modelling language, with the aim to facilitate domain aspects of contract visualization 
and technical aspects of smart contract design.  

The remainder of this paper is structured as follows. Section 2 introduces blockchain technologies with a con-
ceptual model. Section 3 outlines the classification framework and reviews individual approaches, followed 
by a discussion in Section 4. Based on the results, we outline future research in Section 5 by proposing re-
quirements for an integrated visual modelling language. Section 6 concludes our investigation. 

2. Blockchain Foundations 

The term blockchain refers to a technology based on a specific data structure of linked blocks together with 
related consensus algorithms for the verifiably consistent storage of transaction-based data among distributed 
participants. Today, blockchains function as distributed ledgers for storing transaction histories, as well as 
smart contract platforms for the autonomous execution of program code tied to transactions. Applications 
based on distributed ledgers include the transfer of money, assets, securities or any kind of identifiable token 



by means of transactions, while smart contracts implement decentralized applications for concluding agree-
ments among decentralized participants not necessarily known to each other a priori c.f. (Härer, 2018).  

For the purpose of analysis and design from the point-of-view of data, we derived a conceptual data model for 
the description of distributed ledger and smart contract systems. Figure 1 shows the model together with a 
framework for analysis and design. For describing a blockchain, the model uses terminology common to most 
blockchains as it refers to the actual underlying technical components cf. (Fill and Härer, 2018). It resembles 
blockchain platforms such as Bitcoin and Ethereum. 

Regarding the conceptual model, a Block is linked to one predecessor by the inclusion of a hash value, sum-
marizing the content of the preceding block. Participants of the system use identifiers in the form of Address, 
each derived from a public-private key pair. A Transaction transfers Value or Data from sender addresses to 
receiver addresses, where a Value, e.g. electronic cash, is a sum of outputs of previous transactions and Data 
either transfers Contract Code for the creation of a smart contract or executes a previously created contract by 
an invocation. An execution runs Contract Code in the execution environment of a blockchain, e.g. the 
Ethereum Virtual Machine (EVM). Note that in a smart contract blockchain, a Block also contains State for 
storing Accounts, specifically, Externally Owned Accounts accessible by participants or Contract Accounts 
accessible by software through Contract Code. Beside the actual code, data resulting from the execution can 
be stored on the blockchain and read in subsequent executions by assigning it to a State Variable. The Contract 

Code itself is a sequence of Instructions and Data-Values, where instructions perform calculations, functional 
operations and execution control on the data. A smart contract blockchain can be understood as a universal 
computer, akin to a Zuse or Von Neumann architecture. Note that data and instructions may not necessarily be 
separated. The creation, management and invocation of the components are not shown here in the form of a 
data model. They are carried out by the consensus algorithm of a blockchain on the infrastructure of a peer-to-
peer network.  

Figure 1: Classification of Visualization Applications for Describing Each Class in Terms of Components of  

Distributed Ledger or Smart Contract Blockchains 



3. Classification of Visualization Approaches 

For classifying the visualization approaches, we refer to the framework shown in Figure 1 along with the 
contained data model. Classes of visualization applications in the top layer represent existing approaches we 
review in the following sections. According to the relations marked by (A) and (D), each class of applications 
is described in terms of the data model components of distributed ledger or smart contract blockchains, where 
the components represent units of analysis (A) or design (D). For each class, we describe (a.) the analysed or 
designed aspects and (b.) the visualization as a way for aiding the understanding of the subject matter. 

3.1.  Design and Distributed Ledger Blockchains 

Firstly, approaches on the design of artefacts for distributed ledger systems are classified. This category is 
relevant for designing state and behaviour of blockchain applications, software connectors and client software.  

Model-Driven Design of Blockchchain Applications involves visual models as the primary artefact in the 
development process of blockchain applications. Approaches adopting model-driven development and domain 
specific languages argue for better comprehension by specifying applications in terms of a specific domain cf. 
(Karagiannis et al., 2016). Applications here do not necessarily rely on smart contracts, but may allow for 
customizations of permissioned blockchains. An example is the Hyperledger Fabric blockchain, providing a 
Composer with table-based visualizations of textual models (Gaur et al., 2018), allowing to generate user in-
terfaces as in Figure 2 (a.). The design by a model includes (1.) participant IDs (Address) and custom attributes, 
(2.) assets as domain-specific objects of value, and (3.) transactions for transferring assets among participants.  

Modelling of Blockchchain-based Software Applications concerns the intersection of traditional software 
systems and blockchains, storing any data of a system on a distributed ledger. Data may include purchase 
orders, service contracts, or any data. Mostly the creation of addresses or transactions originating from the 
software side is relevant. One visual design technique are flow-based visual programming languages, such as 
Node-RED (Hyperledger, 2018) shown in Figure 2 (b.). Here, a Trader participant is created as specified in a 
JSON file. Other techniques visualize application behaviour, e.g. extensions of Petri-Nets (Norta, 2015). Petri-

Nets visually and formally describe system states and transitions, i.e. transactions of blockchains may be uti-
lized to transfer from one state to another. Figure 2 (c.) partly shows a non-interactive description of a contract. 

Wallet User-Interface-Design concerns client software as the human interface of blockchain systems, how-
ever, visualization techniques could only be identified for wallet applications. Wallets (a.) create and manage 
a participant’s addresses and (b.) create and broadcast transactions. Transaction creation visualizations and 
time-series visualizations of market data1 for virtual currency, or “cryptocurrency”, can be found in practice. 

 Figure 2: Examples of Distributed Ledger Design Approaches 

                                                      
1 EXODUS, https://steemit.com/@exodus/exodus-1-59-0-it-s-time-for-a-stellar-release (accessed on 29 October 2018).  



3.2.  Analysis and Distributed Ledger Blockchains 

For the analysis of distributed ledger blockchains, various theoretical and practically implemented visualiza-
tion techniques exist. Approaches in this class mostly visualize structural components given by the framework. 

Chart-based Statistical Evaluation techniques aid the understanding of categorical data of distributed ledg-
ers. The transparent nature of permissionless blockchains provides open data access for analysing operational 
parameters. Tools such as OXT2 and Bitcoin Visuals3 represent aggregated data in various forms such as scatter 
plots, line and bar graphs, e.g. for distributions of money circulation, block size or cost. A use case is the 
investigation of adverse behaviour, e.g. by adjacency matrices of money flows for detecting spam transactions 
(McGinn et al., 2018).  

Block-Transaction Visualization concerns the analysis of transactions included in blocks over time, allowing 
for investigations into all transactions carried out by a blockchain system at a specific point in time. Block 
explorer tools provide such a view of transactions on specific blocks by allowing queries by block number or 
other identifying attributes, such as the block hash value. A discussion of an analytical process is provided by 
(Kuzuno and Karam, 2017). Tools such as Blockchair4 and Blockcypher5 are web-based implementations. As 
an example, Figure 3 (a.) shows transactions of block 554216 of the Bitcoin blockchain. 

Address-Transaction Visualization is a view of all transactions sent or received by a specific address over 
time, regardless of the block. Such a view may also be found in the block explorers mentioned. An analysis 
into the activity of specific addresses is the typical use case, for the investigation of benevolent or malicious 
participants. A visual exploration as discussed in (Kinkeldey et al., 2017) allows e.g. for showing activity of a 
group of related addresses, possibly as part of a wallet for an identity. 

Transaction Graphs are the most common representation to analyse the flow of value across any number of 
addresses over time. A graph is constructed by nodes in the form of addresses, or groups of related addresses, 
connected by directed edges in the form of transactions, from sender to receiver addresses. Figure 3 (b.) shows 
a colour-coded graph (Möser, 2013) for analysing anonymity and money laundering. In addition, individual 
values of one transaction acting as inputs on the sender side and as outputs on the receiver side, might be shown 
(Battista et al., 2015) as in Figure 3 (c.). Other representations exist, e.g. as Petri-Nets (Pinna et al., 2018). 

Figure 3: Examples of Distributed Ledger Analysis Approaches 

Network Analysis takes the transaction graph approach as a basis and applies methods from network theory, 
social network analysis and artificial intelligence. Following individual flows of money is complemented by 

                                                      
2 OXT, https://oxt.me/charts (accessed on 14 December 2018).  
3 BITCOIN VISUALS, https://bitcoinvisuals.com/ (accessed on 14 December 2018). 
4 BLOCKCHAIR, https://blockchair.com/ (accessed on 14 December 2018).  
5 BLOCKCYPHER, Bitcoin Block 554,216, https://live.blockcypher.com/ (accessed on 17 December 2018).  



identifying related participants and communities, e.g. reverting to centrality measurements, cliques or ad-
vanced forms of clustering and unsupervised machine learning (Kalodner et al., 2017), (Harlev et al., 2018). 

Network Node Map relates client software instances operating a blockchains’ peer-to-peer-network to spatial 
dimensions. An application may be to show the degree of decentralization of a blockchain system in terms of 
number of nodes and geographic location. An example for the bitcoin network is the tool Bitnodes6.  

3.3.  Design and Smart Contract Blockchains 

The classification of visual approaches for designing smart contracts and related components distinguishes 
visualizations of procedural programming, declarative logic programming and modelling languages. 

Visual Programming Languages allow for the specification of smart contracts by the graphical representa-
tions of (1.) model elements representing instructions and data-values as well as (2.) model relations for defin-
ing the control flow between elements at least in the form of sequences and branching dependent on specifiable 
conditions, e.g. for loops and conditional execution. A mapping to instructions of a smart contract program-
ming language defines the generation of contract code. The result is either human-readable source code of a 
smart contract programming language like Solidity, or byte code interpretable by the node software of the 
targeted blockchain. In the former case, a compilation to byte code is required before execution. One form of 
visual programming languages are the flow-based languages already shown in Section 3.1. Another form are 
block-structured representations. This form implies a structuring of a smart contract into hierarchical blocks 
of code. In the example in Figure 4 (a.), the contract code for a sales contract is shown in the EtherScripter7 
tool and explained below. The Serpent or LLL source code for Ethereum can be seen online for this example.  

Figure 4: Examples of Smart Contract Design and Analysis Approaches 

The contract for selling a website executes on the Ethereum blockchain. After the creation of the contract by 
a data transaction containing byte code, a BUYER and a SELLER are stored along with their addresses in state 
variables on the blockchain. A value holding a date and a time is assigned to another state variable for setting 
a DEADLINE as the latest possible point for the sale to take place. On a subsequent invocation of the contract 
by a transaction, the sale is carried out if (1.) at least 5000 units of ether have been payed to the contract 
account and (2.) the transaction has been stored in a block before or exactly at the DEADLINE. The sale is 
concluded by recording the BUYER as WEBSITE_ADMIN on the blockchain as well as transferring the balance 
of the contract account to the SELLER.  

                                                      
6 BITNODES, https://bitnodes.earn.com/nodes/network-map/ (accessed on 14 December 2018).  
7 ETHERSCRIPTER, http://etherscripter.com (accessed on 29 October 2018). 



Declarative Logic for Smart Contracts is another specification approach, however, based on the paradigms 
of declarative and logic programming. A contracts’ logic is represented by formalized rules which can be 
mapped to contract code in the form of source code or byte code. Logic-based specifications have been sug-
gested (Governatori et al., 2018), benefiting of interoperability among rule markup languages, such as Legal-
RuleML. Another suggestion are contract definitions by reciprocal commitments (de Kruijff and Weigand, 
2018). While approaches here are promising, domain-related visual representations are not part of them.  

Domain Specific Modelling Languages allow for the design of a model in terms of a specific domain. Akin 
to the textual variant of it, mentioned in Section 3.1, models are expressed in the language of domain experts 
and are, here, translated to smart contract code. Approaches could be identified for the generation of Ethereum 
contract code from (1.) rules specified in the Decision Model and Notation (DMN) (Haarmann et al., 2018), 
(2.) processes specified by Business Process Model and Notation (BPMN) e.g. (Tran et al., 2018), and (3.) 
ontologies and semantic rules (Choudhury et al., 2018). While DMN rules could in theory be adapted as a basis 
for deriving smart contracts from legal contracts, no specific approaches for this purpose could be found.  

3.4.  Analysis and Smart Contract Blockchains 

Visual approaches for the analysis of smart contracts rely on statistics, the analysis of transactions of contracts 
and advanced methods for investigating smart contracts by decompilation and control flow analysis.  

Chart-based Statistical Evaluation techniques aid the understanding of categorical data of smart contract 
blockchains. Similar to the class in Section 3.1, operational parameters can be found. In addition, statistics of 
aggregated smart contract creations and invocations are visualized, e.g. in tools such as Ethstats8.   

Contract-Transaction-Analysis concerns the analysis of transactions sent to a receiver address of a specific 
contract account. The transactions recorded show (1.) the creation of a contract at a specific block, and (2.) 
each invocation at a specific block, executing the contract. As part of the block, (approximate) timestamps are 
available. An example of an implementation can be found in a block explorer9. 

Smart Contract Decompiler provide insight into the source code of a smart contract, given the byte code. 
This is a challenging task, since byte code is a non-human-readable specification for an execution environment, 
e.g. the EVM as a stack machine in Ethereum. In this representation, instructions are encoded for a particular 
environment by specific values of data, known as “opcodes”, and values of data from state variables are not 
stored under their original names. Given these limitations, a logical source code representation agnostic to 
semantics might be retrievable. Ethervm10 is an example for generating Ethereum solidity source code. 

Control Flow Analysis determines the execution behaviour from the byte code of a smart contract. The anal-
ysis is similar to a decompilation, however, for a given smart contract the result shows possible sequences of 
executed instructions. Figure 4 (b.) visualizes executable sequences (Norvill et al., 2018), where a node in the 
graph can be reached by executing opcodes shown on the left-hand side. A jump instruction continues the 
execution at a location shown on the stack at the right-hand side. Execution states visited in previous blocks 
are indicated in blue. The graph can be shown for different blocks, allowing an analysis over time.  

4. Discussion 

The manifold ways of visualizing the analysis and design of the components discussed may, to an extent, help 
in providing an insight into distributed ledgers and smart contracts. While the visual representation of compo-
nents can by itself be beneficial for the facilitation of design and analysis tasks, an intuitive understanding 
established by the visual concepts themselves cannot be assumed, given the examples known and reviewed. 

                                                      
8 ETHSTATS, https://ethstats.net/ (accessed on 14 December 2018).  
9 BLOXY, https://bloxy.info/ (accessed on 14 December 2018). 
10 ETHERVM, https://ethervm.io/decompile (accessed on 14 December 2018). 



Fundamentally, the visual design and analysis approaches found for blockchain platforms do allow for a design 
of legal contracts, primarily for cases where the transfer of ownership is the subject matter. The design may 
specify the parties involved, the object of the contract and the conditions for the conclusion of a contract by 
means of blockchain transactions. While the specification is visualized when applying model-based ap-
proaches, technical knowledge about a chosen blockchain platform and a fundamental understanding of the 
involved visual programming techniques are still pre-requisites. One reason is that visual models are presented 
on the same level of abstraction as technical models. In model-based design approaches for blockchain systems 
such as Hyperledger, as well as in visual programming languages for the design of smart contracts, little ab-
straction is gained by a one-to-one-substitution of each textual command for a visual object. Similarly, the 
visual analysis approaches operate on the level of technical concepts. For analysing the conditions causing the 
conclusion of a smart contract, and for an analysis of the blocks, transactions and addresses affected by the 
conclusion, block explorer tools and advanced approaches such as control flow analysis are not designed to 
provide higher level abstractions. Visualization by itself is, thus, insufficient. While the reviewed design ap-
proaches might be appropriate for technical development processes, and while the analysis approaches might 
provide insight when conducting targeted investigations, their broader applicability in domains outside of tech-
nical fields is limited. At the same time, fields such as the legal domain are directly concerned with smart 
contracts and distributed ledgers when it comes to actual contracts and transactions. 

For this reason, we propose further research efforts towards the direction of domain specific analysis and 
design methods. This leads us to the following proposition of requirements for designing an integrated visual 
modelling language. 

5. Requirements for an Integrated Visual Modelling Language 

The modelling language must address the design and analysis of distributed ledger and smart contract artefacts 
according to the following requirements. 

R1: Analysis or design must be expressible in the language of the domain, for it to be used by domain special-
ists. Specifically, any domain concept, relevant for design and analysis, must be available as a modular element 
for the construction of an analysis or a design. At least, the assessment of transactions and smart contracts, for 
judging their implications, as well as the construction of transactions and smart contracts must be covered. 

R2: Domain concepts must establish their meaning in the context of the analysis or the design by themselves, 
using visualization techniques. For example, when designing a smart contract, the semantics of the domain 
concepts modelled must be clear in the context of any of the affected parts of the contract. Methods for reali-
zation may combine techniques such as flow-based and block-structured visualizations with domain concepts. 

R3: For the design and analysis as part of complex systems, such as distributed ledger and smart contract 
blockchains, the level of abstraction must match the level of the domain. For interactions with such a system 
in any specific domain, the level of abstraction in all interactions must be the same as the level prevalent in the 
domain. In order to conduct a legal analysis of a smart contract, e.g. assessing it as a legal contract, the level 
of abstraction is at the level of legal concepts and their language. Note that in other domains, levels of abstrac-
tion differ vastly, e.g. it is at the level of control flow analysis for performing security audits. 

6. Conclusion 

For visualization approaches, we introduce a classification in terms of components of distributed ledger and 
smart contract systems. By visualization, approaches and tools provide insights mostly to technical users. For 
legal analysis and design, visualizations are not sufficient by themselves. With the aim of facilitating design 
and analysis beyond technical fields, we propose a language using abstractions of a domain. In future research, 
we plan to investigate (1.) the technical realization, (2.) the representation of domain requirements, and (3.) 
according visualizations for concepts and context, for domain specialists to act as designers and analysts. 
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